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Abstract 

 
The study of biomolecular interactions is central to an understanding of function, malfunction, 

and therapeutic modulation of biological systems, yet often involves a compromise between 

sensitivity and accuracy. The conventional analytical steps and the procedures required to 

facilitate sensitive detection, such as the incorporation of chemical labels, are prone to perturb 

the complexes under observation. Here we present a ‘latent’ analysis approach which uses 

chemical and microfluidic tools to reveal, through highly sensitive detection of a labelled 
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system, the behaviour of the physiologically relevant unlabelled system. We implement this 

strategy in a native microfluidic diffusional sizing platform, allowing us to achieve detection 

sensitivity at the attomole level, determine the hydrodynamic radii of biomolecules that vary 

by over three orders of magnitude in molecular weight, and study heterogeneous mixtures. 

Utilising these key advantages we characterised a complex of an antibody domain, in the 

solution phase and under physiologically relevant conditions. 

 

Protein-protein interactions are central to the framework with which biological systems respond 

to their environments over a range of temporal and spatial timescales.1–6 Rapid and transient 

interactions in particular allow a system to react to a stimulus in a coordinated and complex 

fashion, using a limited number of components. Moreover, such interactions are increasingly 

recognised as a key target for the design of more selective pharmaceuticals which modulate, 

rather than broadly inactivate, their targets.7 This approach – and indeed, the general aim of 

probing protein-protein interactions under physiologically relevant conditions – remains highly 

challenging, in part because many of the assays themselves have the potential to perturb the 

interactions under observation.8,9
 

Common methods for studying protein-protein interactions include two-hybrid screens,10 mass 

spectrometry,11 protein microarrays,12 and surface plasmon resonance (SPR) techniques such as 

BIAcore. However, fusion or immobilisation, or transfer into the gas phase raises the possibility 

that the conformational ensemble sampled by the protein of interest may not mimic that explored 

under native conditions.9 Solution phase methods such as analytical ultracentrifugation (AUC), 

isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR),13 and static and 

dynamic light scattering (DLS) can overcome this limitation, but often require concentrations 

exceeding the biologically relevant range and consume large amounts of protein or require 

specialised equipment.14 Good detection limits have also been attained with native fluorescence 

capillary electrophoresis (NCE)15 when the intrinsic fluorescence of the sample is high, and 

backscattering interferometry (BSI)16 when factors other than binding events, which may cause a 

measurable change in refractive index, are precisely controlled. 
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Alternatively, a general and cost effective method to increase the sensitivity is via the incorporation 

of protein or small molecule labels, such as fluorescent dyes, but even with careful choice of the 

labelling position these can introduce artefacts into the measurement by affecting the conformational 

ensemble of the protein studied.17  Conventionally, if the protein is modified in some way –   such 

as through the installation of a fluorescent protein or small molecule label – to permit sensitive 

detection, then the experiment is capable of revealing exclusively the behaviour of the modified 

protein, which may differ from that of the natural system. We present a new approach, that we 

define to be ‘latent,’ because the labelling is instead a component of the measurement process, 

in a manner such that it is unable to perturb the biological process under observation (Fig. 1a). 

Latent labelling exploits the ability to spatially separate reaction chambers within a microfluidic 

system operating under steady state flow conditions, and continuously direct native, unmodified 

biomolecules with desirable properties to a chemically distinct region of the microfluidic system, 

where they are labelled with a fluorogenic molecule prior to the detection step (Fig. 1a,b). We 

exploit microfluidic and chemical tools to ensure that the behaviour of the unlabelled, physiologically 

relevant system can be extracted from the simple optical detection of the labelled system. 

We demonstrate that biomolecules can be quantitatively labelled in seconds, with a fluorogenic 

dye under denaturing conditions, on a microfluidic chip. We incorporate this latent labelling 

module into a native microfluidic diffusional sizing system. Using this technique, it is possible 

to detect even attomole quantities of biomolecules, while studying the behaviour of unlabelled 

biomolecules and their complexes under fully native solution conditions through measuring,  and 

assessing changes in, sample hydrodynamic radius (RH). We show that biomolecules ranging in 

molecular weight (MW) by over three orders of magnitude can be accurately sized without the 

need for a calibration step, and therefore that this approach exceeds the dynamic range of existing 

techniques. We further demonstrate that the technique tolerates both intrinsically disordered proteins 

and heterogeneous mixtures, and demonstrate the power of the method to characterise a clinically 

relevant α-synuclein immune complex. These results suggest that native microfluidic diffusional 

sizing, and indeed additional applications of the latent labelling approach, will become   valuable 
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tools for the characterisation of biomolecules and their complexes, under fully native conditions 

and over a wide range of concentrations and timescales, and further, for the investigation into how 

such interactions can be modulated. 

 
 

Results and Discussion 

 
Latent labelling and its integration into microfluidic systems 

 
At a fundamental level, the measurement process consists of preparing a system in a well-defined 

initial state, monitoring its time evolution under a set of conditions governed by a parameter 

of interest, and then detecting that time evolution through a change in some observable. If a 

label is installed to increase detection sensitivity, then the measurement reveals exclusively the 

behaviour of the labelled system (Fig. 1a). We have used chemical and microfluidic tools to design 

a latent labelling strategy which decouples these steps of the measurement process, spatially and 

chemically, by confining them to distinct reaction chambers within a microfluidic system operating 

at steady state (Fig. 1a,b). Labelling enables highly sensitive detection, but the samples are 

unlabelled when the property of interest is probed via the time evolution step, so the label cannot 

affect the measured property. 

Our approach exploits the distinct properties of fluid when confined to small (µm) length scales. 

When two streams of fluid, one containing biomolecules of interest and the other containing 

exclusively buffer, meet in a microfluidic channel, there is no convective mixing, and transport 

of the biomolecules into the buffer perpendicular to the direction of the flow lines proceeds, in the 

absence of an applied force, exclusively via diffusion.19 It is possible to separate reaction chambers 

in time by spatially separating them along the direction of flow within the microfluidic system. 

Biomolecules of interest can be partitioned between these chambers by orienting the chambers, 

perpendicular to the flow direction, such that exclusively biomolecules whose properties of interest 

fall within a desired range are able to flow along a particular path.20,21
 

Here we couple our latent labelling strategy with a diffusional sizing approach. Advantages of 
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Figure 1: Latent labelling enables the development of native microfluidic analysis systems (a) While conventional 

measurements can involve a compromise between sensitivity and accuracy – the behaviour of labelled biomolecules 

(blue spheres) may differ from that of their unlabelled, physiological counterparts – the introduction of a latent labelling 

step within the measurement process enables sensitive optical detection of labelled biomolecules to provide a snapshot 

of the time evolution of the native biomolecules. Under well-controlled laminar flow conditions in microfluidic 

systems, this time evolution can be related to fundamental physical properties such as charge 18 or size. (b) To illustrate 

this, we have designed a native microfluidic diffusional sizing device. Arrows indicate the direction of fluid flow. 

Diffusion into a stream of buffer over time tD − t0 separates biomolecules according to their RH. A well-defined 

fraction of the distribution (yellow rectangle) is selected and labelled via mixing with a fluorogenic molecule and 

denaturant (inset iii). Because labelling is quantitative (Fig. 2), optical detection of fluorescence intensity (inset iv) 

reveals the total concentration of biomolecules diverted for labelling, which reports on the size distribution of the 

native, unlabelled species at time tD . Simulated distributions across the diffusion channel for particles of two known 

sizes are shown in inset ii. 
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this approach include that sizing is done in the solution phase, is non-invasive, is suitable for the 

study of complex mixtures, and is tolerant of a wide range of solution conditions. Biomolecular 

diffusion coefficients are determined by measuring the extent of mass transport perpendicular to 

the direction of flow, after a known residence time.20-24 In the microfluidic device (Fig. 1b), 

the first step of the measurement process is the establishment of a well-defined initial state: when 

the protein and buffer streams meet at time t0, no diffusion has taken place, so proteins of all RH 

have the same initial distribution, laterally spanning half the width of the diffusion channel as the 

volumetric flow rates of the protein and buffer streams are equal. The system is then allowed to 

evolve for a defined period of time, tD − t0, after which the smaller species have diffused   further 

than have the larger species. A simulation of the behaviour of two species, one with RH of 0.5 

nm and the other with RH of 10 nm, is shown in insets i & ii. At this stage the biomolecule is 

unlabelled, so no direct observation of diffusion at time tD occurs. Instead, molecules which have 

diffused at least one sixth the channel width in time tD − t0  (yellow rectangle) are diverted to  the 

labelling module. The total concentration of labelled molecules (integrating the size-dependent 

distribution within the yellow rectangle) reports on the distribution at time tD, and is thus used to 

determine molecular size (Fig. 3a). 

We note the generality of the latent analysis approach. In the laminar regime, it is possible to 

choose a well-defined component of the flow, and submit that component to non-native conditions 

required for a detection platform of choice, with that detection delivering information about the 

entire distribution before the partition step, and therefore on the behaviour of the unmodified 

sample under native conditions. Several detection methods, such as quartz crystal microbalance25 

or nanospray mass spectrometry26 can be envisioned. Here, we developed a fluorescence detection 

platform,  because of its  rapidity,  high sensitivity,  low cost,  and ease of implementation   with 

standard laboratory instruments. 
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Figure 2: Precise control of reaction time enables quantitative, fluorogenic protein labelling prior to detection. 

(a) Native proteins are denatured to expose all primary amine (PA) groups within the protein sequence for modification 

with non-fluorescent OPA. Labelling is quantitative if all, or a constant proportion of, PA groups are modified, such that 

regardless of sequence or structure, a single linear relationship describes the dependence of the generated isoindole 

fluorescence intensity (FI) on PA concentration for all of the peptides, proteins, and free amino acids studied (key at 

bottom). Measurement of FI 3 s (b) after mixing, just after the reaction has reached completion (c), permits accurate 

determination of ∼5 orders of magnitude in protein concentration from FI. Linearity is compromised 120 s after mixing 

(d) and at later time points (Supp. Figs. 2 & 3). (e) The fluorescence intensity measured after 3 s on chip as a 

function of protein concentration down to 6 attomole, showing the viability of determining low protein concentrations 

on a microfluidic chip. Error bars show the SD among independent replicates, data plotted with open markers have 

been excluded from the fit, and gray shaded areas indicate the range of concentrations over which bulk (b,d) and on-

chip (e) absorption measurements are routinely possible (see Supp. Figs. 4 & 5). 
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Defining the chemical requirements for latent labelling 

 
The conceptual requirement that the total concentration of biomolecules be accessible from measurement 

of fluorescence intensity alone defines the chemical requirements of the latent labelling   module. 

To permit absolute concentration measurement on chip without the need for calibration, either 

each biomolecule should be labelled at a single site, or all potential reactive groups within the 

biomolecule should be modified. Owing to its generality and higher expected signal intensity, we 

explored the latter quantitative labelling approach, in which the biomolecular concentration can be 

determined whenever the number of reactive groups within the biomolecule is known. To facilitate 

quantitative modification and reduce quenching effects, all reactive groups within the biomolecule 

should be exposed to the solvent. The biomolecule should also be protected against precipitation if 

it passes through its isoelectric point (IEP) during the labelling step, and the entire process should 

reach completion on the second to minute timescale, to facilitate real-time readout. The use of 

a fluorogenic label, which becomes fluorescent exclusively upon reaction with groups of interest 

within the biomolecule, obviates the need for purification of the labelled biomolecules from the 

unreacted dye. 

We addressed these challenges by adapting the fluorogenic reaction of ortho-phthalaldehyde 

(OPA) with primary amines (PAs).27-31 Due to the abundance of PA moieties within protein 

molecules, this method is particularly suited for the determination of low protein concentrations, 

but any biomolecule containing at least one PA can be analysed. In the presence of compounds 

with thiol groups such as in β-mercapto ethanol (BME), reaction with a PA group – such as 

the protein N-terminus, and protein lysine residues – forms a conjugated pyrrole ring, resulting 

in the formation of a substituted isoindole, giving rise to fluorescence in the blue region of the 

spectrum.29,30 In order to ensure that all PAs are exposed, our procedure involves the addition of 

high concentrations of sodium dodecyl sulfate (SDS) and excess reducing agent, conditions that 

are designed to denature the proteins at alkaline pH (10.5)32 (Fig. 2a). 

To assess the extent of reaction, we observed the fluorescence intensity generated upon labelling 

a set of well-characterized peptides and proteins with varying secondary, tertiary, and quaternary 
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structures including some of which would have passed through or approached their IEPs during 

the labelling step (Fig. 2, key at bottom). When the fluorescence intensity is plotted as a function 

of protein concentration, sequence dependent relationships are observed as predicted. Supp. Fig. 1 

shows representative data for bovine serum albumin (BSA), lysozyme (Lys), and β-lactoglobulin 

(β-lac). If labelling is quantitative, however, such sequence dependent variation should disappear 

when fluorescence intensity is instead plotted as a function of the concentration of reactive groups, 

i.e. PAs. The fluorescence intensity of each protein within the reference set should then fall on a 

single line, passing through the origin, that also describes the fluorescence intensity of free glycine 

and lysine. These amino acid controls are small molecules which are chemically similar to the 

labelled groups but which are solvent accessible without  denaturation. 

Because the isoindole fluorophore formed during the labelling reaction lacks chemical stability,33-35
 

extraction of quantitative information from this labelling technique under microfluidic conditions 

requires that the fluorophore is continuously generated under flow and measured at a defined time 

after mixing. We examined the dependence of isoindole fluorescence intensity on PA concentration 

when our reference set of proteins and amino acids was measured 3 s after mixing (Fig. 2b), the 

time we had determined was required for the reaction to reach completion on a microfluidic chip 

(Fig. 2c). Indeed, a single linear relationship described the dependence of fluorescence intensity on 

PA concentration over a range of more than three orders of magnitude in PA concentration, which 

corresponds to nearly five orders of magnitude in protein concentration. The fit is fluorescence = 

1.11(PA concentration) with R2 = 0.91 (see online methods), and variation in labelling efficiency 

with protein sequence or among the amino acids controls is not observed. 

Precise control over the reaction time, as is accessible via a microfluidic platform, is crucial. 

When the fluorescence intensity was instead measured at the 120 s time point, we observed deviations 

from linearity at high and low protein concentrations, as well as substrate-dependent variations in 

labelling efficiency (Fig. 2d). The fit is fluorescence = 1.16(PA concentration), R2 = 0.72. We 

investigated the reason for these deviations and found that though fluorescence is rapidly generated 

upon mixing, at later time points fluorescence intensity generally decreased in a complex substrate 
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and concentration dependent manner (Supp. Figs. 2 & 3), consistent with the reported differences 

in the degradation rates for isoindole fluorophores formed via reaction with varying substrates.34,35 

Measurement at the optimised 3 s time point, which was used for the remaining experiments in 

this paper, allowed for the determination of protein concentrations as low as 1 nM (Fig. 2b). This 

result corresponds to the measurement of approximately 2000 times less than the concentration of 

protein which can be routinely measured via absorption (Supp. Fig. 4). We note that if the study 

of protein concentrations exceeding the linearity limit is desired, the volumetric mixing ratio of the 

dye and protein streams can be altered, or a rapid on-chip dilution module can be incorporated.36
 

Given the low path lengths characteristic of microfluidic systems, we additionally explored the 

detection limit accessible on the diffusional sizing device (Fig. 1b), using BSA as a test system. 

We measured the fluorescence signal on chip for between 3.75 nM and 15 uM of this protein, as 

shown in Fig. 2e, suggesting a detection limit in the low nM range. Given that the volume of the 

portion of the detection region in which fluorescence intensity is quantified in the microfluidic 

device (Fig. 1b & Supp. Fig. 7) is 1.6 nL, this is equivalent to the quantification of on the order 

of 10−17 mol (10 attomole) protein on our chips. 

 

 
Accurate protein sizing with high dynamic range 

Molecular size is calculated based on simple measurements of fluorescence intensity. 

Quantitative labelling ensures that absolute protein concentration can be determined from 

measurement of fluorescence intensity within the detection region. Because the system is at steady 

state, measurement of the protein concentration downstream of the latent labelling module reveals 

the total concentration of the protein diverted for labelling at time tD (Figs. 3a & Fig. 1b, yellow 

rectangles); since the microfluidic system is time independent, it is possible to increase the 

integration time so as to permit detection of very low concentrations of biomolecules. 

So as to improve the robustness of the fluorescence intensity quantification against well-known 

effects such as variation in the illumination source intensity over time,37 a second measurement is 

taken of a homogeneous reference distribution.  Practically, this calibratory measurement can  be 
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made most readily by simply loading the same analyte solution into both the ‘biomolecule’ and 

‘buffer’ inlets shown in Fig. 1b. Species of varying RH (indicated colorimetrically) differ in the 

fraction of diffusing species compared to homogeneously distributed (Fig. 3a, black line) species 

that are diverted for labelling.  This is assessed experimentally by comparing the fluorescence 

intensities for these species in the detection region of the device (Fig. 3a, inset). Considering the 

total volume of protein flowing through the device during the measurement (diffusion + labelling 

+ integration time) for the sample and the homogeneously distributed reference molecules reveals 

that on the order of one femtomol of protein is required for a sizing measurement, though miniaturization 

of the device could reduce this requirement even further. 

In order to assess the accuracy of the RH values obtained with our system, we designed a ‘sizing 

ladder’ of biomolecules varying by over three orders of magnitude in molecular weight (MW) 

and including, in order of increasing RH: lysine, a heterogeneous mixture of insulin  monomer 

and dimer, β-lac dimer, intrinsically disordered α-synuclein, BSA, a covalent BSA dimer, and 

β-galactosidase tetramer. The set of molecules included proteins which differ in secondary and 

tertiary structure, are natively unfolded as well as folded, and exist as monomeric species or as 

complexes. In Fig. 3b, we compare the results we obtained to those reported in the literature using 

two established methods for measuring the RH values of unlabelled proteins (see also Supp. Table 1 

for literature references). Pulsed-field gradient NMR (PFG-NMR) was used for low MW weight 

species with low extinction coefficients, and analytical ultracentrifugation (AUC) for higher MW 

weight species. Both values were reported where possible. We found that the RH values obtained 

with microfluidics agreed closely with those obtained from the composite of AUC and PFG-NMR 

techniques over the entire MW range studied. The RH values obtained with microfluidics were 

also consistently more accurate than MW-based predictions of molecular size (Supp. Fig. 8). The 

accuracy of our method was particularly evident in our analysis of α-synuclein, an intrinsically 

disordered protein implicated in Parkinson’s disease.  We  found that the microfluidic RH       value 

obtained for α-synuclein was consistent with that obtained via PFG-NMR,42  and that both   were 

larger than that obtained with AUC,43  a result which is expected because the natively unfolded 
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structure of α-synuclein is not compact and would be expected to sediment more slowly. 
 

 

 

 

 

 

Figure 3: Sizing proteins, heterogeneous mixtures, and protein complexes. (a) Concentration profiles simulated for 

reference species of known size (Müller et al, submitted for publication), viewing laterally across the diffusion channel 

shown in Fig. 1b. While homogeneously (black horizontal line) and initially (black dashed line) distributed species of all 

sizes have the same profiles, after diffusion these are determined exclusively by species RH, indicated colorimetrically. 

RH determination involves comparing the total concentrations of diffused versus homogeneously distributed species 

selected for labelling (yellow shaded area), as shown in inset. (b) RH values determined in this manner are compared 

to those obtained with PFG-NMR (lilac) and AUC (aqua) (see also Supp. Table 1). Molecules studied vary by over 

three orders of magnitude in molecular weight and include intrinsically disordered proteins and heterogeneous 

mixtures. (c) We exploit this heterogeneous mixture tolerance and accurate sizing of disordered, as well as folded, 

structures to characterise a novel Parkinson’s-related immune complex between a nanobody and equimolar (5 µM) 

α-synuclein, by characterising the hydrodynamic radii of all components. Our data suggest that the nanobody 

interacts with α-synuclein monomer. The schematic is based on the known locations of a related nanobody’s 

interaction38 with an ensemble representing intrinsically disordered conformations of α-synuclein.39-41 Throughout 

error bars represent the SD among independent replicates. 
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Characterising  native  protein-protein interactions 

Having established the sensitivity and accuracy of the system, we additionally explored its 

tolerance of heterogeneous mixtures. The bovine insulin hormone has been studied 

extensively in vitro, where at low pH and in the absence of Zn2+, the monomer and dimer 

predominate. Its well-defined oligomers have been characterised hydrodynamically and 

thermodynamically, so we chose this system to explore whether the composite hydrodynamic 

radii we obtained reflect the radii expected based on the relative abundance of each species 

present in the mixture. At pH 2 and in the absence of Zn2+, an association constant of 

1.1×104M−1 has been reported,44 which should under the conditions of this study result in 

71% insulin monomer and 29% insulin dimer. The RH of 1.64 nm obtained with native 

microfluidic diffusional sizing, reflects the proportions of monomer and dimer – which have RH  

of 1.6045 and 1.78 nm46 respectively – present in the sample. 

Finally, we made use of this heterogeneous mixture tolerance to additionally explore the   

use of this procedure to, as proof of concept, characterise an undescribed protein-protein 

interaction. We chose to study an interaction between α-synuclein and a single-domain 

camelid antibody, termed a nanobody.47 Due to their small size and high stability and 

specificity, nanobodies are rapidly emerging as important research tools in structural biology 

and medicine, including their particular use as diagnostic markers and therapeutics for 

protein misfolding diseases.48,49 We have developed nanobodies to study the misfolding of 

several proteins, and have shown that the nanobody NbSyn238 can be used as a molecular 

probe for the detection of subtle conformational differences upon α-synuclein fibril 

maturation.50 Due to the conformational flexibility of intrinsically disordered α-synuclein, the 

characteristics of the labelled complex may be expected to differ significantly from that of 

the native, unmodified system. 

We used the microfluidic platform to explore the binding of α-syn to a variant of NbSyn2, 

NbSyn138. Our approach involved characterising the hydrodynamic radii of all components (Fig. 

3c). If NbSyn1 binds to the alpha-synuclein monomer, under conditions such as those explored 
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here in which the system would be expected to be fully bound based on the dissociation 

constants of related mutants, then the predicted size increase on binding can be calculated 

based on the change in molecular weight on complex formation, using a MW based prediction 

of molecular size (as described in Supp. Fig. 8).  Our prediction corrects for the larger than 

‘minimum’ RH observed for α-synuclein in isolation due to its intrinsically disordered 

structure by taking into account an adjusted molecular weight which would be expected for a 

protein with the measured RH. In this manner the size of the bound complex is predicted to be 

3.11 nm, which is in accord with the measured 3.10 ± 0.35 nm, and suggests that NbSyn1 

indeed binds to the alpha-synuclein monomer.  By contrast, binding to an oligomeric species 

would require a complex size of at least 3.82 nm, which is not observed. Thus, this approach 

reveals not only that a binding event has occurred, but also suggests the oligomerisation state 

of the target, which is frequently, as in the Parkinson’s-associated system studied, a crucial 

determinant of its biological activity.6 

Native microfluidic diffusional sizing has a series of distinctive features relative to conventional 

methods, such as SPR and ITC, for characterizing this type of complex: measurements are rapid, 

entirely in the solution phase, tolerant of any desired buffer conditions as long as the only primary 

amines are those intended for detection, consume only µL of sample, can probe interactions that 

are entropically as well as enthalpically driven, and the direct output of the measurement is a 

fundamental physical property – molecular dimension, which gives additional information about 

the oligomerisation state of the target. 

 
 

Conclusions 

 
In summary, the development of methods enabling the characterisation of native, unmodified 

biomolecules and their complexes in the solution phase is of central significance in structural 

and functional biology. The data presented here demonstrate that, by integrating chemical and 

physical tools to create a latent analysis approach, our technology makes it possible to achieve 

highly sensitive (attomole) detection sensitivity of native proteins. Indeed, species ranging in size 
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from individual amino acids (146 Da) to large protein complexes (464000 Da) could be accurately 

sized. This method is applicable to intrinsically disordered proteins and heterogeneous mixtures 

and has key advantages over existing technologies. Principally, it is a non-disruptive, solution 

phase method that enables characterisation of low concentrations of biomolecules and their 

interactions, without the need for prior labelling. This is important because if prior labelling is 

used to enhance detection it can both perturb the behaviour under observation and require significant 

researcher effort to identify conditions which may lessen this perturbation. Indeed, due to its 

simplicity and generality we expect that this technology, and other latent analysis approaches in 

which the behaviour of unmodified biomolecules is measured with high sensitivity, will be of 

particular relevance in the study of the strength and kinetics of protein-protein and protein-

nucleic acid interactions which are increasingly recognized as the next generation of 

pharmaceutical targets,8 as well as in the characterisation of protein and protein complex 

interactions with  small molecule modulators. 

 

 

Methods 

 

 

Bulk labelling measurements 

A variety of fluorogens, stoichiometries, and denaturing conditions were investigated using 

a fluorescence spectrometer (Varian, Cary Eclipse) and fluorescence microplate reader (BMG 

LabTech), in quartz fluorescence cuvettes (Hellma), or half-area non-protein binding microplates 

(Corning, product #3881), respectively. The quantitative labelling cocktail described in this paper 

was composed of: 12 mM OPA, 18 mM BME, and 4% w/v SDS in 200 mM carbonate buffer, pH 

10.5. Generally, 16 mg OPA was dissolved in 4 mL 500 mM carbonate buffer, pH 10.5. Then 12.63 
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µL BME was added, along with 4 mL water, and 2 mL of a 20% w/v solution SDS. The cocktail 

was protected from light and heated at 65 ◦C for 10 minutes, or until the OPA dissolved, then 

allowed to cool to room temperature and filtered. Labelling solutions were protected from  light 

at room temperature, and used within five days of preparation, or frozen and used within fourteen 

days of preparation. The solutions were standardly mixed in 1:1 v/v with each of the samples of 

interest. Unless otherwise stated, protein solutions were prepared in 5 mM HEPES, pH 7.0, and 

their concentrations determined spectrophometrically on a NanoDrop UV-Vis spectrophotometer 

(Thermo Scientific, Willmington, DE, USA). 

Time controlled fluorescence measurements were performed using a CLARIOstar microplate 

reader (BMG LabTech) fitted with an injector module. The measurements were performed in ‘well 

mode,’ meaning that each well was treated separately. The injector module delivered 50 µL dye 

into a single well at a speed of 430 µL/s, agitated the plate for 1s, and then measured the sample 

every 0.25 s for a duration of 125 s, before moving on to the next well. Every sample and dye 

background solution was prepared in triplicate. 

 

 
For a discussion of microfluidic design and fabrication, see the online supplementary 

information 

 

 
Microfluidic measurements 

Devices were loaded by first filling all channels from the outlet with the appropriate buffer. 

The buffer and samples were filtered through a 0.22 µm filter (Millipore) immediately prior to use, 

to eliminate particulate matter which could clog the devices. Generally, either a 1 mL Hamilton 

glass syringe, or a 1 mL plastic Air-Tite syringe, connected through a 27 gauge needle to portex 

tubing was used. No differences were noted between the performance of glass and plastic syringes 

at the flow rates used in these experiments. Pressure was then applied simultaneously at the inlets 

and through the syringe to remove any bubbles formed during the loading process, and reagents 

were introduced with gel loading tips at the device inlets. Reagent loading varied between 10 and 
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200 µL, depending on the nature of the particular experiment, though even smaller volumes can be 

used. 

Fluid was withdrawn through the device with a neMESYS syringe pump. In order to draw 

reagents through the device initially and minimize the effects of any inlet cross-flow during the 

loading step, 20 µL fluid was first withdrawn at a flow rate of 300 µL/hr. For the microfluidic 

device used in these experiments, a 25 µL/hr flow rate in the diffusion chamber was selected, 

which corresponded to a 33.3 µL/hr withdrawal rate at the outlet. The flow rate was allowed 

to equilibrate for at least 18 min prior to the start of image acquisition, and for at least 500 s 

following sample changes. The initial equilibration steps can be performed with buffer to reduce 

sample consumption. An efficient sample change procedure involved depositing a drop of buffer 

around the gel-loading tip that delivered the sample into the indicated inlet, then rapidly removing 

that tip and replacing it drop-to-drop with a second tip filled with the new sample, all the while 

withdrawing at the desired flow rate. 

Brightfield and fluorescence images were acquired using a Zeiss AxioObserver Microscope, 

fitted with an Evolve 512 CCD camera (Photometrics), and a 365 nm Cairn OptoLED and DAPI 

filter (product # 49000, Chroma, Vermont USA) for the fluorescence images. 2.5X, 5X, 10X, and 

20X objectives were used, and exposure times of between 10 ms and 10 s were used; generally 

between 10 and 60 images were averaged during each acquisition. When the signal intensity was 

low, EM gain was used, or adjacent pixels were binned. For each set of measurements, at least 

one dye background image was taken to account for the (minimal) fluorescence of the  unreacted 

dye. A flatfield background image was also acquired, and measurements were taken in a dark 

environment, with the temperature maintained at 25◦C. 
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