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Different experimental structures of the same protein or of pro-
teins with high sequence similarity contain many small variations.
Here we construct ensembles of ‘‘high-sequence similarity Protein
Data Bank’’ (HSP) structures and consider the extent to which such
ensembles represent the structural heterogeneity of the native
state in solution. We find that different NMR measurements
probing structure and dynamics of given proteins in solution,
including order parameters, scalar couplings, and residual dipolar
couplings, are remarkably well reproduced by their respective
high-sequence similarity Protein Data Bank ensembles; moreover,
we show that the effects of uncertainties in structure determina-
tion are insufficient to explain the results. These results highlight
the importance of accounting for native-state protein dynamics in
making comparisons with ensemble-averaged experimental data
and suggest that even a modest number of structures of a protein
determined under different conditions, or with small variations in
sequence, capture a representative subset of the true native-state
ensemble.

NMR order parameters � protein dynamics � residual dipolar couplings

The rapidly growing Protein Data Bank (PDB) (1) is testa-
ment to the revolution in structural biology that has occurred

over the last 15 years. These newly available protein structures
contain a wealth of information that can be used to rationalize
and predict the function of proteins. At the same time, however,
it has long been realized that native states are best represented
as ensembles of similar structures and that the dynamics of
proteins are also important for understanding their function
(2–5). NMR spectroscopy (4, 6), which can reveal protein
dynamics in atomic detail, is thus being applied to characterize
protein stability and the effect of mutations (7), the changes
upon ligand binding (5, 8, 9), the comparison of homologous
proteins (10), and the structure of unfolded states (11).

A number of recent studies have analyzed the extent to which the
dynamical information is represented by existing protein structures,
with the aim of predicting experimental data on dynamics from
single structures, using relatively simple models based on structural
properties. The prediction of properties arising from essentially
harmonic dynamics, such as x-ray crystallographic B-factors (12)
and NMR order parameters for the protein backbone (13), has
been reasonably successful using contact-based models or normal
mode analysis. However, side-chain order parameters, which de-
pend in many cases on anharmonic dynamics (14, 15), have proved
more challenging, because they exhibit only limited correlations
with structural properties, such as contact density and the solvent-
accessible surface area (16). Improved prediction has been achieved
by combining a contact model with the number of rotatable bonds
in the side chain (17).

Here we investigate the extent to which the diversity present
within different structures of the same protein, or proteins with high
sequence identity, in the PDB captures the structural diversity
probed by experiments in solution: these different structures arise
from the crystallization of mutants, variants from different species,
structures of complexes with other biomolecules or drugs, or use of

different crystallization conditions. We refer to these structures as
‘‘high-sequence similarity PDB’’ (HSP) ensembles. Because side-
chain order parameters, scalar couplings, and residual dipolar
couplings (RDCs) report directly on the structural heterogeneity of
the native state, it is important to investigate whether these param-
eters are related to the heterogeneity of HSP ensembles. A recent
study by Zoete et al. (18) compared backbone ‘‘fluctuations’’
derived from the different structures of the HIV-1 protease in the
PDB with the x-ray B-factors, and multiple crystal structures of T4
lysozyme were analyzed by Matthews and coworkers (19).

We compare the properties of HSP ensembles with experimental
NMR data describing the structural heterogeneity present in solu-
tion, rather than in the crystalline state. Particularly interesting is
the comparison of side-chain dynamics data with HSP ensembles,
because the motions of atoms in the amino acid side chains are
significantly more complex and varied than those in the polypeptide
backbone (15).

Results
NMR Order Parameters from HSP Ensembles. Order parameters of
side-chain methyl groups are a sensitive probe of local side-chain
motions (6). Specifically, they measure the amplitude of the orien-
tational distribution of the methyl group axis within a reference
frame attached to the protein (i.e., excluding overall rotational
diffusion of the molecule) on a picosecond to nanosecond time
scale (20). One method of generating such a distribution for
comparison with experiment is by performing molecular dynamics
(MD) simulations (21). By aligning each simulation snapshot with
a reference set of coordinates to remove the orientational contri-
bution from molecular diffusion, order parameters may be calcu-
lated from the intramolecular variations in orientation. We apply an
analogous approach to the HSP ensembles, which are made up of
structures with high sequence similarity drawn from the PDB. For
example, Fig. 1 shows two Leu side chains taken from such an
ensemble for ubiquitin, where the order parameters measure the
extent of motion of the C�—C� bond. A larger-order parameter
generally corresponds to more restricted intramolecular motion.

The idea behind the HSP ensembles is that small differences in
sequence or crystal environment act as perturbations that cause the
protein to populate alternate minima (5, 18, 22, 23); too many
differences in sequence would make the comparison meaningless,
because the structure also would diverge (24). In practice, for most
of the proteins in the HSP ensembles that we considered, the
structural alignments have sequence identity of �98% (see Table
1), corresponding to only one or two point mutations in each case.
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Because too few structures may not adequately represent the native
state heterogeneity, we required at least 10 matches to be found.

The side-chain order parameters calculated from the HSP en-
sembles are plotted in Fig. 2, together with experimental values
obtained from deuterium relaxation experiments. There is gener-
ally a remarkably good agreement between the experimental and
calculated data, given the acknowledged difficulty of quantitatively
predicting these data (16, 17, 26), especially for the larger-sized
ensembles (e.g., HIV-1 protease). Table 1 summarizes the corre-
lation and rms deviation (rmsd) between experimental and calcu-
lated data. We favor the rmsd as a measure of similarity, because
some proteins tend to have higher correlations simply because of
their residue composition (15).

We assess the significance of the results by comparing them to a
model in which ‘‘synthetic’’ data sets are generated by drawing
order parameters for each residue at random from a pool of real
experimental data for that residue type. The model accounts for
residue identity but not structural context. From a large number of
synthetic data sets, we calculate the probability that a rmsd as good
as that obtained from the HSP ensemble could be obtained by using
this model: for all proteins this probability is �1%, with the
exception of Fyn SH3 and Cdc42Hs where it is �10%.

Effect of Experimental Uncertainty and Ensemble Size. Variations
within the HSP ensembles could come from real differences
between the structures, as well as from experimental uncertainty.
We use HIV-1 protease (which has the largest HSP ensemble) to

investigate the origin of these variations, by comparing order
parameters calculated for various structural ensembles of this
protein (Fig. 3). A good correlation between the full HSP ensemble
and experimental deuterium relaxation data is found (Fig. 3a; rmsd
0.17 Å, rp 0.76); for reference, two different experimental data sets
(from carbon and deuterium relaxation) are compared in Fig. 3b
(rmsd 0.10 Å, rp 0.94).

Degeneracy in the solution of crystal structures has been shown
to give local variations of up to 2.0 Å in the refined solutions of
HIV-1 protease x-ray diffraction data (27). This contribution to the
order parameters may be quantified by calculating order parame-
ters from the model structures. An ensemble of 50 plausible initial
structures, generated by the RAPPER procedure (27), gives order
parameters that are generally much lower than experiment (Fig.
3c). Despite this large variation allowed in the initial structures,
refinement against the x-ray data produced an ensemble whose
order parameters were much higher than experiment (Fig. 3d);
therefore, the small degeneracy in solutions underestimates the true
variability.

The variability within NMR ensembles is similarly related both to
the local density of restraints and to true dynamics (28). We find
that side-chain order parameters calculated over the NMR ensem-
ble of HIV-1 protease are poorly correlated with the experimental
data (Fig. 3e; rmsd 0.34 Å; rp 0.13). Similar results are obtained
when this same approach is applied to other proteins for which both
NMR ensembles with at least 10 members and side-chain order
parameters have been determined. The correlations are given in
Table 1 and, where there is a corresponding HSP ensemble, are
plotted in Fig. 2. Although the correlations vary somewhat from
protein to protein, the rmsds from experimental data are consis-
tently better for the HSP ensembles than the NMR ensembles.

The data in Table 1 suggest that larger HSP ensemble sizes tend
to give more accurate results. We test this hypothesis by calculating
both backbone and side-chain order parameters over randomly
selected subensembles of the HIV-1 protease HSP ensemble (Fig.
3f). An increase in the ensemble size indeed improves the agree-
ment with experiment. Furthermore, although there is little im-
provement for the backbone order parameters beyond 2 structures
and almost none beyond 5, a larger number of structures (�20–40)
is necessary to capture the side-chain heterogeneity (Fig. 3f). The
limited improvement beyond 40 structures indicates that the ap-
proximations inherent in comparing HSP structures will eventually
limit the agreement with experiment. Chou et al. (14) have shown
that even a small population of a minor rotamer, e.g., �10%, can
have a significant effect on the calculated S2 value, such that

Fig. 1. Leu side chains from the ubiquitin HSP ensemble with �-methyl order
parameters of 0.7 (L50) (a) and 0.2 (L8) (b).

Table 1. Comparison between experimental side-chain order parameters and those calculated
from HSP and NMR ensembles

Protein

HSP ensembles NMR ensembles

SI,* % Size, Å rp
† rmsd, Å Structure Size, Å rp

† rmsd, Å

Cdc42Hs 98.3 13 0.53 0.30 1AJE 20 0.11 0.39
HIV-1 Protease 92.1 330 0.74 0.17 1BVE 28 0.13 0.34
Ubiquitin 99.2 13 0.76 0.18 1D3Z 10 0.57 0.29
Eglin c 99.0 10 0.37 0.30 1EGL 25 0.46 0.31
Calmodulin 99.8 28 0.72 0.20 3CLN 25 0.40 0.27
A-LBP 99.4 14 0.73 0.19
Troponin C 98.9 13 0.69 0.19
Fyn SH3 99.7 12 0.74 0.21
FNfn10 1TTF 36 0.50 0.30
PLCC SH2 2PLE 18 0.36 0.32
M-FABP 1G5W 20 0.41 0.35
Average 98.3 0.66 0.22 0.37 0.32

See ref. 25 for more details on experimental side-chain order parameters.
*Percentage sequence identity in HSP ensemble.
†Pearson correlation coefficient.
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ensembles of 20–40 structures might be needed to get sufficient
statistical sampling of such minor conformations. We note that
restricting the HSP ensemble to consensus sequence structures (49
for HIV-1 protease) does not appreciably change the agreement
with experiment, justifying the inclusion of mutants in the ensem-
bles. Although mutants may shift the equilibrium between two free
energy minima, the structure selection criteria for HSP ensembles
would tend to find structures within the same basin.

Scalar Couplings and Rotamer Populations. Side-chain scalar cou-
plings report on the �1 dihedral angle and its associated dynamics
and provide complementary information to that given by the order
parameters. We have back-calculated side-chain scalar couplings
from the HSP ensemble of HIV-1 protease, using a recent param-
eterization of the Karplus equation (14). There is a good correlation
with experiment for both NC (rp � 0.90) and CC (rp � 0.96) scalar
couplings (see Figs. 6 and 7, which are published as supporting
information on the PNAS web site). Notably, the scalar couplings
for individual structures vary over a wide range for some residues,
whereas the mean values are generally close to experiment. To
illustrate this point, we note that although the correlation between
calculated scalar couplings and experiment for each structure
ranges from 0.19 to 0.94 (mean 0.75) for NC couplings, and from
0.28 to 0.97 (mean 0.88) for CC couplings, the correlation obtained
for an average over the whole ensemble is as good as that obtained

from the best individual structures. This result is in agreement with
the earlier finding that the fitting of the parameters in the Karplus
equation using individual crystal structures is likely to be inaccurate
(14, 29).

The agreement between experimental scalar couplings and those
from the HSP ensemble suggests that the latter may be represen-
tative of the dihedral angle distribution in solution. We compared
the dihedral angle distributions determined independently from
RDCs (14) and the dynamic ensemble refinement (DER) method
(30) with those calculated from the HSP ensemble of ubiquitin (Fig.
4): comparable results are obtained by using each method (see
Table 2, which is published as supporting information on the PNAS
web site, for a complete comparison).

RDCs. Of the proteins for which RDCs have been measured, hen
lysozyme has the largest HSP ensemble (177 structures); the RDCs
have been incorporated in a refined structure of the protein (31).
We separately fitted each structure in the ensemble to the exper-
imental backbone NH RDCs and also calculated an ensemble
average as described (30).

The Q-factor [a goodness-of-fit measure for RDCs (32, 33); low
Q indicates better agreement] is plotted for each fit in Fig. 5a.
Although the Q-factor for the HSP ensemble (solid line in Fig. 5a)
is not as low as that for the structure determined by using dipolar

Fig. 2. Methyl group side-chain order parameters, Saxis
2 , calculated over HSP

ensembles (red lines) and NMR ensembles (blue lines) compared with exper-
imental data (shaded black curves). The number of structures in the HSP and
NMR ensembles are reported next to the name of the protein. Data for
calmodulin and troponin C correspond to the N-terminal lobe only. The
methyl group index on the x-axis is obtained by sorting in increasing order of
residue number and methyl number (e.g., �1 � �2).

Fig. 3. Methyl axis order parameters (Saxis
2 ) for HIV-1 protease. (a–e) The

following sets of Saxis
2 are compared with those determined from 2H relaxation

experiments. (a) Saxis
2 calculated from HSP ensembles. (b) A separate set of

experimental Saxis
2 from 13C relaxation. (c and d) Saxis

2 from ensembles of 50
structures generated by the RAPPER algorithm (27) before (c) and after (d)
refinement against x-ray data. (e) Saxis

2 calculated from the NMR ensemble
(PDB ID code 1BVE). Solid lines correspond to ideal coincidence of the two data
sets; broken lines indicate �0.2 from this value. Data points are color-coded by
methyl type as follows: black, Leu �1,�2; red, Val �1,�2; green, Ile �2; blue, Ile
�1; orange, Ala �. ( f) rmsd between HSP and experimental order parameters
as a function of HSP ensemble size.
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couplings as restraints (broken line in Fig. 5a), it is significantly
better than any single experimental structure refined without the
couplings. We note that there are a number of remaining outliers
that probably indicate real differences between the crystallographic
and solution structures (31). Thus, the experimental data can be
well reproduced either by a single structure (as for PDB ID code
1E8L) or by an ensemble in which few of the structures are
particularly good fits. A similar result was obtained for both
backbone and side-chain RDCs in ubiquitin, although with poorer
statistics because of the small HSP ensemble (data not shown).

To probe the origin of this effect, we have used a harmonic
model, derived from the minimized structure in the EEF1 force
field (34). An ensemble of 200 structures at a temperature of 300
K was generated by random superposition of normal modes. As for
the HSP ensemble, we find that the ensemble average fit to the data
are much better than any individual structure (Fig. 5b); thus,
harmonic fluctuations can give rise to significant deviation of
individual structures from the RDCs.

Discussion
HSP Ensemble. We have shown that several types of experimental
NMR data related to dynamics and structural heterogeneity in the
native state can be reproduced by using ensembles of structures of
the same protein (or proteins of high sequence similarity) drawn
from the PDB. The heterogeneity of such ensembles is similar to
that found by MD simulation [average rmsd of 0.91 Å (backbone),
1.50 Å (side chain), 1.24 Å (all-atom)], although in MD the NMR
data are often less accurately reproduced (15, 35).

These results suggest that the HSP ensemble provides a repre-
sentative sample of the structural fluctuations of a protein under
native conditions, although the available structures only constitute
a small fraction of the full native ensemble. The HSP analysis can

be related to the fluctuation–dissipation theorem, according to
which the equilibrium structural fluctuations are equivalent to the
changes caused by small perturbations (22). One can consider each
structure in the HSP ensemble as subject to a slightly different
perturbation, such as a bound ligand, a mutation, or the effect of
crystal packing, which favors a particular minimum on the native-
state energy surface (5, 18, 23). If the perturbations are sufficiently
random, the resulting ensemble will be representative of the full
ensemble; for example, if some property of the protein, e.g., a bond
vector orientation or a side-chain rotamer, is found in a certain
fraction of the native energy minima, then it will be found with the
same fraction in a sufficiently large randomly selected subset.

The quantitative comparison that we present between different
experimental structures is complicated by many factors, such as
differences in the methodology used (x-ray crystallography vs.
NMR spectroscopy) and the inherent uncertainties in each struc-
ture due to differences in disorder (x-ray) (27, 36) and density of
restraints (NMR) (30). Structural uncertainty will tend to obscure
the observed correlations: for example, the HIV-1 protease HSP
ensemble of high resolution (better than 1.85 Å) structures im-
proves the agreement with experimental NMR data by �15% with
respect to the HSP ensemble of low resolution (2.6 Å or worse; see
Table 3, which is published as supporting information on the PNAS
web site). Also, the so-called ‘‘model bias’’ (37) resulting from
techniques such as molecular replacement in the solution of x-ray
structures may be responsible for the poorer agreement in some of
the smaller HSP ensembles. For the consensus sequence HIV-1
protease structures, elimination of structures determined by mo-
lecular replacement slightly improves the correlation with experi-
mental order parameters, from 0.72 to 0.75. In certain cases, even
single point mutations may have a significant impact on structure.
This effect also may contribute to the relatively poor agreement
with experiment for Eglin c, because changes in experimental
side-chain order parameters upon mutation are relatively large
(38). For x-ray structures, crystal packing artifacts also will distort

Fig. 5. Distributions of RDC Q-factors for fits to NH RDCs from hen lysozyme
(31). (a) Q factors for fits of individual HSP ensemble members to experimental
RDCs. The solid line indicates the fit obtained from an ensemble average and
the broken line the fit for the first member of the PDB ID code 1E8L NMR
ensemble. (b) Q-factors for fits to structures generated from random normal
mode displacements at 300 K to a set of synthetic RDCs derived from the
minimum energy structure. Solid lines shows the Q-factors for RDCs ensemble-
averaged over this set of structures.

Fig. 4. �1 rotamer populations for representative residues in ubiquitin.
Fractional populations calculated from RDCs (solid) (14) and from dynamic
ensemble refinement (DER; hatched) (30) are compared. Full results are avail-
able in Table 2.
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the protein energy landscape to some extent with respect to that in
solution.

The above reasons may all contribute to the observed rmsd
between experimental and calculated side-chain order parameters
and explain why the rmsd does not decrease significantly on
increasing the size of the HIV-1 protease HSP ensemble beyond 40
(Fig. 3f). Nonetheless, the fact that the HSP ensembles are close to
the experimental data strongly suggests that the differences be-
tween crystal structures are largely due to the actual heterogeneity
in the native state.

HSP ensembles do not directly include the concept of time. NMR
measurements, however, correspond to averaging over the states
accessed on a particular time scale, from picoseconds to nanosec-
onds in the case of order parameters. Agreement of order param-
eters calculated over HSP ensembles with those from NMR relax-
ation measurements suggests that each side chain samples most of
its conformers on a nanosecond time scale. This observation is in
harmony with the finding that order parameters calculated from
relaxation measurements (averaged over a picosecond–nanosec-
ond scale) are in most cases similar to those calculated from RDCs
and scalar couplings (averaged over a microsecond–millisecond
scale) (14).

NMR Order Parameters. The limited improvement that we found in
the agreement with experimental backbone order parameters for
more than two HSP structures is consistent with the result that an
ensemble size of two is sufficient for the refinement of structures
against backbone RDCs (39–41). It should be noted, however, that
the accuracy of our backbone order parameter calculations may be
adversely affected by the absence of hydrogen atoms in most crystal
structures, requiring them to be built with standard geometries.
Further, energy minimization during experimental refinement pro-
cedures will tend to reduce the vibrational contribution to backbone
amide order parameters (42), as was found when ensemble-refined
ubiquitin structures were minimized (30).

Our results indicate that an ensemble size of �20 is required
to represent side-chain heterogeneity (represented by order
parameters for side-chain methyl groups), as we have also found
independently in the application of the dynamic ensemble
refinement method to ubiquitin (30). This result is also expected
from the greater complexity of side-chain dynamics (15). Given
the redundancy in the PDB, this minimum ensemble size sug-
gests that the present approach may be applicable to several
proteins, especially those of particular biological interest for
which more structures are likely to be determined. We do not
suggest that the native state of a protein comprises �20 local
minima [e.g., MD simulations (23) and the HIV-1 protease HSP
ensemble suggest a much larger number]. Rather, this number
seems to provide sufficient heterogeneity to determine order
parameters and related quantities that are sensitive to local
motions. In principle, sufficiently large HSP ensembles may be
used to investigate structural correlations (e.g., covariance of
fluctuations; see Fig. 8 and Table 4, which are published as
supporting information on the PNAS web site) and could be
compared with experiments that probe long-range correlations.

RDCs. We have found that an ensemble of different experimental
structures of the same protein fits backbone RDCs better than any
single structure, apart from the one determined by using the
couplings as restraints. This result is important given the increasing
use of RDCs in structure refinement and structure validation (43),
because the quality of a single structure is often assessed by the
goodness of fit to the RDC data. In the context of structure
refinement, RDC-based backbone restraints are usually imposed
on a single copy [although ensemble refinement has also been used
(39, 41)], whereas the experimental data represent an ensemble
average. A good example of the type of effects resulting from this
procedure is provided by the NMR structure of carbonmonoxy

hemoglobin, for which the experimental solution structure deter-
mined with a single copy was found to be intermediate between two
different crystal structures (44).

In many cases, excluding situations such as that of the allosteric
hemoglobin, which is known to populate several alternative struc-
tures (45), this effect should not result in a significant problem for
structure refinement of the backbone, especially if one assumes that
the structure remains essentially confined within a single energy
minimum and that backbone motions are mainly harmonic in
nature. If structures derived from a random superposition of
normal mode displacements at 300 K are fitted to a set of synthetic
RDCs generated from the minimum (average) structure, the
Q-factors range from 0.2 to 0.5 for individual structures Fig. 5b.
However, the ensemble fits very well (Q � 0.07) to the data for the
minimum structure, except that the dynamics is absorbed into the
alignment tensor, scaling it by a factor of �0.92; a similar effect was
found in an analysis of MD simulations (46). In this case, using
ensemble-averaged RDCs as restraints in a single copy refinement
would result in an ‘‘average’’ structure. It is unlikely, however, that
such refinement will be successful for modeling side-chain motion,
which is known to be dominated by anharmonic effects such as the
population of multiple rotameric states (15).

Applications of HSP Ensembles. The results that we discussed so far
for HSP ensembles suggest an alternative way to parameterize
semiempirical relations such as Karplus equations for scalar cou-
plings. The parameterization of these expressions using a number
of experimental structures of different proteins has been compli-
cated by the need to account for the effects of dynamics in solution.
Methods for addressing this issue include structure-independent
cross-validation approaches (14) or dynamic ensemble refinement-
derived structures (29). Alternatively, comprehensive experimental
data sets determined for those proteins for which a very large
number of structures are already available can be used in an
ensemble-averaged fitting procedure, in which the effects of het-
erogeneity are included and specific packing effects are expected to
be reduced.

HSP ensembles also may be useful for drug design calculations.
An emerging view is that the bound state of the protein is found
within the equilibrium ensemble of the free protein; otherwise, very
strong interactions with the drug would be required to offset the
cost of adopting such an unfavorable conformation. An increasing
amount of experimental evidence, such as the recognition of
dissimilar ligands (47) and the enhancement of antibody affinity
and specificity by making the unbound state more similar to the
bound state (5), supports such a model. The use of ‘‘dynamic’’
pharmacophore models in such calculations has already led to
improved results (48); these models have been derived from either
MD (48) or several crystal structures chosen in a similar way to the
HSP ensembles (49). Hence, HSP ensembles or ensemble-refined
experimental structures (30) represent a possible alternative to MD
simulations for the purpose of ensemble generation. Conversely, if
the bound state corresponds to a different free energy minimum
with a different structure, it may not be sampled by this method.

Conclusions
We have studied the properties of ensembles of structures of
proteins with high sequence identity in the PDB and found that
they provide a representative sampling of the heterogeneity of
protein native states, as probed by various NMR measurements.
In particular, these HSP ensembles reproduce side-chain order
parameters better than ensembles of NMR structures and also fit
RDC data better than individual structures, supporting the view
that dynamic heterogeneity is an important contribution to such
data. Therefore, the assessment of individual structures using
ensemble-averaged experimental measurements requires some
caution.

Best et al. PNAS � July 18, 2006 � vol. 103 � no. 29 � 10905

BI
O

PH
YS

IC
S



The present work indicates that it is important to account for
the structural diversity of the native state when comparing
predictions from homology modeling or ab initio structure
predictions with experimental structures and perhaps even that
such a diversity is incorporated into the solutions obtained from
these calculations.

Together, our results suggest that the population of closely
related structures that form the native state of a protein and
often determine its functionality can be sampled not only by
probing the dynamics experimentally, but also by using multiple
structure determinations of proteins of highly similar sequences.

Methods
Selection of Experimental Data. HSP ensembles were constructed
for a previously compiled set of proteins for which both exper-
imental order parameters and structures are available (25), as
well as hen lysozyme.

For each of these proteins, a search for structural homologues
in the PDB with �90% sequence identity and ungapped align-
ment was performed by using the combinatorial extension (CE)
algorithm (50). If at least 10 matches were found, those struc-
tures were defined as the HSP ensemble for that protein. In
crystal structures where several structurally homologous chains
were present in the asymmetric unit and were refined indepen-
dently, each protein was separately entered into the ensemble.
For NMR structures only the minimized average structure was
used. For HIV-1 protease, the database was constructed from
the online HIV protease structure database (51). Tethered
dimers, structures with unresolved disordered residues, low-

resolution structures, computational models, and structures not
submitted to the PDB were excluded. In addition, only structures
with �10 mutations relative to the consensus were allowed. A
complete list of the structures used is available in Tables 5 and
6, which are published as supporting information on the PNAS
web site.

NMR Order Parameter and Dipolar Coupling Calculations. The HSP
ensembles were aligned to the protein studied in the NMR
dynamics experiment by least-squares fitting of the correspond-
ing � carbons from the combinatorial extension (CE) alignments
(all alignments were ungapped because of the high sequence
similarity). Order parameters (20) for each methyl group were
calculated as described (15), by using all structures in the HSP
ensemble having the same type of residue in that position as the
reference protein studied in the NMR dynamics experiments.
The calculation of order parameters for the NMR structures was
done in the same way as for the HSP ensembles.

RDCs and scalar couplings were calculated from the aligned
ensembles of structures as described (30). Normal mode analysis
was performed with the CHARMM package (52) and the EEF1
force field (34).
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