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Abstract

The protein homeostasis (proteostasis) system encompasses the cellular 
processes that regulate protein synthesis, folding, concentration, 
trafficking and degradation. In the case of intracellular proteostasis, 
the identity and nature of these processes have been extensively 
studied and are relatively well known. By contrast, the mechanisms 
of extracellular proteostasis are yet to be fully elucidated, although 
evidence is accumulating that their age-related progressive impairment 
might contribute to neuronal death in neurodegenerative diseases. 
Constitutively secreted extracellular chaperones are emerging as key 
players in processes that operate to protect neurons and other brain 
cells by neutralizing the toxicity of extracellular protein aggregates and 
promoting their safe clearance and disposal. Growing evidence indicates 
that these extracellular chaperones exert multiple effects to promote 
cell viability and protect neurons against pathologies arising from 
the misfolding and aggregation of proteins in the synaptic space and 
interstitial fluid. In this Review, we outline the current knowledge of the 
mechanisms of extracellular proteostasis linked to neurodegenerative 
diseases, and we examine the latest understanding of key molecules and 
processes that protect the brain from the pathological consequences 
of extracellular protein aggregation and proteotoxicity. Finally, we 
contemplate possible therapeutic opportunities for neurodegenerative 
diseases on the basis of this emerging knowledge.
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from disease. Our current knowledge of the role of ECs in brain health 
and pathology has come from studies of genetics, disease-associated 
changes in EC expression and physical colocalization of ECs with dis-
ease-associated protein aggregates, as well as experimental studies of 
the effects of manipulating EC levels on disease pathologies8.

Other important components of the extracellular proteostasis 
systems are proteases, protease inhibitors and endocytic cell surface 
receptors. In this Review, we outline current knowledge of the mecha-
nisms of extracellular proteostasis, with an emphasis on the aspects 
linked to neurodegenerative diseases. We examine the latest under-
standing of key molecules and processes that protect the brain from 
the pathological consequences of extracellular protein aggregation 
and proteotoxicity. The Review includes brief outlines of the rapidly 
growing family of known ECs found in body fluids and a proposed 
involvement of the plasminogen activation system (PAS) in the clear-
ance of extracellular protein deposits. Finally, we contemplate possible 
therapeutic opportunities for neurodegenerative diseases enabled by 
this emerging knowledge.

The proteostasis system
Intracellular proteostasis
The intracellular environment contains a wide variety of molecular 
chaperones and co-chaperones that help nascent proteins to fold cor-
rectly, facilitate protein translocation across lipid membranes, shield 
misfolded proteins from aberrant inter-molecular interactions, disas-
semble protein aggregates and direct misfolded proteins that cannot 
be refolded towards cellular degradation systems2–4. The folding and 
refolding of proteins inside cells is largely an ATP-dependent process, 
requiring the presence of at least micromolar levels of ATP. ATP is often 
found inside cells at millimolar concentrations and, at these high levels, 
has been suggested to act as a hydrotrope to help solubilize hydro-
phobic proteins19. The two primary systems that operate inside cells 
to degrade proteins are autophagy and the proteasome2–4; selective 
ubiquitination of misfolded proteins by a family of cytosolic ubiquitin 
ligases can direct the proteins to these systems for disposal. An outline 
of the main processes involved in intracellular proteostasis is presented 
in Fig. 1. For more detailed descriptions of the intracellular proteostasis 
system and its relevance to neurodegenerative diseases, we refer the 
reader to other sources2,3,20.

Overview of extracellular proteostasis
Although the extracellular environment contains measurable amounts 
of both ATP and ATP-dependent foldase chaperones (in particular, heat 
shock protein 70 (HSP70)), the levels of these molecules are orders 
of magnitude lower than those found inside cells21–23. Consequently, 
ATP-dependent refolding of extracellular misfolded proteins is likely 
to play a minor part in the maintenance of extracellular proteostasis. 
However, locally increased extracellular concentrations of normally 
intracellular chaperones released from cells, such as HSP70 and HSP90, 
could enable ATP-independent binding to misfolded extracellular 
proteins to neutralize proteotoxicity and facilitate internalization 
and lysosomal degradation of the formed complexes. The proteasome 
is also present only at low levels in extracellular fluids24, suggesting 
that other protease systems are likely to be involved in the proteolytic 
degradation of extracellular misfolded proteins in synaptic clefts, 
interstitial fluid (ISF) and cerebrospinal fluid (CSF).

Ample evidence indicates that a family of constitutively secreted 
molecular chaperones is present in the extracellular space and has 
key roles in binding to misfolded proteins to inhibit their toxicity  

Key points

•• Evidence is accumulating that age-related impairment of 
extracellular proteostasis contributes to neuronal death in 
neurodegenerative diseases.

•• Key elements implicated in the protective functioning of extracellular 
proteostasis are a growing family of constitutively secreted 
extracellular chaperones and extracellular proteases, including 
plasmin, which is regulated by the plasminogen activation system.

•• Multiple studies have already demonstrated the benefits of 
administering exogenous extracellular chaperones or increasing their 
level of expression in animal models of neurodegenerative diseases.

•• Strategies to manipulate elements of extracellular proteostasis 
have the potential to reduce excessive levels of misfolded proteins 
in the synaptic space and interstitial fluid and thereby to ameliorate 
associated disease pathologies.

Introduction
The human proteome comprises around 20,000 different proteins, 
many of which exist in a wide variety of cell-specific proteoforms1. In 
the face of this complexity, the proteostasis system, which regulates 
protein synthesis, folding, concentration, trafficking and degradation, 
has a crucial role in maintaining cell viability. While the proteostatic 
mechanisms that operate inside cells (intracellular proteostasis) have 
been investigated extensively2–4, the mechanisms that operate in the 
extracellular space are yet to be fully elucidated. Considering that about 
40% of human proteins are extracellular or membrane-associated5, 
extracellular proteostasis is likely to be vital for defending cells, includ-
ing brain cells, from the many pathological processes that underlie 
neurodegenerative diseases6–9.

In the extracellular space, protein molecules are persistently 
exposed to an oxidizing environment and shear stresses associated 
with fluid circulation. These conditions lead to destabilization of the 
native states of proteins, which can result in misfolding10,11. A range 
of neurodegenerative diseases are associated with accumulation of 
specific misfolded proteins, in which hydrophobic regions that are 
buried in the native state become exposed, leading to the formation of 
potentially cytotoxic assemblies12. For example, in individuals with Alz-
heimer disease (AD), the amyloid-β (Aβ) peptide aggregates into small 
oligomers that damage brain cells and later form insoluble fibrillar 
aggregates that deposit into large amyloid plaques in the brain13,14.

Among other classes of molecules that are important in extracellu-
lar proteostasis, constitutively secreted extracellular chaperones (ECs) 
are likely to be key players in protecting the brain from the pathological 
consequences of proteins that misfold and aggregate in extracellular 
fluids8. ECs protect cells by neutralizing the toxicity of extracellular 
protein aggregates and promoting their safe clearance and disposal. 
The first of the mammalian ECs to be identified was clusterin, which was  
originally described as an ATP-independent chaperone over 20 years 
ago15. Since then, around 20 ECs have been described16–18 (Table 1).  
However, given that hundreds of intracellular chaperones and  
co-chaperones are known to exist, many more ECs could be identified  
in the future. Many independent lines of evidence point towards a 
direct involvement of ECs such as clusterin in protecting the brain 
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and aggregation17,25,26. These ECs are also thought to form soluble  
complexes with misfolded proteins to mediate their uptake by receptor- 
mediated endocytosis and safe disposal through proteolytic degrada-
tion within lysosomes. In some cases, despite the operation of these 
protective mechanisms, large insoluble extracellular protein deposits 
can form. In these situations, extracellular proteolytic systems, such 
as the PAS, can play a part in clearing the deposits27. A summary of the 
main processes that operate to maintain extracellular proteostasis is 
presented in Fig. 2.

It should be noted that the extracellular and intracellular pro-
teostasis systems work together. Proteins that misfold and aggre-
gate inside brain cells can be extruded into the ISF, where they can be 
degraded by extracellular proteases, phagocytosed by microglia and 
astrocytes or cleared by the glymphatic system28. In turn, proteins that 
misfold and aggregate in the ISF can be redirected for cell uptake and 
subsequent intracellular degradation in lysosomes.

The expanding family of ECs
Since the discovery of clusterin15, a range of other proteins with EC 
activity have been identified (Table 1). A study published in 2021 used a  
purpose-designed technique to recover and identify previously 
unknown ECs in human serum16. Among the currently known ECs, only 
serum amyloid P (SAP) protein has been reported to have some, albeit 
limited, ability to refold misfolded proteins: denatured lactate dehydro-
genase was reactivated in the presence of a 10-fold molar excess of SAP29. 
Clusterin lacks any measurable independent refolding activity, although  
it was shown to support protein refolding in vitro when co-incubated 

with ATP and HSP70 (ref. 30). The ability of other ECs to refold proteins 
has not been directly tested. However, given the low levels of extracel-
lular ATP, most ECs seem likely to act as holdases, which bind to and 
stabilize misfolded proteins to inhibit their aggregation, but not as 
foldases, which would require ATP to perform protein refolding. For 
the majority of ECs, investigations into the nature of their chaperone 
activities in vivo are yet to be performed.

Endocytic cell receptors
A number of endocytic cell receptors have been reported to play an 
active part in extracellular proteostasis by mediating the uptake of EC 
complexes. Complexes formed between α2-macroglobulin (A2M) and 
Aβ can be internalized by LDL receptor-related protein 1 (LRP1, also 
known as the A2M receptor) and degraded inside lysosomes31. Similarly, 
LRP2 (also known as megalin) mediates the uptake and degradation of 
clusterin and clusterin–Aβ complexes32,33. One study in mouse primary 
microglia and human monocyte-derived macrophages demonstrated 
that triggering receptor expressed on myeloid cells 2 (TREM2) binds 
and facilitates uptake of LDL-associated clusterin, and internalization 
of complexes of lipidated clusterin and Aβ was found to be TREM2-
dependent34. Another clusterin receptor, plexin A4, is widely expressed 
in neurons in the brain and might also be involved in clusterin-mediated 
clearance of Aβ35. Mutations in the genes that encode TREM2 and plexin 
A4 are, like those in the clusterin (CLU) gene, associated with the risk 
of AD onset35,36, strongly suggesting that receptor-mediated uptake 
and degradation of complexes formed between clusterin and Aβ can 
substantively affect AD pathology.

Table 1 | Extracellular proteins known to have chaperone activity

Protein Molecular  
mass (kDa)

Plasma or serum 
concentration (µg ml−1)

Cerebrospinal fluid 
concentration (µg ml−1)

Types of protein 
aggregation inhibited

Refs.

α2-Macroglobulin (A2M) 720 2,729 1.54 Amorphous and amyloid 67,140,141

Haptoglobin 94–116 1,250 0.6 Amorphous and amyloid 67,82

Vitronectin 75 610 0.025–0.072 Amorphous and amyloid 16,48

Transthyretin 55 260 15.5 Amyloid 73,142,143

Prothrombin 72 154 16.7 Amyloid 16,144,145

Clusterin ~60 125 2 Amorphous and amyloid 30,58

Complement component 1s (C1s) 28 93 – Amyloid 16,146

Serum amyloid P (SAP) ~25 40 8.5 Amorphous and amyloid 147,148

Pregnancy zone protein (PZP) 720 10–30 – Amorphous and amyloid 149,150

Plasminogen activator inhibitor 3 (PAI3) 46 6.3 0.05 Amorphous and amyloid 16,151

Complement component 1r (C1r) 83 5.5 – Amyloid 16,146

Insulin-degrading enzyme (IDE) 110 2.0 0.006 Amyloid 152–154

Macrophage inhibitory factor (MIF) 37.5 0.0057 0.0024 Amorphous 155,156

Secreted protein acidic and rich in cysteine 
(SPARC)

35 0.0015 – Amorphous 157,158

Neuroendocrine protein 7B2 (7B2) 27 0.000056 0.037 Amyloid 53,159–161

Neuroserpin 45 – 0.0007 Amyloid 73,142

Surfactant protein C (SP-C) 21 – 0.0005 Amorphous and amyloid 162,163

Integral membrane protein 2 (BRI2) 13.6 – – Amorphous and amyloid 163

Proprotein convertase subtilisin (proSAAS) 27 – – Amyloid 159,164

Caseins ~25 – – Amorphous and amyloid 165–167

The proteins in this table are arranged in the descending order of known plasma or serum concentration. These proteins have been demonstrated to inhibit the in vitro aggregation of various 
proteins to form amorphous (unstructured) or amyloid (fibrillar) aggregates.
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Other cell receptors are also likely to be involved in mediating 
the uptake and safe disposal of complexes formed between ECs and 
misfolded proteins. The scavenger receptor inhibitor fucoidan was 
reported to inhibit the uptake of clusterin–misfolded protein complexes 
in an in vivo rat model, suggesting that widely expressed scavenger 
receptors play an important part in the clearance of these complexes25. 
Furthermore, in this model, the vast majority of radiolabelled complexes 
quickly became localized to the liver, suggesting that this organ has 
a major role in the safe disposal of EC–misfolded protein complexes 
formed in body fluids25. A 2020 report suggested that the heparin sulfate 
receptor mediates the uptake and degradation of clusterin–misfolded 
protein complexes37. However, the study lacked any direct confirmation 
of the involvement of the heparin sulfate receptor in the uptake of the 
complex. Furthermore, the researchers used clusterin bearing a large 
tandem fluorescent protein tag at the C terminus, which could affect the 
behaviour of the molecule as its mass approaches that of clusterin itself.

The evidence discussed in this section indicates that endocytic cell 
receptors are crucial elements of the extracellular proteostasis system 
and could be potential therapeutic targets for protein aggregation-
related diseases, including those of the nervous system. Identifica-
tion of additional key receptors that mediate the uptake of specific 
EC–misfolded protein complexes will be an important focus of future 
research.

Synergies between ECs and other extracellular proteostasis 
systems
The plasminogen activation system. The PAS is a group of plasma 
proteins that regulate the activation of the zymogen plasminogen to 
the active protease plasmin, which is best known for its role in digesting 
fibrin clots. However, studies in both in vitro and in vivo experimental 
systems have demonstrated that plasminogen and the tissue plasmi
nogen activator (tPA) bind to many different protein aggregates to 

generate active plasmin, which then degrades the aggregates38,39. 
Later work showed that small protein fragments released by plasmin- 
mediated digestion of protein aggregates are bound by the ECs clusterin  
and A2M, giving rise to the proposal that the PAS and ECs work together  
to clear extracellular protein deposits from the body27. Collectively, 
these findings suggest that the PAS degrades large insoluble extracel-
lular protein aggregates to release small soluble protein fragments 
that are bound by circulating ECs. Once bound, the protein fragments 
could be internalized by receptor-mediated endocytosis and safely 
proteolysed within lysosomes (Fig. 2). A role for the PAS in the clearance 
of insoluble pathological protein deposits is supported by multiple 
studies in mouse models. For example, following neurotrauma, the 
levels of extracellular misfolded tubulin aggregates were greater in a 
plasminogen knockout mouse model than in controls, and clearance 
of the aggregates was delayed38.

In addition to clusterin and A2M, other ECs implicated in interac-
tions with the PAS include haptoglobin, which is cleaved by urokinase 
plasminogen activator (uPA)40; prothrombin, which is cleaved by plasmin 
to produce thrombin (an enzyme that converts fibrinogen to fibrin to 
form blood clots); and PAI3, which is a uPA inhibitor. All of these ECs, 
and potentially others, might work together with the PAS in different 
biological contexts. A functional synergy between ECs and the PAS, and 
possibly other yet to be identified extracellular proteolytic systems, 
could be crucial for the systemic clearance of large extracellular protein 
deposits associated with neurodegenerative disease pathologies (Fig. 2).

Protease and protease inhibitor functions of ECs. Interestingly, all 
known ECs are multifunctional proteins and many also function as 
proteases or protease inhibitors. Insulin-degrading enzyme (IDE) is 
a constitutively active protease that cleaves Aβ and other peptides41, 
and prothrombin, complement component 1s and complement com-
ponent 1r are all zymogen proteases that are activated by proteolytic 
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Fig. 1 | Overview of known intracellular proteostasis mechanisms. Inside cells, 
native proteins can fail to fold correctly or can change their state in response 
to various stressors to become misfolded proteins. Misfolded proteins can be 
refolded by ATP-dependent foldase chaperones3. If this process is unsuccessful, the 
misfolded proteins can become ubiquitinated and be degraded by proteasomes or 
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For simplicity, cofactors are not shown.
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cleavage or binding-induced conformational changes. By contrast, 
A2M and pregnancy zone protein both inhibit multiple proteases; 
clusterin inhibits several members of the metalloproteinase family42; 
haptoglobin inhibits cathepsin B43; and both PAI3 and neuroserpin 
inhibit serpin proteases. Clusterin, vitronectin and SAP show further 
functional diversity, as they all interact with complement proteins 
and might thereby modulate innate immune responses against tis-
sue damage and pathological challenges44,45. In addition, clusterin, 
vitronectin and A2M can exert effects on cell adhesion and migration 
and on the recruitment of immune cells such as macrophages to sites 
of inflammation and/or infection46–48. During evolution, ECs might have 
acquired multifunctional roles to provide efficient responses against 
the challenges to proteostasis posed at sites of pathogen invasion, 
tissue damage and local inflammation, where toxic misfolded protein 
aggregates are likely to accumulate.

Extracellular proteostasis in neurodegenerative 
diseases
AD and cerebral amyloid angiopathy
Many ECs are found to be associated with Aβ plaques in vivo, indicating 
involvement in AD and other amyloid pathologies. These ECs include 

clusterin49, A2M50, haptoglobin51, vitronectin52, neuroendocrine pro-
tein 7B2 (7B2)53, proSAAS54, SAP55 and integral membrane protein 2 
(BRI2)56. The association of ECs with amyloid deposits could arise when 
their chaperone action is overwhelmed by an excess of aggregating 
protein, resulting in their physical entrapment within the deposit. In 
this section, we present evidence for the involvement of various ECs in 
amyloid pathology and discuss how these proteins might be harnessed 
as therapeutic targets.

Clusterin. Clusterin is one of the most potent inhibitors of in vitro 
Aβ aggregation known57,58. Genome-wide association studies have 
identified CLU as the third-largest genetic risk factor for late-onset 
AD59, and changes in CLU expression are associated with the progres-
sion and severity of AD60. The single-nucleotide polymorphism (SNP) 
rs11136000T in the CLU gene has been proposed to increase CLU expres-
sion and delay the onset and progression of AD61. Furthermore, rare 
non-synonymous mutations and small insertion–deletion mutations 
in the CLU gene that are associated with AD result in reduced clusterin 
secretion, which in turn has been suggested to exacerbate the onset, 
progression and severity of AD62. When the amyloid precursor protein 
(APP) PS1 mouse model of Aβ amyloidosis was crossed with CLU −/− mice, 
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with extracellular chaperones (ECs) before binding to cell surface receptors 
(part b). c, Large insoluble protein aggregates can activate extracellular 
proteolytic systems, resulting in the digestion of the aggregates to form small 

protease-generated protein fragments (PGPFs), which in turn are bound by ECs. 
d, Plasminogen and tissue plasminogen activator bind to protein aggregates 
to generate active plasmin, which then degrades the aggregates to form PGPFs. 
In all situations, the misfolded proteins or resulting PGPFs are taken up by 
cells via receptor-mediated endocytosis and are directed to lysosomes for 
degradation.
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suppression of CLU expression was associated with a marked decrease 
in plaque deposition in the brain parenchyma but an increase within 
the cerebrovasculature. These results suggest that in the absence of 
clusterin, Aβ clearance shifts from the brain to perivascular drainage 
pathways63.

Multiple studies support the therapeutic potential of administer-
ing clusterin protein or peptides to ameliorate Aβ-related pathologies. 
The addition of purified clusterin increased the removal of Aβ1–42 by 
macrophage-like U937 cells incubated in CSF from patients with AD64. 
Furthermore, exogenously added clusterin substantially reduced the 
binding of Aβ to blood vessels isolated from mice63. In vivo experiments 
have also demonstrated a benefit of clusterin treatment: peripheral 
administration of recombinant clusterin in the APP23 mouse model of 
AD reduced the levels of Aβ plaques and neuronal loss65. Similarly, intra-
ventricular administration of a clusterin peptide (LVGRQLEEF, corre-
sponding to clusterin residues 135–143) in the Tg6799 AD mouse model 
produced significant reductions in amyloid deposits and cognitive 
decline relative to placebo-treated mice66.

α2-Macroglobulin. A range of observations collectively suggest that 
the function of A2M is protective against AD. A2M inhibits the in vitro 
formation of amyloid by Aβ and other proteins67, and A2M levels are 
elevated in the CSF of patients with AD68. Increased levels of A2M in 
the blood are associated with raised CSF concentrations of the neu-
ronal injury markers tau and phosphorylated tau and with an almost 
threefold greater risk of progression to clinical symptoms of AD in 
humans68. The increased levels of A2M associated with AD could reflect 
one aspect of the attempt of the body to counter the accumulation of 
disease-associated toxic misfolded proteins. Further indicating the 
protective effects of A2M in AD, plasma A2M was found to be more 
oxidized in patients with AD than in neurologically healthy control 
individuals69, and oxidation has been reported to enhance the chaper-
one activity of this protein70. Furthermore, functioning as a protease 
inhibitor, A2M can bind to serine proteases and the complexes formed 
are able to degrade Aβ: the V1000I SNP in A2M (which is located close 
to the thiolester active site involved in binding proteases) is associated 
with AD progression71. Finally, in an AD mouse model, drug-induced 
upregulation of A2M disrupted the production and aggregation of Aβ, 
induced Aβ efflux from the brain and ameliorated cognitive decline. The 
same drug also decreased the degradation of LRP1, which facilitated  
brain efflux of Aβ72.

Transthyretin. In vitro, transthyretin is an effective inhibitor of amyloid 
formation by Aβ and other proteins but has little ability to inhibit amor-
phous protein aggregation73. Decreased CSF levels of transthyretin are 
observed in AD74, and this protein has been shown to proteolytically 
cleave the Aβ peptide in vitro75. Overexpression of wild-type transthyre-
tin in the APP23 mouse model of AD reduced cognitive and motor 
impairments, whereas silencing of the endogenous transthyretin gene 
promoted neuropathology76.

Integral membrane protein 2. BRI2 binds to APP to inhibit Aβ produc-
tion and inhibits Aβ aggregation via its BRICHOS domain. Patients with 
AD showed lower levels of BRI2–APP complexes in the hippocampus 
compared with controls, suggesting that depletion of BRI2 contrib-
utes to the development of AD56. In a 2021 in vitro study, hippocampal 
brain slices from wild-type mice were exposed to Aβ77. This exposure 
induced AD-like degradation of electrical activity, which was rescued 
by the addition of recombinant BRI2 BRICHOS domains. This study 

highlights the potential application of BRI2 as a treatment for AD and 
other amyloidogenic brain disorders.

Serum amyloid P protein. SAP is found at increased concentrations in 
the CSF of patients with AD78. In vitro, SAP was shown to bind directly 
to preformed amyloid fibrils and, consequently, to inhibit proteolysis 
of the fibrils79. Depletion of circulating SAP levels has, therefore, been 
pursued as a potential therapy for amyloidosis, although this strategy 
has yet to be trialled as a therapy for AD. Therapeutic approaches that 
have been investigated include chemical inhibitors of SAP binding to 
fibrils80 and treatment with a humanized anti-SAP antibody, which was 
shown to reduce amyloid load in patients with systemic amyloidosis81.

Haptoglobin. Haptoglobin is an effective inhibitor of both amorphous 
and amyloid protein aggregate formation in vitro, including Aβ aggre-
gation67,82. Patients with AD have elevated serum levels of haptoglobin83 
and show significantly increased oxidation of plasma haptoglobin 
relative to controls. Oxidation of haptoglobin reduces its ability to 
inhibit the in vitro aggregation of Aβ to form amyloid69, suggesting 
that the increase in haptoglobin oxidation in patients with AD might 
contribute to amyloid formation.

7B2 and proSAAS. Both 7B2 and proSAAS are specifically expressed 
by neuronal and endocrine cells84,85. These ECs dose-dependently 
inhibit the in vitro aggregation of Aβ at sub-stoichiometric levels and 
protect neuronal cells from Aβ toxicity53,54, indicating therapeutic 
potential for AD.

The plasminogen activation system. In mouse models of AD, reduced 
levels of tPA, which activates plasminogen to plasmin, were associated 
with a greater load of Aβ plaques86. In addition, deletion of the tPA 
inhibitor PAI1 expression increased tPA-induced, plasmin-mediated 
cleavage of Aβ plaques87. Furthermore, in AD mouse models, elevated 
Aβ in the brain is associated with inhibition of the PAS, and intracer-
ebral injection of Aβ in mice lacking either tPA or plasminogen, but 
not in wild-type mice, caused neuronal degeneration88. Additional 
results further implicating the PAS in AD include demonstrations that 
insoluble Aβ increases the expression of tPA mRNA in cerebral cortical 
neurons89 and that the expression of PAI1 is increased in the CSF90 and 
brains of patients with AD87. Aβ also increases the abundance of mRNA 
encoding uPA91 — a protease that induces plasmin-mediated cleavage of  
insoluble Aβ-containing extracellular plaques92. Collectively, these 
observations support a model in which plasmin-mediated degradation 
of Aβ deposits, induced by tPA or uPA, is protective against Aβ pathol-
ogy and, thus, increased PAI1 activity in the brains of patients with AD 
exacerbates pathology.

Transmissible spongiform encephalopathies
Transmissible spongiform encephalopathies (TSEs) constitute a family 
of rare progressive neurodegenerative diseases caused by an aggrega-
tion-prone prion protein that can propagate from one region of the 
nervous system to adjoining areas. According to the prion hypothesis93, 
misfolded prion molecules can induce the misfolding of other prion 
molecules, thereby underpinning the propagation.

The prion neuropeptide 106–126 spontaneously aggregates to 
form fibrillar structures in vitro, and this aggregation is specifically 
inhibited by clusterin94. Clusterin binds directly to full-length prion 
protein95 and has been found to be associated with prion plaques in 
several human TSEs, including Creutzfeldt–Jakob disease96. Clusterin 
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expression is upregulated in the cerebral cortex and cerebellum in 
Creutzfeldt–Jakob disease96. In mice transmitted with bovine spongi-
form encephalopathy infection, Clu knockout mice survived longer 
than Clu-expressing control mice. Although not quantified, the study 
reported that prion deposits were less aggregated (more diffuse) and 
greater astrocytosis was observed in the Clu knockout mice97. Assum-
ing that the Clu knockout mice differed from control mice only in Clu 
expression, the authors suggested that clusterin alters the aggrega-
tion and extracellular deposition of prion protein and accelerates 
bovine spongiform encephalopathy pathogenesis. However, further 
work in animal models is needed to clarify the effects of clusterin 
in TSEs.

Interestingly, the recently identified EC vitronectin is reported 
to be a ligand of prion protein98, although no study has yet examined 
this interaction in the context of TSEs. As vitronectin has a chaperone 
activity similar to clusterin16, the influence of vitronectin and other ECs 
that affect prion aggregation on TSE pathologies is an area worthy of 
future research.

Other neurodegenerative diseases
In several other neurodegenerative diseases, evidence has emerged 
that propagation of pathology from affected neurons in one location 
to those in adjacent areas arises from the physical spread of protein 
aggregates. This hypothesis has been supported in studies of AD99,100, 
Parkinson disease (PD)101, Huntington disease102 and amyotrophic 
lateral sclerosis103. If the spreading of pathology involves transit of 
the disease-relevant protein through the extracellular space, ECs and 
extracellular proteases are likely to influence disease pathologies. 
Few studies have examined the impact of extracellular proteostasis 
mechanisms in these diseases. However, as we outline in the text that 
follows, reports relating to α-synuclein, the propagating protein associ-
ated with PD, provide an enticing glimpse of potential new strategies 
to combat PD and other neurodegenerative diseases.

The neuropathological hallmarks of PD are the loss of dopamine- 
containing neurons in the substantia nigra and the presence of 
α-synuclein-containing intracellular inclusions104. α-Synuclein is 
thought to spread between neurons in the form of oligomers, although 
the mechanisms underlying this process are yet to be clearly estab-
lished. CLU polymorphisms are associated with an increased risk of 
PD105,106. In addition, clusterin and A2M were both shown to bind directly 
to regions of exposed hydrophobicity on the surface of α-synuclein 
oligomers, substantially reducing the ability of the oligomers to per-
meabilize lipid membranes and stimulate the production of reactive 
oxygen species in a neuronal cell line107. Furthermore, one study found 
that extracellular clusterin potently inhibited the ability of extracellular  
α-synuclein to seed the formation of GFP–α-synuclein aggregates 
inside cells108. Another study reported that the translocation of extra-
cellular α-synuclein into neighbouring cells was inhibited through 
cleavage by plasmin, and extracellular α-synuclein upregulated the 
expression of PAI1 (ref. 109). Consequently, an excess of PAI1 in the brains 
of individuals with PD has been suggested to exacerbate pathology  
by inhibiting plasmin-mediated clearance of α-synuclein aggregates110. 
In line with this idea, increased levels of PAI1 have been linked to worse 
clinical prognosis in patients with PD111.

Although the existing knowledge is fragmentary, it is consistent 
with the possibility that manipulation of key extracellular proteosta-
sis elements, such as ECs and extracellular proteases, could provide 
powerful new avenues to combat the progression of PD and other neu-
rodegenerative diseases. A better understanding of the mechanisms 

of pathological protein propagation will be important to support the 
development of such therapies.

Targeting extracellular proteostasis
In this section, we discuss opportunities for developing extracellular 
proteostasis regulators for therapeutic purposes. Many of the thera-
peutic approaches outlined in this section are based on earlier strate-
gies developed to manipulate elements of intracellular proteostasis, 
which, unlike extracellular proteostasis, has been intensely studied 
for many decades2,112.

EC-interacting compounds
Intracellular molecular chaperones can rescue misfolded intermedi-
ates or disrupt aberrant aggregates through various ATP-dependent 
mechanisms. These mechanisms, however, are not readily available 
to ECs, which are largely ATP-independent. As many ECs act as hol-
dases by binding non-native states of proteins and presenting them 
for degradation, it could be possible to develop compounds that 
modulate the binding of ECs to their substrates (Fig. 3a). Indeed, 
chemical probes acting on protein–protein interactions have been 
described for intracellular chaperones112 and are being investigated as 
possible treatments for cancer113 and neurodegenerative diseases114. 
Another possibility is to develop chaperone-mimicking compounds 
that bind directly to non-native states of disease-related proteins 
and either act as holdases115,116 (Fig. 3b) or prevent microscopic pro-
cesses that depend on the non-native states, such as fibril-dependent 
secondary nucleation in protein aggregation117,118 (Fig. 3c). Phar-
macological upregulation of EC secretion might also be an option 
(Fig. 3d), although this approach could become problematic owing 
to the complexity of the protein aggregation process108 and potential 
off-target effects119.

Promoting endolysosomal protein degradation
Extracellular proteins can be targeted for intracellular degradation 
through the endolysosomal pathway (Fig. 3e). Proteolysis-targeting 
chimaeras (PROTACs)120 use a targeting ligand attached to a protein-
binding moiety to deliver bound protein cargo to a proteolytic system 
for degradation. Inspired by this mechanism, endogenous internal-
izing receptors, such as Fc receptors and lysosome-targeting recep-
tors (LTRs), can be used to direct misfolded or damaged extracellular 
proteins to lysosomes. This targeted protein degradation approach 
has been implemented through lysosome-targeting chimaeras121,122. 
A lysosome-targeting chimaera consists of a ligand that is recognized 
by an LTR conjugated to a small molecule or antibody that binds to 
the extracellular or cell membrane protein that is being targeted for 
degradation. For example, the asialoglycoprotein receptor (ASGPR), 
an LTR specifically expressed on hepatocytes, was recruited to enable 
the degradation of extracellular proteins, and triantennary N-acetyl-
galactosamine, a ligand of the ASGPR, was conjugated to biotin or 
antibodies, leading to the internalization of extracellular protein 
targets into lysosomes for degradation in liver cell lines123. In a related 
approach, an antibody-based PROTAC was developed to degrade 
the PDL1 cell surface protein by directing it towards the lysosomal 
pathway through a transmembrane E3 ligase124. Similarly, molecular 
degraders of extracellular proteins acting through the ASGPR have 
been introduced as modular bifunctional molecules that mediate 
the formation of a ternary complex between an extracellular protein 
targeted for degradation (for example, a cytokine) and the ASGPR 
on hepatocytes122.
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Activating extracellular proteases
A number of studies have investigated the potential of targeting extra-
cellular proteases, including metalloproteases such as neprilysin and 
IDE, for drug development125,126 (Fig. 3f). Epigallocatechin compounds 
have been shown to induce neprilysin and IDE by modulating the expres-
sion, secretion and catalytic activity of these proteases, leading to an 
increase in the degradation of Aβ peptides41,127,128. These small molecules 
can also modify the extracellular levels of disease-related proteins or 
their regulators directly by inhibiting the secretion pathway124 (Fig. 3g).

Pharmacological chaperones
Pharmacological chaperones have been investigated as compounds 
that are capable of binding and stabilizing the native states of proteins 
that are prone to misfolding. An example is tafamidis, a drug currently 
used to treat familial amyloid polyneuropathy and familial and sporadic 
amyloid cardiomyopathy. This drug is thought to act by binding the 
active tetrameric form of transthyretin and preventing its dissociation, 
which is the first step in the aggregation pathway129,130 (Fig. 3h). This 
approach might be extended to other disordered proteins, such as 
Aβ, to prevent their extracellular aggregation131–133. Similarly, chemical 
chaperones stabilize the native state of proteins by acting as osmolytes, 
which alter the physico-chemical properties of the environment of the 
protein. The human metabolite myoinositol, which acts as a chemical 
chaperone, was shown in a 2022 study to prevent the aggregation of 
lens crystallins, indicating its potential for the treatment of cataracts134.

Conclusions and future directions
Given that our understanding of the processes that underpin extra
cellular proteostasis is still in its infancy, many questions concerning the 
role of this system in neurodegenerative diseases remain unanswered.  
Some of the arguably more important areas of focus are outlined 

below as suggestions for future research. We focus specifically on two 
areas in which advances can be expected to have the greatest impact — 
mapping of the entire extracellular proteostasis system, and the devel-
opment of methods and models for systematic investigations of the 
identified components.

Our knowledge of the extracellular proteostasis system is much 
less advanced than that of its intracellular counterpart3. Therefore, 
generating a more complete list of the extracellular proteostasis com-
ponents would be beneficial. For example, identification of major 
endocytic receptors that have a central role in the uptake and degrada-
tion of EC–misfolded protein complexes from extracellular fluids will 
strengthen our knowledge of this important branch of the extracellular 
proteostasis system. Early work suggests that the liver is a primary 
organ involved in the clearance of these complexes from the systemic 
circulation25, so focusing on receptors expressed by hepatocytes and 
liver-resident macrophages could be a productive approach. Recep-
tors expressed by microglia might be particularly important for the 
clearance of misfolded proteins from the ISF and CSF135. A better under-
standing of the cooperative actions of the PAS (and other extracellular 
proteolytic systems) and the EC network would advance us towards 
potentially harnessing this system to develop novel therapeutic strat-
egies27. Studies over the past few years have revealed that IDE can 
proteolytically cleave Aβ and, independently of its peptidase activity, 
can also inhibit amyloid formation by Aβ and other amyloid-forming 
proteins41. These findings are of potential importance in the context 
of developing new treatments for AD.

A particularly important goal of future research is to develop 
methods and models to directly visualize the operation of extracellular 
proteostasis in vivo. This goal might be achieved in well-established 
transparent model organisms such as Caenorhabditis elegans136, 
or by making use of brain cells, organoids and assembloids derived 
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protein
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protein 
monomers

Protease

b   Holdase mimicking c   Inhibition of aggregation d   Enhancement of EC secretion

h   Native state stabilizatione   Enhancement of misfolded 
       protein degradation

f   Protease enhancement g   Inhibition of misfolded 
       protein secretion

Fig. 3 | Small-molecule drugs to manipulate extracellular proteostasis. 
The figure depicts possible therapeutic strategies in which small-molecule 
drugs are used to manipulate aspects of extracellular proteostasis to reduce 
extracellular accumulation of misfolded proteins and ameliorate the resulting 
pathologies. Such drugs could enhance the efficiency of holdase chaperone 
action (part a); bind to and stabilize misfolded proteins (part b); directly 

inhibit protein aggregation (part c); increase the secretion of extracellular 
chaperones (ECs) (part d); promote the uptake and degradation of extracellular 
misfolded proteins (part e); enhance the ability of extracellular proteases 
to degrade misfolded proteins (part f); inhibit the secretion of misfolded 
proteins from cells (part g); or bind to and stabilize the native state of 
proteins (part h).
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from induced pluripotent stem cells137,138. In these model systems, 
ECs, misfolded proteins and other related components labelled with 
spectrally distinct fluorescent markers could be used for real-time 
monitoring of protein misfolding and aggregation, binding interac-
tions with ECs, uptake of EC–misfolded protein complexes via cell 
surface receptors and trafficking of misfolded proteins to lysosomes 
for degradation. Also, the use of genetic screens7 and optogenetics139 
in cellular and animal models of neurodegenerative diseases could 
enable the systematic study of the roles of ECs and other extracellular 
proteostasis components in regulating disease processes.

In the future, we anticipate that a more complete understanding 
of the main players in the extracellular proteostasis system and their 
various functions will enhance our ability to harness these players for 
therapeutic interventions and offer novel opportunities to combat 
neurodegenerative disorders.

Published online: xx xx xxxx
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