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Abstract

The presence of oligomeric aggregates, which is often observed during the process of amyloid formation, has recently
attracted much attention because it has been associated with a range of neurodegenerative conditions including
Alzheimer’s and Parkinson’s diseases. We provide a description of a sequence-indepedent mechanism by which polypeptide
chains aggregate by forming metastable oligomeric intermediate states prior to converting into fibrillar structures. Our
results illustrate that the formation of ordered arrays of hydrogen bonds drives the formation of b-sheets within the
disordered oligomeric aggregates that form early under the effect of hydrophobic forces. Individual b-sheets initially form
with random orientations and subsequently tend to align into protofilaments as their lengths increase. Our results suggest
that amyloid aggregation represents an example of the Ostwald step rule of first-order phase transitions by showing that
ordered cross-b structures emerge preferentially from disordered compact dynamical intermediate assemblies.
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Introduction

A variety of peptides and proteins unrelated in sequence and

structure have been shown to convert into large ordered

aggregates known as amyloid fibrils [1,2]. These structures share

a common cross-b structure formed by intertwined layers of b-

sheets extending in a direction parallel to the fibril axis [1,3]. The

ubiquity of this type of assemblies has led to the suggestion that

they may represent a general structural state of polypeptide chains,

which is accessible independently from their specific amino acid

sequences [4]. According to this view, if placed under appropriate

conditions, peptides and proteins can revert to the amyloid state,

which has been associated with a range of pathological conditions

including Alzheimer’s and Parkinson’s diseases [1,5,6].

Small oligomeric aggregates are often found as precursors of

amyloid fibrils [7–9], and their formation in some cases may

originate from a competition between amorphous and fibrillar

aggregation. The role of these molecular species in the process of

amyloid fibril formation is at present unclear, although much

interest has been recently devoted to this problem since their

presence has been linked to neurodegenerative processes [8,10]. It

has been suggested that, under conditions that favor amyloid fibril

formation, proteins or peptides within these disordered aggregates

can convert into conformations capable of forming nuclei that give

rise to amyloid fibril assemblies [9]. It has been, however,

extremely challenging to characterize experimentally the struc-

tures of these aggregates and the mechanism of their formation

owing to their heterogeneous and dynamical nature.

In this work we use computer simulations to describe the

process of condensation of polypeptide chains into oligomeric

assemblies that further reorganise into fibrillar structures. The

level of detail in which protein aggregation can be investigated

depends on the choice of the model. Full-atomistic simulations

have provided considerable insight into the dynamics of inter-

molecular interactions in systems containing a small number of

peptides and short timescales [11–17]. Complementary to these

approaches, coarse-grained models have proven capable of

simulating larger systems and longer timescales, and of following

the structure of the oligomeric intermediates and the mechanism

of their conversion into ordered cross-b assemblies [18–22].

Despite much recent work in this area, many questions about the

amyloid aggregation remain open, and here we investigate the

general properties of the mechanism of emergence and alignment

of b-sheets in the early stages of the oligomerization process. Given

the close link between this phase of amyloid formation and the

neurotoxicity of the structural species involved [1,8,10,23], we

investigated here the competition between ordered and disordered

aggregation of polypeptide chains.

By following the hypothesis that amyloid formation represents a

generic property of a polypeptide chain [4], we adopt a recently

proposed representation of polypeptide chains, known as the tube

model [24–27]. This model enables a description of the free

energy landscapes for folding [24,25,27] and for aggregation

[26,28] to be obtained within a unified framework by capturing

the intrinsic symmetry of polypeptide chains, which is shown to be

able to create by itself conformations with protein-like topologies

both in the monomeric and in the multimeric forms [24–28].

Since the version of the tube model that we used in this work only

includes interactions common to all polypeptide chains indepen-

dently from their amino acid sequence, it is ideally suited for

exploring the consequences of the generic hypothesis of amyloid

formation. The characteristic features of the model [24,26] are
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that the protein backbone is assigned a finite thickness to account

for excluded volume effects. Residues interact with each other by

pairwise additive hydrophobic forces (with energy eW), geometrical

constraints apply to the formation of intra- and intermolecular

hydrogen bonds (with energy eHB), and the polypeptide chain

experiences a local bending stiffness (with energy eS).

Results

In this work we consider a system containing 216 12-residue

homopolymers that exibit an a-helical native state below the

folding temperature (T�f *0:61) and an undfolded structure at

higher temperatures (see Materials and Methods for the definition

of the temperature scale used here). Peptides that form native a-

helical conformations [29], as well as homopolymeric sequences

[30], have been shown to be able to form amyloid assemblies. In

order to investigate the self-assembly of the peptides into fibrils we

chose thermodynamic conditions such that fibril formation occurs

on a timescale accessible to our simulations. We found that a

peptide concentration c = 12.5 mM is above the critical concen-

tration for aggregation, for temperatures below T* = 0.69. All our

simulations were performed at T* = 0.66, and several independent

starting configurations were generated at T* = 0.75. As in our

simulations we set T�wT�f , the peptides were unfolded most of the

time. A typical trajectory observed in our Monte Carlo simulations

(see Materials and Methods) is illustrated in Figure 1.

We systematically observed a rapid collapse of the peptides into

disordered aggregates that subsequently underwent a structural

reorganization and transform into cross-b protofilaments (Figure 1).

These results are consistent with a previously described two-step

condensation-ordering mechanism [16,18,28], which has also been

observed experimentally [9]. A plot of the total energy per peptide as

a function of the progress variable t (Figure 2) shows that the final

structure has a much lower energy than the initial and intermediate

states. The major contribution to this energy comes from hydrogen

bonding (Figure 2), a result consistent with the recent report that the

hydrogen bonding energy provides the dominant factor stabilising

the cross-b architecture is represented by hydrogen bonding, while in

more disordered states other contributions are also important [31].

The initial state (t,1000), before the hydrophobic collapse, in which

all peptides are solvated, has the highest energy and it is unstable.

After the hydrophobic collapse has taken place (1000,t,5000), the

peptides form a disordered oligomer, which is characterised by

similar contributions from hydrophobic interactions and hydrogen

bonding (Figure 2); this oligomeric state is lower in energy but

metastable with respect to the amyloid state. Finally, with the growth

of the cross-b architecture the hydrogen bonding interactions

become progressively dominant (Figure 2). The survival time of

the disordered oligomeric state is rather short (about 10–15% of the

total simulation time) since in order to be able to investigate the self-

assembly of the peptides we chose thermodynamic conditions such

that the nucleation barriers associated with oligomer formation and

the subsequent ordering are readily overcome by thermal fluctua-

tions. The height of the nucleation barriers, and the associated lag

times depend strongly on the thermodynamic conditions of the

system [28].

In order to provide a detailed description of the emergence of

cross-b protofilaments within the oligomers, including their

interactions and relative orientations with respect to each other,

we defined the oligomeric state using a distance criterion that

requires the centres of mass of two peptides to have a distance of

less than 5Å. Two peptide chains are taken to form a b-sheet if

they share more than four inter-chain hydrogen bonds with each

other. To define an angle between different b-sheets we calculated

the relative orientation between neighboring peptides that

Author Summary

Considerable efforts are currently devoted to the study of
the phenomenon of protein aggregation because of its
association with a wide variety of human diseases and of
its potential applications in biotechnology. Despite intense
scrutiny, however, it has been extremely challenging so far
to characterise in detail the process by which peptides and
proteins aggregate. We have used here molecular
simulations to show that the growth of ordered structures
from initially disordered assemblies is a consequence of
the interplay between two fundamental interactions
common to all proteins—hydrophobicity and hydrogen
bonding. These results provide further insight into the
consequences of the ‘‘generic hypothesis’’ of protein
aggregation, according to which the ability to assemble
into ordered structures is not an unusual feature exhibited
by a small group of peptides and proteins with special
sequence or structural properties, but it is an inherent
characteristic of polypeptide chains.

A B C

Figure 1. Illustration of the self-assembly process of peptides into amyloid-like assemblies. All simulations were carried out at a
concentration c = 12.5 mM and reduced temperature T* = 0.66. The progress variable t corresponds to the number of Monte Carlo moves performed
in the simulation, and one unit of t is a series of 105 Monte Carlo moves. Initially, at t = 1000 (A), all peptides are in a solvated state. As the simulation
progresses, at t = 5000 (B), a hydrophobic collapse causes the formation of a disordered oligomer, which subsequently undergoes a structural
reorganization into an amyloid-like assembly, at t = 30 000 (C), driven by the formation of ordered arrays of hydrogen bonds. Peptides that do not
form intermolecular hydrogen bonds are shown in blue, while peptides that form intermolecular hydrogen bonds are assigned a random color, which
is the same for peptides that belong to same b-sheet.
doi:10.1371/journal.pcbi.1000222.g001

Mechanism of Formation of Oligomeric Assemblies
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constitute the different b-sheet. Therefore we calculate the dot

product of the end to end vectors of the peptide molecules,

requiring that the centres of mass of two peptides are separated by

less than 10Å, which is the typical inter-sheet contact distance in

most native and amyloid systems [1]. If the average angle between

two b-strands is less than 20 degree, we assume that the respective

b-sheets belong to the same protofilament.

In the example illustrated in Figure 1, the initial stages of the

process are characterized by the formation within the disordered

oligomer of six small b-sheets that are randomly oriented with

respect to each other (Figure 3a). Subsequently, the b-sheets tend to

align as their lengths increase, and protofilaments consisting of one,

three and four b-sheets are formed (Figure 3b–d). The two major

protofilaments observed in this simulation seem to twist around each

other (Figure 1, right), resembling the typical behavior observed

experimentally [1]. The twisting appears to follow from the growth

and alignment of b-sheets, which is a consequence of the tendency to

optimize the number of hydrophobic contacts, thereby reducing the

interfacial energy [32], and not from the chirality of the peptides, as

the latter is not included in the tube model used in this work. As the

peptides within the oligomer can move only locally our Monte Carlo

dynamics should at least qualitatively resemble their actual

dynamics.

We generated and analyzed a total of 11 independent

trajectories, which consistently appeared as the type shown in

Figure 1, and showed the same quantitative overall behavior.

Assemblies are initially formed through the disordered rapid

assembly of partially folded peptides, which then reorganize into

ordered b sheets. A quantitative analysis (Figure 4) of the

reordering process shows that initially about 60% of the hydrogen
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Figure 2. Time series of the energy per peptide as a function of the progress variable (t). Together with the total energy (red line), we
show the contributions from the hydrogen bonding energy (blue line), and the hydrophobic energy (black line). The gradual emergence of the cross-
b ordering from the initially disordered oligomeric assemblies is characterised by a significant increase in the weight of the hydrogen bonding
energy. Errorbars represent standard deviations over 11 independent trajectories. Representative structures formed during the process of conversion
of the disordered oligomer into an amyloid-like structure are also shown at t = 5000, t = 15 000, and t = 30 000. The color code is as in Figure 1.
doi:10.1371/journal.pcbi.1000222.g002
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bonds within the oligomers are formed in disordered intermolec-

ular associations, whereas the remainder are involved in

intramolecular interactions within the native a-helix conformation

(Figure 4a). At later stages, a structural reorganization of the

oligomers results in essentially all hydrogen bonds being involved

in the cross-b structure. Thus, in agreement with experimental

evidence [33–35], we found that the formation of disordered

oligomers is primarily driven by hydrophobic effects, whereas a

reorganisation driven by hydrogen bond formation is subsequently

playing a major role in the formation of cross-b structure [16,28].

The formation of ordered assemblies starts with the pairing of two

peptides, from which larger b-sheets develop (Figure 4b). As the

simulation progresses, the height of the peak in the size distribution

function associated with single b-sheets decreases and multi-layer

b sheets form, thus revealing the process of protofilament

formation (Figure 4c). This observation complements and extends

the analysis shown in Figure 3, which shows that the b sheets align

as they grow in size.

Discussion

Although the presence of disordered aggregates might not

always be a prerequisite for amyloid fibril formation, these

aggregates do seem to appear as intermediate states in many

cases, and indeed it has been suggested that in some instances they

may serve as initiation sites for amyloid fibril growth [36,37]. The

simulations that we present provide molecular details of a

sequence-independent mechanism of formation of amyloid-like

structures from the initial disordered aggregates. This mechanism

depends on the interplay between hydrophobic forces that favor

an amorphous collapse and hydrogen bonding that favor the

formation of the ordered cross-b structure characteristic of

amyloid fibrils. The b-sheets that form within disordered

oligomers tend to align into protofilaments, which then can twist

around each other as their lengths increase. In many protein

systems this mechanism will be modulated by the presence of

additional interactions, such as steric repulsions or side chain

hydrogen bonding, which are highly sequence specific, but the

results that we present show that such a mechanism can emerge as

a generic feature common to all polypeptide chains. This

phenomenon thus appears to be an example of the Ostwald step

rule in first order phase transitions [38] in which the metastable

intermediate phase from which nucleation takes place is

represented by the disordered compact and highly dynamical

oligomeric assemblies that form prior to the establishment of the

ordered cross-b amyloid structure. The general nature of this type
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Figure 3. Histogram of the number Nn of b-sheets consisting of n peptides at four successive stages of the growth and reordering
process of the oligomeric assembly shown in Figure 1: (A) t = 10 000, (B) t = 15 000, (C) t = 20 000, (d) t = 30 000). This plot shows how
b-sheet assemblies are progressively formed by the growth and alignment of individual b-sheets. At t = 10 000 (A) there are six b-sheets of sizes
ranging from 3 to 16, whereas at t = 30 000 (D), there are nine b-sheets of sizes ranging from 8 to 42. If b-sheets are aligned so that the angle between
them is smaller than 20 degrees, they are considered to form a protofilament-like structure, and the corresponding bars in the histogram are shown
with the same color, as for instance in the case of the red assembly (Figure 1c, right), formed by four b-sheets of size 8, 19, 38, and 42.
doi:10.1371/journal.pcbi.1000222.g003

Mechanism of Formation of Oligomeric Assemblies

PLoS Computational Biology | www.ploscompbiol.org 4 November 2008 | Volume 4 | Issue 11 | e1000222



of mechanism thus provides a rationalisation of the observation

that oligomeric assemblies appear to share common structural

features, including those that enable them to bind to the same

antibodies independently from the sequences of their constituent

peptides and proteins [39].

In summary, in this work we have investigated the consequences

of the generic hypothesis of amyloid formation [4] by adopting a

model of protein structure specifically designed to capture the

characteristic of polypeptide chains that are common to all peptides

and proteins [24]. Our results have provided further support to the

view that the presence of partially ordered oligomeric assemblies of

the type associated with neurotoxicity constitutes a generic aspect of

the phenomenon of polypeptide aggregation.

Materials and Methods

Description of the Model
The tube model only considers interactions that are common to all

polypeptide chains, and does not include biases towards specific

configurations. In the model [24] each residue is represented by a Ca

atom. The atoms are connected into a chain (the protein backbone)

with a fixed distance of 3.8Å between neighboring atoms. The lines

joining the Ca atoms constitute the axes of hard spherocylinders

(cylinders capped by hemispheres) of diameter 4Å. Spherocylinders

that do not share a Ca atom are not allowed to interpenetrate. Bond

angles are restricted between 82u to 148u, and bending stiffness is

introduced by an energetic penalty, eS,.0 for angles less than

107.15u; these are the same criteria used in the original formulation

of the tube model [24]. Hydrophobicity enters through a pairwise-

additive interaction energy of eHP (positive or negative) between any

pair of residues i and j.i+2 that approach closer than 7.5Å.

The cylindrical symmetry of the tube is broken by the presence

of hydrogen bonds. A hydrogen bond has an energy eHB,0 and is

considered to exist between a pair of residues when the two normal

vectors defined by each Ca atom and its two neighbors are

mutually aligned to within 37u and at the same time each of these

vectors lies within 20u of the vector joining the Ca atoms. These

geometrical requirements were deduced from a study of native

protein structures [24]. There is also a distance criterion, which is

different for local hydrogen bonds (between residues i and j = i+3),

and non-local (j.i+4) hydrogen bonds. No more than two

hydrogen bonds per residue are permitted, and the first and last
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Figure 4. Analysis of the evolution of the structure of the oligomers over 11 independent simulations. (A) Development of the fraction
of polypeptide chains in a oligomer (black), fraction of polypeptide chains in a oligomer that form a b-sheet conformation (blue), fraction of hydrogen
bonds in a oligomer in a a-helical conformation (orange), and in a b-sheet conformation (red), or otherwise (green). (B) Development of the
distribution function of the average number of b-sheets ÆNnæ of size n at t = 1000 (black), t = 5000 (red), t = 30 000 (blue). (C) Distribution function ÆNlæ
of the number of protofilaments composed of l layers at t = 1000 (black), t = 15 000 (red), t = 30 000 (blue).
doi:10.1371/journal.pcbi.1000222.g004
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Ca atom cannot form inter-chain hydrogen bonds. Hydrogen

bonds may form cooperatively between residues (i, j) and (i+1, j+1),

thereby gaining an additional energy of 0.3eHB. For details of the

distance and angle criteria, the reader is referred to Table 1 of the

original article on the tube model [24].

To set the energy scale of the model, the energy of a hydrogen

bond is fixed in all simulations at eHB = 23kTo, where kTo is a

reference thermal energy and k is Boltzmann’s constant. This

value corresponds approximately the energy associated with a

hydrogen bond (1.5 kCal/mol at room temperature [40]). Values

of the hydrophobicity and stiffness parameters eHP and eS are given

in units of kTo and the reduced temperature is T* = T/To. In all our

simulations we set eS = 0.9 and eHP = 20.15. The ratio of a

hydrogen bonding energy to hydrophobic energy is a parameter

that we set to eHB/eHP = 20, which is a value commonly used in

simulations of the aggregation process [18,20]. As the number of

hydrophobic contacts in compact disordered phases usually about

one order of magnitude larger than the number of hydrogen

bonds, our choice ensures that these interactions can contribute in

a similar manner to the energy of the system.

Simulation Techniques
We performed Monte Carlo simulations in the canonical

ensemble using crankshaft, pivot, reptation, displacement and

rotation moves [28]. To reduce finite size effects we used a cubic

box and applied periodic boundary conditions. In order to analyze

the structure of the oligomers we used a distance criterion to define

a disordered oligomer, which requires two peptides to have a

distance of less than 5 Å. Two peptide chains are considered to

form a b-sheet if they have more than four inter-chain hydrogen

bonds with each other. To define an angle between different b-

sheets we calculated the relative orientation between neighboring

peptides that constitute the different b-sheet. Therefore we require

that the centers of mass of two peptides are separated by less than

10Å, which is the typical inter-sheet distance in both native and

most amyloid systems [1]. To extract the angle we calculate the

dot product of the end to end vectors of the peptide molecules. If

the average angle between two b-strands is less than 20 degrees,

we assume that the respective b-sheets belong to the same

protofilament.

Author Contributions

Conceived and designed the experiments: SA CMD MV. Performed the

experiments: SA. Analyzed the data: SA MV. Contributed reagents/

materials/analysis tools: SA. Wrote the paper: SA FM CMD MV.

References

1. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid and human

disease. Annu Rev Biochem 75: 333–366.

2. Jahn T, Radford SE (2008) Folding versus aggregation: Polypeptide conforma-

tions on competing pathways. Arch Biochem Biophys 469: 100–117.

3. Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis

for amyloid fibril formation and stability. Proc Natl Acad Sci U S A 102:

315–320.

4. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem

Sci 24: 329–332.

5. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426: 900–904.

6. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new

insights into protein folding, misfolding diseases and biological evolution. J Mol

Med 81: 678–699.

7. Harper JD, Lieber CM, Lansbury PT (1997) Atomic force microscopic imaging

of seeded fibril formation and fibril branching by the Alzheimer’s disease

amyloid-beta protein. Chem Biol 4: 951–959.

8. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, et al. (1998)

Diffusible, non-fibrillar ligands derived from Ab1–42 are potent central nervous

system neurotoxins. Proc Natl Acad Sci U S A 95: 6448–6453.

9. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, et al. (2000)

Nucleated conformational conversion and the replication of conformational

information by a prion determinant. Science 289: 1317–1321.

10. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration:

lessons from the Alzheimer’s amyloid b-peptide. Nat Rev Mol Cell Biol 8:

101–112.

11. Ma B, Nussinov R (2002) Stabilities and conformations of Alzheimer’s b-amyloid

peptide oligomers (Ab16–22, Ab16–35, Ab10–35): sequence effects. Proc Natl Acad

Sci U S A 99: 14126–14131.

12. Hwang W, Zhang S, Kamm R, Karplus M (2004) Kinetic control of dimer

structure formation in amyloid fibrillogenesis. Proc Natl Acad Sci U S A 101:

12916–12921.

13. Buchete N, Tycko R, Hummer G (2005) Molecular dynamics simulations of

Alzheimer’s b-amyloid protofilaments. J Mol Biol 353: 804–821.

14. Hills RD, Brooks CL (2007) Hydrophobic cooperativity as a mechanism for

amyloid nucleation. J Mol Biol 368: 894–901.

15. Nguyen PH, Li MS, Stock G, Straub JE, Thirumalai D (2007) Monomer adds to

preformed structured oligomers of Ab-peptides by a two-stage dock-lock

mechanism. Proc Natl Acad Sci U S A 104: 111–116.

16. Cheon M, Chang I, Mohanty S, Luheshi LM, Dobson CM, et al. (2007)

Structural reorganisation and potential toxicity of oligomeric species formed

during the assembly of amyloid fibrils. PLoS Comp Biol 3: e173. doi:10.1371/

journal.pcbi.0030173.

17. Cheon M, Favrin G, Chang I, Dobson CM, Vendruscolo M (2008) Calculation

of the free energy barriers in the oligomerisation of Ab peptide fragments. Front

Biosci 13: 5614–5622.

18. Nguyen HD, Hall CK (2004) Molecular dynanmics simulations of spontaneous

fibril formation by random-coil peptides. Proc Natl Acad Sci U S A 101:

16180–16185.

19. Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, et al. (2004) In silico study of

amyloid b-protein folding and oligomerization. Proc Natl Acad Sci U S A 101:
17345–17350.

20. Pellarin R, Caflisch A (2006) Interpreting the aggregation kinetics of amyloid
peptides. J Mol Biol 360: 882–892.

21. Pellarin R, Guarnera E, Caflisch A (2007) Pathways and intermediates of

amyloid fibril formation. J Mol Biol 374: 917–924.

22. Derreumaux P, Mousseau N (2007) Coarse-grained protein molecular dynamics

simulations. J Chem Phys 126: 025101.

23. Luheshi LM, Tartaglia GG, Brorsson AC, Pawar AP, Watson IE, et al. (2007)

Systematic in vivo analysis of the intrinsic determinants of amyloid b
pathogenicity. PLoS Biol 5: e290. doi:10.1371/journal.pbio.0050290.

24. Hoang TX, Trovato A, Seno F, Banavar JR, Maritan A (2004) Geometry and
symmetry presculpt the free-energy landscape of proteins. Proc Natl Acad

Sci U S A 101: 7960–7964.

25. Hoang TX, Marsella L, Trovato A, Seno F, Banavar JR, et al. (2006) Common

attributes of native-state structures of proteins, disordered proteins, and amyloid.
Proc Natl Acad Sci U S A 103: 6883–6888.

26. Banavar JR, Maritan A (2007) Physics of proteins. Annu Rev Biophys Biomol
Struct 36: 261–280.

27. Auer S, Miller M, Krivov SV, Dobson CM, Karplus M, et al. (2007) Generic

properties of the free energy landscapes of proteins. Phys Rev Lett 99: 178104.

28. Auer S, Dobson CM, Vendruscolo M (2007) Characterization of the nucleation

barriers for protein aggregation and amyloid formation. HFSP J 1: 137–146.

29. Kammerer RA, Kostrewa D, Zurdo J, Detken A, Garcia-Echeverria C, et al.

(2004) Exploring amyloid formation by a de novo design. Proc Natl Acad
Sci U S A 101: 4435–4440.

30. Fandrich M, Dobson CM (2002) The behaviour of polyamino acids reveals an
inverse side chain effect in amyloid structure formation. EMBO J 21: 5682–5690.

31. Knowles TP, Fitzpatrick AW, Mott H, Meehan S, Vendruscolo M, et al. (2007)
Self-assembling protein fibrils represent a novel class of high performance

nanoscale biomaterials. Science 318: 1900–1903.

32. Turner MS, Briehl RW, Ferrone FA, Josephs R (2003) Twisted protein aggregates

and disease: the stability of sickle hemoglobin fibers. Phys Rev Lett 90: 128103.

33. Dirix C, Meersman F, MacPhee CE, Dobson CM, Heremans K (2005) High
hydrostatic pressure dissociates early aggregates of TTR105–115, but not the

mature amyloid fibrils. J Mol Biol 349: 903–909.

34. Petty SA, Decatur SM (2005) Intersheet rearrangement of polypeptides during

nucleation of b-sheet aggregates. Proc Natl Acad Sci U S A 102: 14272–14277.

35. Knowles TPJ, Shu W, Devlin GL, Meehan S, Auer S, et al. (2007) Kinetics and

thermodynamics of amyloid formation. Proc Natl Acad Sci U S A 104:
10016–10021.

36. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, et al. (2000)
Nucleated conformational conversion and the replication of conformational

information by a prion determinant. Science 289: 1317–1321.

37. Zhu M, Souillac PO, Ionescu-Zanetti C, Carter SA, Fink AL (2002) Surface-

catalyzed amyloid fibril formation. J Biol Chem 277: 50914–50922.

38. Auer S, Frenkel D (2004) Quantitative prediction of crystal-nucleation rates for

spherical colloids. Annu Rev Phys Chem 55: 333–361.

Mechanism of Formation of Oligomeric Assemblies

PLoS Computational Biology | www.ploscompbiol.org 6 November 2008 | Volume 4 | Issue 11 | e1000222



39. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, et al. (2003)

Common structure of soluble amyloid oligomers implies common mechanism of
pathogenesis. Science 300: 486–489.

40. Fersht AR, Shi JP, Knill-Jones J, Lowe DM, Wilkinson AJ, et al. (1985)

Hydrogen bonding and biological specificity analyzed by protein engineering.
Nature 314: 235–238.

Mechanism of Formation of Oligomeric Assemblies

PLoS Computational Biology | www.ploscompbiol.org 7 November 2008 | Volume 4 | Issue 11 | e1000222


