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Principles of protein structural ensemble determination
Massimiliano Bonomi1,3, Gabriella T Heller1,3, Carlo Camilloni2

and Michele Vendruscolo1
The biological functions of protein molecules are intimately

dependent on their conformational dynamics. This aspect is

particularly evident for disordered proteins, which constitute

perhaps one-third of the human proteome. Therefore,

structural ensembles often offer more useful representations of

proteins than individual conformations. Here, we describe how

the well-established principles of protein structure

determination should be extended to the case of protein

structural ensembles determination. These principles concern

primarily how to deal with conformationally heterogeneous

states, and with experimental measurements that are averaged

over such states and affected by a variety of errors. We first

review the growing literature of recent methods that combine

experimental and computational information to model

structural ensembles, highlighting their similarities and

differences. We then address some conceptual problems in the

determination of structural ensembles and define future goals

towards the establishment of objective criteria for the

comparison, validation, visualization and dissemination of such

ensembles.
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Introduction: using a structural ensemble to
represent the state of a protein
As protein molecules experience significant conformation-

al fluctuations in their natural environments, structural

ensembles can often effectively represent their states and

provide insights into the structural basis of their biological

functions [1–5,6��]. A structural ensemble can be defined

as a set of conformations together with their corresponding
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statistical weights. Both the conformations and their

statistical weights should be determined in a manner

consistent with the available experimental and theoretical

information. The statistical weight defines the extent to

which a particular conformation is populated by a protein

under well-defined experimental conditions. An ensemble

of this type is thus a ‘statistical ensemble’, rather than an

ensemble made up by multiple models of a given state,

which could be called an ‘uncertainty ensemble’. For such

an uncertainty ensemble, the multiple models reflect the

limited information available on the system, rather than an

intrinsic conformational heterogeneity.

The importance of using structural ensembles is particu-

larly evident in the case of disordered proteins, which are a

class of proteins that lack well-defined structures and

instead populate a large number of conformationally het-

erogeneous states [7,8�,9�,10,11]. It has been suggested

that these proteins make up about one-third of the human

proteome [10,12] and that their dynamic nature facilitates

multiple interactions, making them particularly important

in regulation and signalling processes [10,13]. In this

review we discuss how the development of rigorous prin-

ciples of protein structural ensemble determination will

lead to a better structure-based understanding of the

functions of proteins, in particular those that are disor-

dered or contain disordered regions.

Challenges in the determination of structural
ensembles of proteins
Experiments alone may not lead to the accurate

determination of protein structural ensembles

The challenges associated with the determination of

protein structural ensembles by experimental methods

alone are at least threefold [14], as observations: first, are

often time and ensemble averages over conformationally

heterogeneous states; second, provide sparse and some-

times ambiguous information; third, are always subject to

random and systematic errors.

Averages over conformationally heterogeneous states

In principle, heterogeneous states of proteins in solution

could be distinguished by an experimental technique

whose observation time is faster than the time of inter-

conversion between states. However, in most cases this

observation time is longer than the typical timescale that

one is interested to resolve, and as a result the observation

is an average over multiple conformational states. This is

true for highly versatile techniques such as nuclear

magnetic resonance (NMR) spectroscopy, which is
www.sciencedirect.com
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commonly used to characterize protein conformational

fluctuations, and it has also recently been recognized for

X-ray crystallography [15�,16]. In these cases, it is very

helpful to perform additional experiments, such as sin-

gle-molecule Förster resonance energy transfer (FRET)

or double electron-electron resonance (DEER), which

can generate distributions of the experimental observ-

able over the entire structural ensemble, rather than

averaged quantities [17,18]. In addition, it is also possi-

ble, for example using relaxation-dispersion NMR spec-

troscopy, to obtain specific information about individual

sub-states [2]. Finally, other techniques provide infor-

mation that are not of a thermodynamic nature, that is,

measurements that are neither averaged over structural

ensembles, nor directly reflecting the populations of

individual members. A notable example of this type is

provided by chemical cross-linking/mass spectrometry

(XL-MS) data [19].

Sparse and sometimes ambiguous information

Experimental techniques are typically sensitive only to

specific properties, and thus provide sparse structural

information about the conformational fluctuations of pro-

teins. For example, FRET measurements provide an

indirect measure of the distance between two protein

sites, small-angle X-ray scattering (SAXS) reports on the

probability distribution of the distances between all pairs

of atoms, XL-MS data typically probe the proximity

between lysine residues, and residual dipolar couplings

(RDCs) provide information about the orientations of

interatomic bonds relative to an external magnetic field.

Furthermore, in some cases, experimental data provide

ambiguous information [14]. For example, in the analysis

of XL-MS data collected in the presence of multiple

copies of the same protein could not be univocally

assigned to a specific copy, or in the analysis of nuclear

Overhauser effect (NOE) NMR data, previous knowl-

edge of the structure of the molecule is in some cases

required [20].

Random and systematic errors

All experimental observations are inevitably affected by

random or systematic errors. Random errors result from

statistical fluctuations across multiple observations. Sys-

tematic errors might arise in several ways, for example

from faults in the instrumentation or in its use by the

experimenter, incorrect assignment of data points, or

poor sample preparation. Each experimental technique

is characterized by a different level of noise in the data,

which should be taken into account when constructing

structural models of the system. Crucially, noise and

structural heterogeneity are difficult to disentangle.

For example, a Gaussian distribution of measurements

might arise from a collection of observations of a

static system subject to random errors or also from

repeated measurements  of a dynamic system in absence

of noise.
www.sciencedirect.com 
Computational techniques alone are often insufficient to

determine accurate structural ensembles

Computational methods such as Monte Carlo, molecular

dynamics, or combined approaches have the potential to

yield complete descriptions of the structures and dynam-

ics of proteins. These methods generate structural ensem-

bles whose statistical weights are determined by a

theoretical model of the physical and chemical interac-

tions of the system. The two main problems that these

approaches face are that of: first, force fields, and second,

conformational sampling.

Force fields

Commonly used models range from highly-detailed ab
initio methods, to all-atom empirical force-fields, to

coarse-grained approaches. Yet, even the most detailed

and accurate models are still approximations of the actual

interatomic interactions and therefore they will not be

able to fully predict all the properties of the systems

under study. This aspect is particularly relevant for highly

dynamical systems that populate multiple states, because

even minor inaccuracies in the force fields may result in

relatively large errors in the predicted properties [21–23].

Conformational sampling

Limited computational resources only allow the simula-

tion of finite timescales (for example microseconds),

which are often shorter than the time of the actual

biological processes of interest. This problem is especially

present when a very detailed representation of the system

is used, because high accuracy comes at a high computa-

tional cost. As a result, it is common procedure to com-

promise between accuracy and efficiency, depending on

the size of the system and the desired timescale. Time

scale issues are further alleviated via the use of enhanced

sampling methods which accelerate the exploration of the

conformational space [24]. However, even with these

advanced techniques, the accuracy of a generated struc-

tural ensemble is still bound by the limits of the theoreti-

cal model used.

Combinations of experimental and computational

methods may lead to the determination of accurate

structural ensembles

Since neither experimental nor computational approaches

can by themselves generate accurate structural ensembles

capable of predicting multiple biologically relevant prop-

erties, a promising strategy to achieve this goal is to

combine all sources of information available (Figure 1).

Over the last decade, significant effort have been put forth

towards the development of methods that combine ex-

perimental and theoretical information for structure de-

termination [25]. While these approaches have also been

directed towards structural ensemble determination, the

challenges of how to take into account the averaging over

conformationally heterogeneous states and the errors in

the data have only recently been addressed.
Current Opinion in Structural Biology 2017, 42:106–116
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Figure 1
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Determination of protein structural ensembles by combining experimental and theoretical methods. Experimental methods on

conformationally heterogeneous states of proteins, such as NMR spectroscopy, SAXS/WAXS and cryo-EM, typically provide ensemble-averaged,

sparse, and sometimes ambiguous data affected by random and systematic errors. Computational methods, such as molecular dynamics

simulations, are affected by the inaccuracies of the underlying force fields and by the limited timescales accessible to the simulations. The

combined use of experimental and computational techniques can lead to the accurate determination of structural ensembles of proteins by

overcoming at least in part the limitations of individual techniques.
Dealing with entropy: current methods for
structural ensemble determination
In this section we review some of the current methods for

structural ensemble determination. Although this field is

still in its infancy, a wide variety of techniques have

already been proposed. We do not aim to provide a

comprehensive summary of all the existing methods,

but rather to give a concise overview of the most popular

approaches (Table 1). For a more extensive treatment of

this subject, we refer the reader to other existing reviews

[26,27,28�,29��,30��].

Generally speaking, methods for structural ensemble

determination can be grouped into two categories

[30��], those following the maximum entropy principle

and those inspired by the ‘Occam’s razor’ rule, which can

also be called the maximum parsimony principle. Meth-

ods in the former class typically determine a large number

of conformations by perturbing an initial (a priori) struc-

tural ensemble in order to match the experimental data.

The perturbation is meant to generate a structural en-

semble that is closest to the a priori ensemble but that also

matches the experimental data. By contrast, methods
Current Opinion in Structural Biology 2017, 42:106–116 
based on the maximum parsimony principle are aimed

at determining the minimum number of structures that

can explain the experimental data. These methods re-

quire the definition of practical criteria to find the best

balance between the number of conformers of the en-

semble and the quality of the fit with experimental data.

Since finding this balance is usually referred to as the

problem of over-fitting in regularization algorithms, max-

imum parsimony methods are generally aimed at mini-

mising over-fitting.

Maximum entropy methods

Maximum entropy methods are typically based on the

introduction of additional energy terms to classical mo-

lecular dynamics force fields. These additional terms are

functions of the back-calculated experimental observa-

bles and their intensities are determined by Lagrange

multipliers whose values should be computed to enforce

the agreement between experiments and simulations

[31,32]. An alternative strategy to avoid these complicat-

ed calculations is the replica-averaged modelling [1,33–
35]. In this approach, a set of replicas of the system is

simulated in parallel and harmonic potentials are added to
www.sciencedirect.com
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Table 1

Partial list of available methods for structural ensemble determination. For each method, we report the name, the year of the original

paper, if it is inspired by the maximum entropy (ME) or maximum parsimony (MP) principles, if it is based on Bayesian statistics, if it deals

with errors in the data and with ensemble-averaged data, and if the data are used directly as restraints or in a posteriori reweighting

procedure.

ID Name Year ME MP Bayes Data errors Ensemble-averaged data Restraint Reweight Ref.

1 Maximum entropy restraints 2012 x x x [31]

2 Maximum entropy restraints 2013 x x x [32]

3 Replica-averaged metadynamics 2013 x x x [36]

4 Maximum entropy restraints for

distance histograms

2013 x x [39]

5 Ensemble-biased metadynamics 2015 x x [40]

6 Experiment directed metadynamics 2015 x x [41]

7 EROS 2011 x x x x [42]

8 COPER 2015 x x x x [43]

9 ENSEMBLE 2001 x x x [44]

10 EOM 2007 x x x [45]

11 ASTEROIDS 2009 x x x [46]

12 SES 2013 x x x x [47]

13 SAS 2007 x x x [48]

14 MaxOcc 2010 x x x [49]

15 MES 2009 x x x [50]

16 BSS-SAXS 2010 x x x [5]

17 Bayesian ensemble refinement 2015 x x x x x x [53]

18 BE-SAXS 2016 x x x x x [54]

19 EISD 2016 x x x x x [55]

20 BELT 2014 x x x x x [56]

21 Integrated Bayesian approach 2014 x x x x x [57]

22 Sethi et al. 2013 x x x x x [58]

23 Reference ratio method 2013 x x x x x [59]

24 BICePS 2014 x x x x x [60]

25 BioEM 2013 x x x x x [61]

26 BW 2010 x x x x x [62]

27 Multi-state Bayesian modelling 2014 x x x x x [63]

28 Metainference 2016 x x x x x [65]
the molecular dynamics force field to restrain the averages

of the experimental observables across the replicas close

to the experimental measurements. This approach has

been effectively used to provide structural ensembles for

a variety of systems, including disordered proteins mak-

ing use of enhanced sampling techniques [34–37]. The

equivalence between replica-averaged simulations and

the maximum entropy Lagrange-multipliers solution

was demonstrated recently [32,38]. Other more recent

maximum entropy methods are aimed at matching dis-

tributions of experimental data by introducing additional

restraints [39], sometimes in the form of metadynamics

bias potentials, as for the case of ‘ensemble-biased meta-

dynamics’ [40] and ‘experiment directed metadynamics’

[41].

All the maximum entropy methods described above

incorporate experimental data directly into molecular

simulations by means of restraints between experimental

and predicted data. Other maximum entropy approaches

act a posteriori by reweighting a structural ensemble

generated by molecular dynamics or other sampling

techniques in order to determine the weights of the

members of the ensemble that maximize the agreement

with experimental data. In this class, we also include
www.sciencedirect.com 
approaches that select a subset of components of the

original ensemble and assign them identical weights.

Among maximum entropy reweighting approaches we

mention in particular the ‘ensemble-refinement of SAXS’

(EROS) method [42], the ‘convex optimization for en-

semble reweighting’ method (COPER) [43], and the

‘ENSEMBLE’ method [44].

Maximum parsimony methods

Most current methods inspired by the maximum parsi-

mony principle are based on reweighing techniques.

These approaches include the ‘ensemble optimization

method’ (EOM) [45], the ‘selection tool for ensemble

representations of intrinsically disordered states’

(ASTEROIDS) [46], the ‘sparse ensemble selection’

(SES) method [47], the ‘sample and select’ (SAS) method

[48], the ‘maximum occurrence’ (MaxOcc) method [49],

the ‘minimal ensemble search’ (MES) method [50] and

the ‘basis-set supported SAXS reconstruction’ (BSS-

SAXS) method [51]. All these approaches differ in the

way in which the initial ensemble is generated, the

algorithm to select or reweight a subset of the initial

ensemble to optimize the fit with experimental data, and

the criterion to balance the number of members of the

ensemble with the quality of the fit.
Current Opinion in Structural Biology 2017, 42:106–116



110 Proteins: bridging theory and experiment
Some of the methods described above integrate an esti-

mate of the error in the data in the generation of the

structural ensemble, which is typically treated as a constant

parameter determined by the experiments. However, in

most situations this estimate only provides a lower bound

on the real data uncertainty because it does not fully

account for systematic errors and the presence of outlier

data points. Furthermore, the theoretical model to calcu-

late an experimental observable from a structural ensem-

ble, commonly referred to as predictor or forward model, is

often inaccurate. We suggest that in an effective method,

each source of information used in the modelling should be

weighted according to its reliability. Therefore, an accurate

estimate of the level of noise and uncertainty in the

measured and predicted data is a necessary condition to

properly mix different experimental data with theoretical

models and obtain accurate structural ensembles.

Taking errors into account: Bayesian
inference methods
In a seminal paper [52], Rieping and co-workers presented

a Bayesian inference method (‘inferential structure deter-

mination’, ISD) for single structure determination that

combines prior information on a system with experimental

data and accounts for errors in these data. ISD proceeds by

constructing a model of noise as a function of one or more

unknown uncertainty parameters, which quantify the

agreement between predictions and observations and

are inferred along with the structure of the system. Since

it can be argued that an ideal method for structural

ensemble determination should account for variable and

sometimes unknown errors, we regard the Bayesian meth-

od as a particularly appropriate framework to integrate

multiple experimental data.

Several Bayesian a posteriori reweighting approaches for

structural ensemble determination have been proposed in

recent years. Among those inspired by the maximum

entropy principle we mention the ‘Bayesian ensemble

refinement’ method [53��], the ‘Bayesian ensemble

SAXS’ (BE-SAXS) method [54], the ‘experimental infer-

ential structure determination’ (EISD) method [55], the

‘Bayesian energy landscape tilting’ (BELT) method [56],

the ‘integrated Bayesian approach’ [57], the method of

Sethi et al. [58], the ‘reference ratio’ method [59], and the

‘Bayesian inference of conformational populations’ (BI-

CePS) method [60]. Two Bayesian reweighting methods

obeying the maximum parsimony principle have also

been presented, the ‘Bayesian inference of EM’ method

(BioEM) [61] and the ‘Bayesian weighting’ (BW) method

[62].

Only a few existing Bayesian methods incorporate experi-

mental data directly as restraints to model structural

ensemble of proteins. One of the earliest proposals, the

‘multi-state Bayesian modelling’ approach, is based on the

maximum parsimony principle and was used to character-
Current Opinion in Structural Biology 2017, 42:106–116 
ize the multiple structural states of histidine kinase PhoQ

using cysteine-crosslinking data [63] and the mechanism

of substrate recognition of the molecular chaperone Hsp90

[64]. More recently, two methods inspired by the maxi-

mum entropy principle have been proposed, the ‘Bayesian

ensemble refinement’ method [53��] and the ‘metainfer-

ence’ method [65��]. In both approaches, a set of N replicas

of the system is simulated in parallel under the combined

effect of prior information and an energy term that relates

the experimental data to the average of the observable

over the replicas. The intensity of this restraint on the

structural ensemble is variable, depends on the unknown

level of noise in the data, and scales linearly with N in

presence of noise in the data. However, the specific form

of the data energy term is different in the two approaches.

In particular, in the metainference method the data energy

term explicitly scales more than linearly with N in absence

of data noise, as requested by the maximum entropy

principle. The metainference method is available in the

popular open-source PLUMED library [66�] and it has

been combined with metadynamics in its parallel bias

implementation [67] to accelerate sampling in complex

biological systems [68] (Figure 2).

Major questions about the determination of
structural ensembles of proteins
Are atomistic models of structural ensembles of

proteins always needed?

A common goal in structural biology is the generation of

protein structures at atomic resolution. Although this is a

desirable outcome, for complex proteins and their assem-

blies it might be a daunting task, especially in absence of a

large amount of experimental and theoretical informa-

tion. In these cases, an alternative but still relevant

objective is to make testable predictions to shed light

on the function of a given system. A valuable representa-

tion of the state of a protein is thus one that enables such

predictions. Several examples of structural models sug-

gest that interesting predictions could be made even at

low resolution or coarse-grained level [69–71]. Further-

more, a coarse-grained representation of the system, and

in general poor prior information, can be compensated by

the use of a large amount of experimental data, while

simultaneously facilitating the sampling of the conforma-

tional landscape [65��]. However, an atomistic represen-

tation of a system might be required to define the

predictor (i.e. a forward model) of a given experimental

observable. To this regard, one could choose to simplify

the physico-chemical interactions while maintaining an

atomistic resolution of the system [72] or alternatively to

use multiple-resolutions forward models [73,74].

Is the determination of a structural ensemble an ill-

defined problem?

To answer to this question, one has to distinguish two

points of view. From a perspective, the determination of

the members of the ensemble from experimental data
www.sciencedirect.com
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Figure 2
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Determination of protein structural ensembles using the ‘metadynamic metainference’ method. The metadynamic metainference approach

[68] combines the ‘metainference’ method [65��], which models heterogeneous systems by integrating noisy, ensemble-averaged experimental

data and prior knowledge, with the enhanced conformational sampling provided by the ‘metadynamics’ method in its ‘parallel bias’

implementation [67] to yield a posterior ensemble and the respective noise levels.
that are averaged on the entire ensemble (the so-called

inverse problem) is an ill-defined problem, in the sense

that it allows multiple solutions, as different structural

ensembles can fit the same averaged data. From a second

perspective,  however, the determination of a structural

ensemble can be seen as a well-defined problem, at least

in the case when the ensembles containing different

members are experimentally indistinguishable. This

happens when all the measurable quantities are pre-

dicted to be the same from the different structural

ensembles. As long as different structural ensembles

generate the same observable average quantities, and

thus result in similar predictions for the system proper-

ties, they should be considered equivalent. Similarly, two

different samples of the same distribution (such as two

independent molecular simulations) can be constituted

of different components, and yet give rise to identical

average quantities. Therefore, structural ensemble de-

termination can be seen as a well-defined problem

from the perspective of performing measurements, but

as an ill-defined problem from the point of view of
www.sciencedirect.com 
determining the conformations of the individual mem-

bers of the ensemble (Figure 3).

Should one use ‘maximum entropy’ or ‘maximum

parsimony’ methods?

We have classified the methods for structural ensemble

determination into two classes: those determining a large

ensemble of conformations following the maximum en-

tropy principle, and those determining a minimal set of

conformations that fit the data, in the spirit of the maxi-

mum parsimony principle. Our recommendation is that

maximum parsimony methods can be used to study

systems characterized by the presence of a small number

of relevant states or, in other words, systems with low

entropy. Maximum entropy methods are instead also

suitable in the case of high entropy systems, that is, in

presence of a relevant number of significantly populated

states (Figure 4). Our view is that for disordered proteins,

maximum entropy methods should be preferable despite

their often greater computational cost, since it is not

always easy to estimate a priori the amount of entropy
Current Opinion in Structural Biology 2017, 42:106–116
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Figure 3
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The determination of a structural ensemble can be defined as a

well-defined problem. The determination of a structural ensemble

from a given set of experimental data may be considered as an ill-

defined problem (i.e. a problem that yields multiple solutions) because

one can construct many ensembles that fit the data equally well.

However, when these ensembles are not directly distinguishable by

experimental measurements, the determination of a structural

ensemble can be, in fact, considered a well-defined problem. In this

case, the many ensembles that fit the data used to determine them

are effectively indistinguishable because they give rise to the same

predictions for independent measurable quantities that were not used

for their determination.

Figure 4
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Comparison of maximum entropy and maximum parsimony

methods. Maximum entropy methods are particularly suitable to study

protein states characterized by high degree of conformational

heterogeneity (i.e. with high entropy), while maximum parsimony

methods can be used for ordered protein states (i.e. with low entropy).
in a system. We also note that it is not yet clear whether

maximum parsimony methods can reliably identify the

regions of the conformational space of maximal probabil-

ity, whereas rigorous proofs are available for maximum

entropy methods [31,32,38]. In this respect, the role of the

prior information in maximum parsimony methods is

crucial, especially in reweighting approaches in which

the prior information is used to generate a pool of candi-

date structures from which a minimal ensemble is

extracted. It is important to observe that states at low

probability might also be relevant as far as predictions are
Current Opinion in Structural Biology 2017, 42:106–116 
concerned, because many experimental observables can

be expressed as non-linear functions of the system coor-

dinates. For example, FRET efficiency and NOE inten-

sity depend on an interatomic distance d as 1/

d6. Therefore, even low populated conformers with small

values of d can significantly affect the values of these

quantities. It is thus challenging to set an absolute

threshold in the populations of the individual conformers

and define a priori what is relevant and what should be

ignored in a minimal ensemble determined by maximum

parsimony methods.

Should one use reweighting methods or directly use

data as restraints?

Structural ensemble determination methods can either

directly integrate the experimental data into the genera-

tion of structural ensembles or act a posteriori on a pre-

calculated set of conformations to optimize their weights

to fit the input data. Reweighting schemes are inaccurate

whenever the prior distribution used to generate the

initial ensemble differs significantly from the final,

reweighted distribution, as the efficiency depends on

the overlap between the two distributions [75]. Reweight-

ing methods have the advantage that they can be used at

any moment in time when experimental data become

available to refine structural ensembles previously calcu-

lated, at convenient computational cost. Despite this

feature, to generate novel structural ensembles with

experimental data at hand, we believe that the methods

that directly use data as restraints should be preferred.

Community goals
Methods for structural ensemble determination are be-

coming increasingly popular and they will certainly

continue to be further developed. We believe that a

collective effort of the community is now needed to
www.sciencedirect.com
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establish objective criteria and standards for structural

ensemble comparison, validation, visualization, and dis-

semination, as well as determination. Here, we briefly

discuss what we see as the most pressing present goals.

Goal 1: To establish robust methods of structural

ensembles comparison

The availability of a wide variety of methods to generate

structural ensembles prompts the question of how to

compare structural ensembles obtained using different

techniques. While many algorithms to address this prob-

lem have been proposed, there is still no consensus on

what constitutes a satisfactory answer. Generally speak-

ing, there are three main comparison techniques, which

analyse structural ensembles based on their underlying

probability distributions: first, fast harmonic algorithms

for small-scale fluctuations (or harmonic ensemble simi-

larity), second, structural clustering based methods in

which the similarity is defined by the co-occurrence of

conformations in both ensembles and third, dimension-

ality reduction methods where similarity is defined by

projecting the ensembles into lower dimensional spaces.

For a summary of the basic algorithms underlying these

techniques and their respective advantages and limita-

tions, see [76,77]. While these methods may yield valu-

able insights into the conformational differences obtained

when generating structural ensembles with various inputs

(different force fields, water models, varying sources of

experimental data, among others) [77], we encourage the

community to establish robust comparisons based on the

prediction of measurable quantities from the structural

ensembles.

Goal 2: To establish robust methods of structural

ensemble validation

Although it is very challenging to know the accuracy and

precision of a structural ensemble, it is possible to define

objective criteria to assess its quality using a combination

of experimental validation and data removal or remodel-

ling techniques. Independent structural data not used in

the generation of the structural ensembles, such as chem-

ical shifts for backbone conformations, NOEs for inter-

atomic distances, scalar couplings for backbone and side

chain dihedral angles and RDCs for interatomic bond

orientations, can be used to validate the structural ensem-

bles. Furthermore, the robustness of a structural ensem-

ble can be quantified by assessing its dependency on

particular data points. Upon removing a fraction of the

input data, a large modulation in the resulting structural

ensemble is a typical sign of poor accuracy. The devel-

opment of standardized, rigorous methods of validation

will help increase the accuracy and reliability of the

structural ensemble determination methods. These

methods will also help clarify the effects of variations

in the experimental conditions on the structural ensem-

bles, which in the case of disordered proteins can be

highly significant, as well as provide confidence on the
www.sciencedirect.com 
functional insights that can be obtained from the struc-

tural ensembles themselves.

Goal 3: To establish effective visual representations of

structural ensembles

It is rather common to represent structural ensembles by

overlaying multiple conformations in a single image.

While visually appealing, such representations are usually

inadequate to show the weights associated with individ-

ual conformations, and thus are limited in their informa-

tion content. Alternative methods are those that represent

free energy landscapes corresponding to the structural

ensembles, which can be generated using dimensionality

reduction algorithms. While a detailed discussion about

these methods is beyond the scope of this review, we

highlight low-dimensionality reduction algorithms such

as sketch-map [78], isomap [79,80], and other nonlinear

manifold learning algorithms, which offer effective repre-

sentations of complex free energy landscapes [81,82].

Establishing a standard practice for structural ensemble

representation will undoubtedly facilitate unbiased com-

parisons between such ensembles.

Goal 4: To effectively distribute structural ensembles to

the community

Analogous to the Protein Data Bank (PDB), which is the

reference repository for protein structures, the ‘Ensemble

Protein Database’ (http://www.epdb.pitt.edu/) and the

‘Protein Ensemble Database’ [6��] (http://pedb.vib.be)

have been proposed to host structural ensembles of

folded and disordered proteins, respectively. Unfortu-

nately, it has yet to become the norm to upload structural

ensembles to these databases, but without these shared

data, progress in the field will be hindered. Furthermore,

in order to calculate statistical averages over such struc-

tural ensembles, and hence to enable predictions to be

made, the statistical weights of members of the ensem-

bles will have to be deposited as well.

Goal 5: To improve force fields used in molecular

simulations

One could envision iterative refinement procedures to

improve force fields, for example by modifying selected

energy terms of a force field in order to reproduce a

‘target’ structural ensemble determined from experimen-

tal data increasingly well. While progress has already been

made in this direction [83,84], a goal for the community is

to establish automatic procedures to map back structural

ensembles into corrections to the underlying force field

and ensure that such modifications are portable to several

different systems beyond those used in the refinement

process.

Goal 6: To understand the role of dynamical effects in

protein behaviour

In the definition of structural ensembles, we have

not included the transition rates between different
Current Opinion in Structural Biology 2017, 42:106–116

http://www.epdb.pitt.edu/
http://pedb.vib.be/


114 Proteins: bridging theory and experiment
conformations. We should thus point out that such a

definition is not suitable to describe phenomena that

depend on kinetics. To study such phenomena, it will

be necessary to develop additional methods for the de-

termination of transition rates [2].
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