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Abstract

Solubility is a property of central importance for the use of proteins in research in molecular and cell biology and in applications in
biotechnology and medicine. Since experimental methods for measuring protein solubility are material intensive and time consuming,
computational methods have recently emerged to enable the rapid and inexpensive screening of solubility for large libraries of proteins,
as it is routinely required in development pipelines. Here, we describe the development of one such method to include in the predictions
the effect of the pH on solubility. We illustrate the resulting pH-dependent predictions on a variety of antibodies and other proteins to
demonstrate that these predictions achieve an accuracy comparable with that of experimental methods. We make this method publicly
available at https://www-cohsoftware.ch.cam.ac.uk/index.php/camsolph, as the version 3.0 of CamSol.
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Introduction
Solubility is one of the key properties that underpins the developa-
bility potential of proteins in industrial pipelines [1–9]. Other such
properties include expression yield, immunogenicity, chemical
and conformational stability, viscosity and polyspecificity [1–9].
Although proteins have evolved to be soluble enough to be func-
tional in the cellular environment [4, 10, 11], proteins for research,
diagnostic and especially therapeutic purposes are commonly
required to withstand the high concentrations necessary for stor-
age and for certain administration routes, such as subcutaneous
delivery. This consideration implies that in most cases protein
solubility must be optimized beyond typical natural levels, and
that specific formulation conditions, including the pH, must be
identified to maximize solubility and stability of the product.

The solubility of proteins is defined thermodynamically in
terms of the critical concentration, which is the level of concen-
tration where the soluble and insoluble phases are in equilibrium
[2, 9]. The solubility is therefore dependent on the formulation
conditions. Therefore, formulation optimization is a key step in
protein development pipelines, and it is important in particular
to find the most suitable pH value to ensure that a protein is
sufficiently stable.

Although several methods have been developed for the exper-
imental measurement of protein solubility [2, 5], these methods
are not readily amenable to high-throughput screening cam-
paigns, which are required to assess the large number of candi-
dates typically available the early stages of industrial pipelines.

For this reason, many computational prediction methods have
been developed in recent years. PON-sol [12], SOLpro [13] and
PROSO II [14] use machine learning techniques to predict solubil-
ity in terms of soluble expression yield. Other methods derive the
solubility from aggregation-prone regions [15] calculated using
physicochemical descriptors of amino acid sequences, including
TANGO [16], Aggrescan [17], Solubis [18] and the original Cam-
Sol method [19]. The use of molecular dynamics simulations to
predict the exposure of hydrophobic regions and its link with
aggregation propensity, such as in the case of the SAP method
[20], has also been exploited. Despite many of these methods
being highly reliable, there is still an unmet need for sequence-
based predictors capable of accurately assessing the effects of
formulation pH on the solubility of proteins.

In this work we generalize the CamSol method [19], which
was introduced to predict the solubility of protein variants, to
predict the effects of varying the pH on protein solubility. Our
approach encompasses three main features: (i) the calculation
of partial charges using the Henderson–Hasselbalch equation,
(ii) the calculation of hydrophobicity values with pH-dependent
logD values and (iii) the calculation of the context-dependent
residue pKa values, either from the 3D structure when available
[21, 22] or through a sequence-based prediction ([23]; Figure 1). By
employing CamSol 3.0, we show that we can accurately predict
the solubility behavior at different pH values of proteins with
varying sizes, including nanobodies, full-length antibodies and
intrinsically disordered proteins.
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Figure 1. Schematic illustration of the sequence-based pH-dependent solubility predictions of CamSol. CamSol assesses partial charges using the
Henderson–Hasselbalch equation. Hydrophobicity calculations are replaced by LogD calculations [26]. If a structure is supplied, amino acids pKa values
are calculated using PROPKA, otherwise the IPC method is used. Experimental data (green markers in lower circle) were generated using a recently
developed PEG Assay.

Results
The CamSol method calculates the solubility of proteins based
on the physicochemical properties of their amino acid sequences
[19]. Changes in pH mainly affect ionisable residues, as the pH
determines the protonation state and therefore the electrostatic
charges of these residues. To accurately assess the charge of
each residue, we implemented the Henderson–Hasselbalch equa-
tion [24] to determine the ratio between protonated and charged
residues to estimate the partial charge of each amino acid.

An important component of these calculations is an accurate
pKa value, which determines the pH range where the residue is
charged. In this work, we employed three alternative strategies to
obtain accurate pKa values. The user may choose which approach
to use, depending on the information available on the protein
under scrutiny.

In the first method, we revisited the tabulated pKa values used
in the original version of CamSol and updated them with more
accurate values (Table S1). More specifically, we retrieved pKa

values from the computational biophysics and bioinformatics
database (http://compbio.clemson.edu/pkad), which contains
over 1500 experimentally measured residue pKa values from
a wide range of proteins. We then employed the median pKa

value observed in this database for each of the 20 amino acid
types.

In the second method, sequence-based predictions of pKa val-
ues using IPC 2.0 were applied to all proteins with a specific focus
on disordered proteins such as α-synuclein and peptides with
high structural heterogeneity such as insulin. IPC is especially
useful for peptides and proteins that are intrinsically disordered
or highly dynamic. Using pKa values updated in this way helps
refine the solubility predictions and improves accuracy while
keeping the method completely sequence-based.

In the third method, we started from the observation that
amino acid pKa values are affected by the structural environment
and neighboring residues. To take these effects into account we
incorporated pKa predictions using the PROPKA method [21, 22].
PROPKA is a widely used pKa predictor for proteins [25], which
requires the knowledge of the structure of the input protein or
of an accurate structural model. For a comparison of how the
pKa values change upon usage of the different methods, Table S2
shows the pKa values for each method for bovine serum albumin
(BSA).

Furthermore, we also ensured that the effects of changes in
pH are accurately reflected in the way hydrophobicity affects the
solubility predictions. In the original CamSol method, hydropho-
bicity has been expressed as the partition coefficient logP. To
take charged species into account, we replaced these logP values
with their corresponding logD values. Whereas logP values only
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Figure 2. CamSol predicts solubility values that are highly correlated with experimental solubility values. Plots on the left-hand side in each column
visualize how experimental and predicted values change over a range of pH values. The left axis and blue line report the predicted CamSol solubility
score, the right axis and green markers the measured midpoints of PEG-precipitation, all as a function of pH (x-axis). The vertical yellow line is the
theoretical isoelectric point. Plots on the right-hand side shows the correlation between the predicted and measured relative solubility values. CamSol
calculations were carried out using pKa values calculated by PROPKA for (A) DesAbO (nanobody), (B) bovine serum albumin (BSA), (C) hen egg white
lysozyme and (D) human serum albumin (HSA), whereas for (E) α-synuclein and (F) insulin pKa values were calculated with IPC (framed in blue box). R
is the Pearson’s coefficient of correlation.

consider the neutral state of a species, logD values take the neu-
tral and charged states into account. We used data published by
Zamora et al. [26] to predict LogD values for all ionisable residues.
Since logD values are also pKa-dependent, the calculated logD
values can be updated with IPC or with PROPKA if a structure
is available. We normalized and linearly fitted calculated logD
values to the range of logP values previously used in CamSol to
maintain consistency in the range of hydrophobicity values and
to avoid the necessity to refit the scoring parameters of CamSol.

Since the availability of high-quality solubility data at varying
pH values is limited, we set out to carry out experimental mea-
surements of relative solubility. Specifically, we test our method
on proteins that were either commercially available or already
produced in our laboratory. A further criterion was that such
proteins should not contain large co-factors (e.g. bound heme
or large heteroatom groups) or metals, as these components
can significantly alter their solubility and are not yet accounted
for by the CamSol method. We measured the solubilities of α-
synuclein, insulin, lysozyme, the single-domain antibody DesAbO
[27], human serum albumin (HSA) and BSA at pH values rang-
ing from 3 to 9 (Figure S1, see Supplementary Data available
online), as well as that of the full-length IgG4 monoclonal anti-
body HzATNP and one of its mutational variants [3]. The range
of pH values was limited by the experimental behavior of the

proteins. At extreme pH values (3–4 and 8–9) the measurements
become more inaccurate resulting in data with relatively large
errors. However, these extreme pH values are not generally acces-
sible for biocompatible formulation. To ensure that the solubility
measurements are not affected by large conformational changes
(e.g. unfolding) of the protein under scrutiny at certain pH val-
ues, we measured the circular dichroism (CD) spectra of every
sample after the incubation time employed in the solubility assay
(Figure S2, see Supplementary Data available online).

We calculated the correlation between measured relative sol-
ubility values and the predicted CamSol scores, testing also the
different ways of calculating residue pKa values implemented
in the method (Figure 2). The results with IPC and without any
pKa corrections are shown in Figures S3 and S4 (see Supple-
mentary Data available online), respectively. Our results show
that CamSol not only captures the overall trend in solubility
upon pH changes well, but the predicted values are also highly
correlated with the experimental values with Pearson’s coef-
ficients of correlation always greater than 0.67 (Tables S3 and
S4). Figure 2A–D depict predictions including PROPKA for folded,
globular proteins, whereas Figure 2E and F (blue box) show the
results for α-synuclein (an intrinsically disordered protein) and
the peptide insulin, for which IPC was applied. With the pro-
teins tested experimentally, we aimed at covering a broad range
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Figure 3. Change in solubility at varying pH for a monoclonal IgG4 antibody. As in Figure 2, plots on the left visualize how experimental and predicted
values change over a range of pH values, and those on the right show the correlation between the predicted and measured relative solubility values.
(A) The modelled structures of the IgG4 antibody are color-coded according to the CamSol structurally corrected profile for pH 4, 7 and 9 (blue: highly
soluble region, red: highly insoluble region, see color-bar). (B) Same plot for a mutational variant of mAbIgG4 harboring two mutations that lower the
pI (S70E V99D on heavy and light chain respectively). R is the Pearson’s coefficient of correlation (R∗ indicates that R is estimated from the only four
points that are available). Green crosses: experimental values; blue lines: predicted values; yellow dotted line: calculated pI and green dotted line:
experimental pI.

(4.5–11) of theoretical pI values (Figure 2, yellow vertical line), as
the pI is usually a good indicator for the pH value corresponding
to the minimum in solubility.

BSA and HSA (Figure 2B and D) showed a good agreement
between experimental values and predicted results with a
Pearson’s coefficient of correlation of 0.75 and 0.78, respectively.
These correlations improved to 0.92 and 0.88 with the use of
IPC, and are still relatively good even if the pKa values are not
corrected (0.63 and 0.78). The nanobody DesAbO shows an even
better agreement with a coefficient of correlation of 0.8. However,
the case of the nanobody indicates the limits of the IPC approach,
as the coefficient of correlation drops to 0.47 (0.39 without any
correction). Lysozyme shows almost a perfect correlation, with a
correlation coefficient of 0.9. For α-synuclein and insulin only the
IPC method was applied since intrinsically disordered Proteins
(IDPs) and peptides do not form stable structures that can be
used for PROPKA. The correlations are slightly lower, with a
coefficient of correlation of 0.71 and 0.67, respectively (0.72 and
−0.67 without any correction).

When we analyzed DesAbO, we realized that the charge effect
of the C-terminal His-tag (i.e. the sequence of seven histidine
residues used for purification) could be estimated more accu-
rately. The His-tag was not part of the structure and the pKa values
were therefore not adjusted by using PROPKA. Nevertheless, it
is clear from a physicochemical standpoint that the pKa values

must change if so many ionizable residues are near each other. By
assuming the pKa value shifts from 6.5 to a lower value [28], we
carried out the calculations at pKa 6.

We then tested the method on a IgG4 antibody (mAbIgG4).
The coefficient of correlation is 0.96 with PROPKA pKa values
(Figure 3A), 0.88 with IPC (Figure S5, see Supplementary Data
available online) and 0.85 with no correction (Figure S6, see Sup-
plementary Data available online). We also visualized the change
in solubility by color-coding the solubility profile onto the struc-
ture of the antibody (blue: highly soluble region and red: highly
insoluble region). This approach highlights how some regions
become less soluble at higher pH values and vice versa. We also
tested a mutational variant of the antibody with a slightly lower
pI to see whether CamSol was capable of capturing even small
changes in pH-dependent solubility induced by minor mutations.
CamSol can predict well the solubility of this variant with a
coefficient of correlation of 0.97 (0.86 and 0.82, respectively for
IPC and no pKa correction; Figure 3B). To illustrate how the change
in pH affects amino acids and sequence regions differently we
plotted the solubility profile for BSA at three different pH values
(Figure S7, see Supplementary Data available online). Looking at
these solubility profiles helps pinpoint specific sequence regions
whose contribution to solubility is most affected by changes in
pH. Therefore, this analysis can aid the engineering of mutations
to alter the pH-dependence of the solubility.
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Discussion and conclusions
Predicting the solubility of proteins as a function of the pH is
important in industrial pipelines as it can reduce the number
and cost of labor-intensive in vitro assays to determine optimal
formulations [1, 3–5]. With the new version of CamSol that we
have reported here we took a step into this direction by including
the effect of the pH in the predictions.

We have shown that CamSol 3.0 can reliably predict the sol-
ubility of globular proteins with a wide range of pI values (from
4.5 for α-synuclein up to 11 for lysozyme). CamSol 3.0 is also
capable of capturing the changes induced by small mutations
that shift the overall pI value of the protein. Using CamSol 3.0 we
also visualized the changes of solubility on the surface of an IgG4
antibody and demonstrated how certain areas of a protein can
move from highly soluble to neutral and neutral areas to highly
insoluble over a short range of pH values.

The pI value is usually used as an approximation of the pH
value at which a protein is least soluble as this is the point at
which the overall charge on a protein is neutral. Although in
many cases this assumption is rather accurate, in general the
solubility of folded proteins does not only depend on the overall
charge. The distribution of these charges is crucial, as patches of
opposing charges can act as starting points for aggregation due to
strong attractive intermolecular forces. Although the changes in
hydrophobicity are related to the changes in charge upon pH vari-
ations, these are not perfectly correlated and hence can move the
point of least solubility away from the pI value as well. CamSol 3.0
tries to capture all these effects to give a more accurate estimate
of the point of lowest solubility. Moreover, we also predicted the
behavior around the pI value that is more informative than just
the point of least solubility.

We have provided the user with three different options to
calculate amino acid pKa values: (i) Using tabulated pKa values,
(ii) Using PROPKA if a structure is available and the protein of
interest is stably folded and (iii) using IPC, if the protein under
scrutiny is structurally heterogeneous or fully disordered. Option
2 is the most accurate for structured proteins, whereas option 3
works best for highly dynamic ones. Option 1 is provided as its
calculations are extremely fast, and it can therefore be employed
for very large-scale screenings of pH-dependence using little com-
putational resources. The pH-dependence of the solubility of the
top-ranking proteins from such screenings can then be calculated
more accurately by employing either PROPKA or IPC calculated
residue pKa values.

By testing a wide variety of different proteins, from small, dis-
ordered peptides and proteins to large globular proteins including
full-length antibodies, we illustrated the general applicability of
our method. Nevertheless, we acknowledge that the new version
of CamSol is still limited to proteins that do not contain large co-
factors such as heme, as we expect that these can alter the pH-
dependent solubility significantly and CamSol cannot currently
account for these aspects. Moreover, other large modifications
such as glycosylation, lipidation or the presence of co-factors are
not yet taken into account in our method. In its current imple-
mentation, CamSol is aimed at performing relative comparisons
of the solubility of a protein at varying conditions (including pH)
or of similar proteins such as mutational variants.

In addition to aid the development of protein biologics, we
expect our method to be useful in protein engineering and de
novo protein design, adding to the increasingly powerful arsenal
of computational methods emerging in these fields.

In conclusion, with version 3.0 of CamSol we have presented a
sequence-based method that can accurately predict the solubility
of proteins at varying pH values.

Methods
Theoretical methods
Here, we provide an overview of the CamSol method and explain
the changes introduced to take into account the effect of the pH
on protein solubility. For a detailed explanation of the CamSol
approach, the reader is referred to the original CamSol paper [19].
CamSol is based on a phenomenological combination of physic-
ochemical properties, and therefore its results are readily inter-
pretable in terms of these properties. The software was based on
the Zyggregator method [29], which predicts amyloid aggregation
propensity of proteins. In CamSol, four physicochemical prop-
erties—charge, hydrophobicity, α-helical propensity and β-sheet
propensity—are combined to assign a score to each amino acid,
yielding a solubility profile which is then smoothed to account
for the effect of neighboring residues, and then corrected for
hydrophobic-hydrophilic patterns and gatekeeper effects (gate-
keepers are charged residues flanking hydrophobic regions and
modulate their effects on solubility). From this profile, an overall
solubility score is calculated which was updated in version 2 of
CamSol [30].

In the original CamSol method, it was already possible to
provide the value of the pH as input. The consequence of changing
the input pH was to adopt specific side-chain charges depending
on tabulated pKa values for the twenty standard amino acid. For
example, all histidine residues would acquire a charge of +1 for an
input pH below 6.5. Although rooted on general physicochemical
principles, this description of the pH-dependence of residue pKa is
very coarse, and can be substantially improved. Therefore, in the
current work, we updated the pKa values tabulated in CamSol by
compiling all experimentally determined pKa values from http://
compbio.clemson.edu/pkad (SI). We also introduced charges for
the amide group at the N-terminus and the carboxylic acid at
the C-terminus. The charge is calculated by using the Henderson–
Hasselbalch equation, and partial charges are now allowed

pH = pKa + log
Base
Acid

�⇒ Base
Acid

= 10pH−pKa

Therefore, CamSol 3.0 not only relies on more accurate pKa

values (either from the updated table, or calculated with PROPKA
or IPC), but employs partial charges when the pH is close to the
pKa of a charged amino acid.

Using the ratio of charged to neutral species calculated with
the above equation, we also replaced the logP values representing
hydrophobicity by pH-dependent hydrophobicity values (logD).
LogD combines the partition coefficient logP of neutral and ion-
ized species

log DpH = log
(
PN + PI ∗ 10δ

) − log
(
1 + 10δ

)

where δ is the difference between pKa and pH (pKa—pH for
basic residues and pH—pKa for acidic residues). We used the
pH-dependent LogD calculations by Zamora and colleagues [26]
for neutral and ionized LogP values for all standard amino acids.

In the original CamSol method cysteine residues were assumed
to be reduced. We changed the default to assume that all cysteine
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residues are in salt bridges and therefore cannot be charged. Free
cysteine residues can be assigned by replacing the letter ‘C’ with
the letter ‘B’ in the input sequence.

To calculate accurate pKa values, we employed PROPKA, an
open-source available pKa predictor [21, 22]. When given a struc-
ture, PROPKA calculates pKa values for all ionisable residues based
on their surrounding residues. PROPKA uses a combination of
thermodynamic calculations and empirical shifts. It assesses the
effect of surrounding residues on each ionisable residue by calcu-
lating desolvation contributions and charge–charge interactions.
If a structure or a suitable 3D-model is not available, as it is
the case for disordered proteins and peptides, a sequence-based
prediction is carried out instead using IPC 2.0. This method uses
a mixture of support vector regression and deep learning models
trained on the PKAD database [31] to predict pKa values based on
the protein sequences [23]. Lastly, the pKa for histidine residues
that are part of a terminal His-tag is lowered to 6 from 6.5 since
the proximity of these histidine residues to each other causes a
lowering of their pKa values to avoid electrostatic repulsion [28].

Taken together, these changes enable the accurate prediction of
the sequence-based pH-dependence of the solubility for a broad
range of proteins.

Experimental methods
Buffer
Ten-millimolar sodium phosphate dibasic heptahydrate (MP
Biomedicals, 191 441) and 10-mM citric acid monohydrate (Fisher
Scientific, 5949-29-1) were combined. For each experiment the pH
was adjusted using NaOH or HCl.

Proteins
BSA (Sigma, A9418), HSA (Sigma, A3782) and chicken egg white
lysozyme (Sigma, L6876) were resuspended in buffer and then
further purified and buffer-exchanged by carrying out size exclu-
sion chromatography (SEC; Cytiva, Superdex75 10/300 Increase
for lysozyme and Superdex200 10/300 Increase for BSA and HSA).
mAbIgG4 and its variant were provided by Novo Nordisk. DesAbO
and α-synuclein were produced and purified in our group as
described previously [27, 32]. Each protein was freshly buffer-
exchanged into the correct buffer (Cytiva, HiTrap Desalting col-
umn) before each assay.

Solubility assay
The relative solubility of proteins was measured using a recently
developed polyethylene glycol (PEG) solubility assay [33]. In brief,
PEG 6000 is used as a crowding agent and titrated to final
PEG concentrations of 0–33% and final protein concentration
of 1 mg/ml, starting from PEG and protein stocks in the same
buffer at the same pH, which typically needed to be re-adjusted
after dissolving the PEG. After a 48-h incubation period, plates
are centrifuged, the supernatant is transferred into a fresh plate
and the soluble fraction is measured using a plate reader. A
sigmoidal behavior is seen for the precipitation of proteins,
and the inflection point of the curve is used as a solubility
proxy.

Circular dichroism spectroscopy
Proteins were diluted to a concentration of 0.1 mg/ml. Three
spectra were obtained using an Applied Photophysics Chirascan
and a High Precision Cell made of quartz (Hellma Analytics, path
length 1 mm) between 200 and 250 nm with a bandwidth of 1 nm,
step size of 0.5 nm and scanning speed of 1 s/point.

Spectrophotometry
Absorbance was measured with a plate reader (BMG Clariostar)
and the spectrum from 220 to 700 nm was recorded at 25◦C.

Key Points

• We present a method of predicting the pH-dependence
of the solubility of proteins.

• The method is incorporated in the CamSol software
and, if the structure is not known, works only using the
sequence.

• The quality of the prediction is validated through accu-
rate solubility measurements.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.
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