
Equilibrium simulations of proteins using
molecular fragment replacement and NMR
chemical shifts
Wouter Boomsmaa,1,2, Pengfei Tianb,1, Jes Frellsenc, Jesper Ferkinghoff-Borgd, Thomas Hamelrycka,
Kresten Lindorff-Larsena, and Michele Vendruscoloe,2

aDepartment of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; bNiels Bohr Institute, University of Copenhagen, 2100
Copenhagen, Denmark; cDepartment of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom; dBiotech Research and
Innovation Center, University of Copenhagen, Technical University of Denmark Campus, 2800 Kongens Lyngby, Denmark; and eDepartment of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

Edited by José N. Onuchic, Rice University, Houston, TX, and approved August 7, 2014 (received for review March 18, 2014)

Methods of protein structure determination based onNMR chemical
shifts are becoming increasingly common. The most widely used
approaches adopt the molecular fragment replacement strat-
egy, in which structural fragments are repeatedly reassembled
into different complete conformations in molecular simulations.
Although these approaches are effective in generating individual
structures consistent with the chemical shift data, they do not enable
the sampling of the conformational space of proteins with correct
statistical weights. Here, we present a method of molecular fragment
replacement thatmakes it possible toperformequilibrium simulations
of proteins, and hence to determine their free energy landscapes. This
strategy is based on the encoding of the chemical shift information in
a probabilistic model in Markov chain Monte Carlo simulations. First,
we demonstrate that with this approach it is possible to fold proteins
to their native states starting from extended structures. Second, we
show that the method satisfies the detailed balance condition and
hence it can be used to carry out an equilibrium sampling from the
Boltzmann distribution corresponding to the force field used in the
simulations. Third, by comparing the results of simulations carried out
with and without chemical shift restraints we describe quantitatively
the effects that these restraints have on the free energy landscapes of
proteins. Taken together, these results demonstrate that the molec-
ular fragment replacement strategy can be used in combination
with chemical shift information to characterize not only the native
structures of proteins but also their conformational fluctuations.

Despite significant advances in the development of accurate
force fields for protein simulations (1), it frequently remains

a challenge to obtain the level of agreement between simulation
and experiment necessary to draw biologically relevant con-
clusions. As a consequence, it is becoming increasingly common
to use experimental data as restraints in molecular simulations to
modify the force fields in a system-dependent manner to obtain
descriptions consistent with the experimental data themselves.
These developments have generated an interest in developing
new methods to make optimal use of the available experimental
data. From the initial emphasis on the determination of the
native structures of proteins, the focus is increasingly shifting
toward generating conformational ensembles representing their
conformational fluctuations (2–4). In this context, problems with
overfitting are systematically addressed (5), and in general efforts
are made to implement the structural restraints as conservatively
as possible, for instance by using the maximum entropy principle
(6–9). The field is also seeing increasingly sophisticated modeling
approaches, often based on Bayesian statistics, for dealing rig-
orously with the problem of updating prior information (e.g., the
force field) in the light of observed data (10–12).
Although there are substantial differences between these

methods, they share the same basic approach of applying a per-
turbation to the force field. There is an alternative approach,
however, which is applicable in cases where the experimental

data provide information primarily about local structural prop-
erties of a molecule. In such cases, without modifying the force
field, the data can be integrated directly in the sampling pro-
cedure, which can dramatically increase the efficiency of the
simulations. For instance, local structural information can be
integrated into the simulations through the use of molecular
fragments, which serve as building blocks during the conforma-
tional sampling (13–16). The molecular fragments are selected
according to the degree to which they match the experimental
data, and during the simulations these fragments are continu-
ously reassembled to form new candidate structures. Simulated
molecular structures are thus ensured to retain local structural
properties consistent with the experimental data, which reduces
the size of the conformational search space substantially.
NMR chemical shifts (CS) are an example of such data. These

parameters are those most readily and accurately measurable in
NMR spectroscopy, and are highly sensitive to the local structure of
proteins. This information has been used to characterize protein
secondary structures (17, 18) and to determine the allowed ranges
of dihedral angles (19).More recently it has been demonstrated that
by encoding the chemical shift information into molecular frag-
ments it is possible to accurately determine the structures of small-
to medium-sized globular proteins (14–16, 20–23).
The fragment replacement approach has thus proven to be an

extremely powerful method for rapid exploration of conforma-
tional space. This success builds on twomain factors: (i) an efficient
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sampling of the conformational space, and (ii) a system-specific
perturbation to the force field, which is implicitly introduced by
using fragment replacement to navigate the conformational space.
Given the complexity of their interplay, however, it has been dif-
ficult to assess which of these contributions plays the dominant
role. Because of the implicit nature of the bias, it also remains
challenging to ascertain whether simulations based on fragment
replacement reach the global free energy minimum in the con-
formational space of a protein. The bias is difficult to quantify, as
it depends on the specific library of fragments used and on the
statistical weights by which fragments are selected. It is therefore
generally not possible to satisfy the detailed balance condition,
which is a central requirement to ensure that simulations sample
the Boltzmann distribution of a force field. A further problem is
that the discrete fragment libraries may not necessarily cover the
entire relevant space of protein conformations. Although frag-
ment replacement methods are thus efficient in finding a struc-
ture compatible with the available data, it is not straightforward to
demonstrate that such a structure actually represents the native
state, even if, for practical purposes, it does so in most cases (22).
Likewise, it is difficult to use fragment-based approaches to
generate alternative conformers that represent the less densely
populated regions of the native free energy landscape.
For chemical shifts, efforts have been made to avoid these

problems by integrating the data into the simulations in the tra-
ditional way, using an explicit perturbation of the force field to

penalize any deviations between calculated and experimental
chemical shifts. Approaches of this kind have been successful in
providing information about the properties of native ensembles
and alternative conformers (24, 25). Because of their computa-
tional requirements, however, these methods have not been used
so far to find the native states of proteins starting from fully un-
folded states, suggesting that the performance gains obtained
through fragment replacement are necessary to obtain convergence.
In this paper, we present the CS-TORUS method, a probabi-

listic model that uses chemical shift information for the efficient
sampling of the conformational space of proteins. CS-TORUS
quantifies the information encoded in the available chemical
shifts, and makes it possible to use this information either as a
specific modification to the force field, or strictly as a guide for
more efficient sampling, while maintaining the original Boltz-
mann distribution. This method thus combines the strength of
the two approaches described above: Similar to traditional frag-
ment replacement, CS-TORUS generates candidate structures
consistent with the available chemical shifts, but because these
correspond to samples from a well-defined probability distribu-
tion, the introduced bias is quantified, allowing the original sta-
tistical weights to be restored.
We first demonstrate that CS-TORUS results are consistent

with those of other methods when used in a corresponding set-
ting. We show with two examples that CS-TORUS, when com-
bined with a simple force field, allows proteins to be folded from
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Fig. 1. Schematic illustration of the CS-TORUS model. Circular nodes represent stochastic variables; the type of distribution is specified in square boxes. The
graph structure encodes the conditional independence relations among the variables. The model is a variant of a hidden Markov model: a Markov chain of
hidden nodes (H) captures the sequential dependencies along the peptide chain, and each hidden node corresponds to a particular emission distribution over
backbone (ϕ, ψ) dihedral angle pairs (D), amino acid types (A), secondary structure labels (S), labels for the cis/trans conformation of the peptide bond (T), and
six chemical shift observables (C): H, HA, N, C, CB, CA. We highlight a single hidden node (red) as an example of how the choice of hidden node dictates which
mixture component is used. See SI Appendix, Fig. S3 for details.
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their unfolded state to their native structures. We then proceed
by illustrating the advantages that a probabilistic model provides.
First, we quantify the extent to which the experimental restraints
modify the free energy landscape of proteins in a setting where
chemical shifts are used to bias molecular simulations. Second,
we provide an example where chemical shift data are used solely
to enhance sampling from an unbiased Boltzmann distribution.

Results and Discussion
Definition and Parameterization of the CS-TORUS Model. The prob-
abilistic model used in this study is a dynamic Bayesian network
(26), which simultaneously captures dihedral angle, amino acid,
secondary structure, and chemical shift information. The sequen-
tial dependencies along a protein chain are modeled using a matrix
of transition probabilities between so-called hidden states. At any
given time in a simulation, each residue is associated with a hidden
value (H), which is dependent on neighboring hidden values
through this transition probability matrix. Each hidden node
value is associated with a particular conditional distribution over
all output nodes: dihedral angles (D), amino acid type (A), sec-
ondary structure (S), cis/trans state of the peptide bond (T), and
distributions over backbone chemical shift values (CCα, CCβ, CC,
CN, CHα, and CH). This design is an extension of an earlier model
of protein local structure (27). A graphical illustration of the
model (Fig. 1) shows explicitly the assumed independence rela-
tionships in the model, allowing us to readily write up the cor-
responding probability distribution
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where i is the index in the sequence and N refers to the total
number of residues in the chain. The sum runs over all possible
sequences of hidden nodes, a calculation that can be done effi-
ciently using dynamic programming (27). Although the model is
Markovian, it will capture longer range effects up to six residues
along the protein chain through allocated paths in the transition
matrix (27), and thus contains similar information as that encoded
in fragment libraries (SI Appendix).
The symmetry among the output nodes in this type of model

provides a convenient flexibility: dihedral angles can be sampled
conditionally on an input of amino acid and chemical shift in-
formation, but it is also possible to sample chemical shift values or
even amino acid types compatible to a given protein structure.
Any input that is not available, such as unassigned chemical shifts,
can be integrated out by simply omitting the value during the
calculation. Indeed, this is the reason that the chemical shifts are
modeled as conditionally independent Gaussians, rather than a
single multivariate distribution: the current design facilitates use
of the model when only some of the chemical shifts have been
observed (see SI Appendix, Fig. S2 for the impact of the different
CS nuclei). Likewise, the model automatically handles stretches
of amino acids with unobserved chemical shifts, simply reverting
to the general Ramachandran-like statistics applicable for the
given amino acid type. As described inMaterials and Methods, the
parameters of CS-TORUS were estimated using a set of 1,349
protein structures with known experimental chemical shifts.

Monte Carlo Simulations with the CS-TORUS Model. The CS-TORUS
model generates dihedral angles compatible with the preferences
inherent both to the amino acid sequence and with experimentally
determined chemical shifts. For individual positions, this is done

directly by drawing samples from di ∼ P(DijHi−1, Hi+1, Ai, CCα,i . . .
CH,i), but it is also possible to sample entire subsequences from the
model using the forward–backtrack algorithm (27). Random
stretches of dihedral angles can thereby be repeatedly replaced to
construct new candidate structures, thus mimicking the traditional
fragment replacement strategy, but avoiding the boundary issues
associated with the discrete fragments.
The probabilistic nature of the CS-TORUS model makes it

particularly suitable forMarkov chainMonte Carlo simulations. In
this approach, the simulation proceeds by accepting or rejecting
a move according to an acceptance criterion that ensures detailed
balance and thereby correct sampling from the equilibrium dis-
tribution of a system. In the CS-TORUS model, by manipulating
the detailed balance equation for a transition from a sequence of
dihedral anglesD to a new sequenceD′ (for simplicity omitting the
variables we condition on), a standard Metropolis–Hastings ac-
ceptance criterion can be written as

α
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where π is the target distribution for the Markov chain (e.g., the
Boltzmann distribution corresponding to the applied force field),
Pp is the CS-TORUS proposal probability, and α is the acceptance
probability.
Eq. 2 implies that to sample from the original Boltzmann dis-

tribution π, the proposal probability Pp corresponding to the
chemical shift bias should be taken into account each time a new
structure is evaluated. Conversely, the expression also explicitly
states the consequence of not compensating for this bias. In effect,
this scenario corresponds to sampling from a modified target
distribution
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�
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−βE

�
D
�
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�
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�
D
���

: [3]

This translation to energies demonstrates that an uncompensated
proposal in the simulation corresponds to adding an implicit
energy term to the force field. We will refer to this as biased
sampling. The traditional fragment replacement strategy for
protein structure determination can be seen as an example of this
approach—although in this case it is not possible to calculate the
value of the energetic bias that is introduced, because PpðDÞ can-
not explicitly be calculated.Also, depending on the scheme used, it
is not always trivial to demonstrate that traditional fragment re-
placement approaches correspond to a well-defined probability
distribution, because the assembly process may introduce angles
that are not part of the library itself.

Using Chemical Shifts to Bias the Sampling by Changing the Force Field.
Chemical shifts have in recent years been successfully integrated
into molecular simulations, modifying force fields to produce
protein structures that are consistent with the measurements.
Whether the modification is made explicitly to the force field (24,
25), or through selection of compatible fragments from the Pro-
tein Data Bank (PDB) (14, 15, 16, 20, 21), the result is an ef-
fective force field that is modified to increase the agreement with
the experimental data.
As an initial test of the model, we examined whether CS-TORUS

could be used in a similar way to determine protein structures
using chemical shift input. For all simulations in this paper we used
the PROFASI force field, which has been shown to enable the
reversible folding of peptides and small proteins (28). We selected
two proteins, Ubiquitin and GB3, that do not fold using the force
field alone, due to limitations in PROFASI. The task was there-
fore to investigate whether the perturbation of the force field
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through biased sampling with our model was sufficient to fold
these proteins.
We sampled conformations of ubiquitin and GB3 both directly

from PROFASI and from a biased simulation that also included
the experimental chemical shifts, and calculated the corresponding
free energy surfaces (Fig. 2). As expected, simulations with
PROFASI alone do not result in native-like structures. In contrast,
in the CS-TORUS simulations we obtain a clear free energy
minimum around the correct native structure of these two pro-
teins. It thus appears that CS-TORUS can be applied in traditional
structure determination settings, similar to existing methods.
Having established this equivalence, the remainder of the paper
will focus on the simulation features made possible by the unique
features of probabilistic models.

Using Chemical Shifts to Bias the Sampling. The results presented in
the previous section are similar in spirit to those obtainable using
fragment-assembly–based methods like CHESHIRE (14) and
CS-ROSETTA (16). However, the probabilistic nature of the
CS-TORUS method allows us to address several questions that
are not accessible by these established methods.
In general, one can use the chemical shift information to

modify: (i) the force field used in the simulations; and/or (ii) the
manner in which the conformational space is sampled. Existing
methods differ in these respects. For example, CHESHIRE and
CS-ROSETTA do both i and ii, while the replica-averaged mo-
lecular dynamics simulation method (29) does i. A recent
method based on the use of chemical shifts as collective varia-
bles in metadynamics simulations (30) also does i, but enables
the correct statistical weights to be obtained at the end of the
simulations. In contrast to previous methods, the CS-TORUS
naturally covers any combination of these scenarios, by allowing
us to obtain the same bias either through sampling or by eval-
uation of the likelihood of the model and adding it as part of the
energy function.

We illustrate this point by comparing the folding free energy
landscapes in the presence and absence of experimental restraints,
focusing on four protein and peptide systems that are known to
fold correctly in the unperturbed PROFASI force field: Trp-Cage,
theGB1-hairpin, Beta3s, and theC-terminal fragment of the Top7
protein (Top7-Cfr), each with different levels of chemical shift
coverage (SI Appendix, Table S1). This analysis allows us to
quantify the potential increase in computational efficiency com-
pared with a folding simulation with an unperturbed force field,
and to evaluate the effect that experimental restraints have on the
computational free energy surface.
The free energy landscapes obtained in the PROFASI force

field for all four proteins show multiple minima, which for three
of four proteins include both the native state, unfolded state, and
various near-native conformations (Fig. 3A). The inclusion of the
experimental restraints, either in the form of biased moves or
energies (Fig. 3 B and C, respectively), shows clearly that the
experimental data generally works by selecting the native basin
from the multiple basins in the unperturbed force field.
To examine the effect of the experimental restraints on the time

it takes to reach the native state we also calculated the “round trip”
times (the time it takes to transition reversibly from the unfolded
state to the folded state and back) for these simulations (Fig. 3 A–
C; see SI Appendix, Fig. S5 for the full trajectories). We obtained
a consistent and considerable speedup as a consequence of the
chemical shift bias implemented in CS-TORUS. For complex
systems with many competing minima, such as Top7-Cfr, the
speedup can be quite substantial (∼13×). Also, as expected, the
bias induced by sampling (Fig. 3B) is the same as that obtained by
enforcing it through a perturbation of the force field (Fig. 3C), but
the former is clearly seen to be more efficient.

Bias through Sampling or Force Field Perturbation. Recent work has
demonstrated that experimental data can be integrated into
simulation in a minimally biased way by using the maximum
entropy principle (6–9). The fragment-based approaches and the
CS-TORUS simulations described above generally violate this
principle and introduce such a strong bias that it potentially
disrupts key features of the original force field. It is therefore
interesting to investigate whether it is possible to use the bias
from chemical shifts in a less intrusive manner, and still maintain
the improvements in sampling efficiency described above.
The dual nature of our model allows us to evaluate the bias

we introduce in a simulation and to compensate for this effect to
recover the Boltzmann distribution of the force field in the
absence of the experimental restraints. The simplest way to
achieve this result follows directly from Eq. 3: in each iteration,
we add a negative energy contribution corresponding to the bias
induced through sampling (SI Appendix). This technique allows
us to conduct simulations where the chemical shift signal is used
mainly to reduce the conformational space in the unfolded state,
and we maintain the ability to obtain unbiased statistics (in this
case of the PROFASI force field) at a specified temperature
of interest.
We therefore repeated the simulations of the four proteins in

the previous section with this setup (Fig. 3D). The first three
systems clearly demonstrate the expected behavior: the free en-
ergy profiles obtained with the compensated bias approach are
very similar to those obtained using unbiased Monte Carlo
sampling with the PROFASI force field (Fig. 3A); because these
two different kinds of simulations sample from the same distri-
bution, any minor differences can be ascribed to lack of full
convergence. Although the same distributions are reproduced,
we find substantially reduced round-trip times, demonstrating
how CS-TORUS makes it possible to use the experimental data
to enhance simulation efficiencies without perturbing the free
energy landscape.

Fig. 2. Examples of the effect of the CS-TORUS chemical shift bias on two
systems that do not fold with the PROFASI force field alone. (Right) Un-
biased simulation using only the PROFASI force field. (Left) Biased simu-
lation using the CS-TORUS pivot move, highlighting the minimum energy
(PROFASI+CS-TORUS) structure obtained. Both types of simulations were
conducted using a multicanonical (flat histogram) ensemble, which was
then reweighted to the desired temperature (300 K for GB3; 315 K for
Ubiquitin).
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For Top7-Cfr, the free energy landscape differs notably from
the unbiased case. The primary difference is missing peaks at
high RMSD. A closer inspection (SI Appendix, Fig. S6) reveals
that these peaks correspond to structures where the helix has
been replaced by beta structure. This is likely an artifact of the
force field, and because this type of structure is at odds with the
available chemical shifts, structures in this part of phase space
will never be proposed by the model. This example thus illus-
trates the origin of the speedup obtained using biased sampling:
greater emphasis is placed on important parts of the conforma-
tional space, and unrealistic conformations are excluded from
the sampling. Note, however, that the low-RMSD peaks, for
which the model and force field are not in conflict, are correctly
recovered. The free energy landscape of Top7-Cfr is known to
be extremely challenging to estimate (28), and minor differences
in the low-RMSD region are not surprising, but an analysis of
the progression of convergence of this system strongly suggests
that completely identical peaks would eventually be obtained
(SI Appendix, Fig. S6B).
In practice, the compensated bias approach can thus serve as

an efficient means to explore those regions of the free energy
landscape of a force field that are compatible with the provided

chemical shift signal. The method will faithfully reproduce any
competing minima for which the local structures are reasonable,
while excluding force field artifacts that are inconsistent with the
chemical shifts.
Overall, these results demonstrate the flexibility of a model

like CS-TORUS in a Monte Carlo framework. The two central
columns in Fig. 3 correspond to the two approaches that have
previously been used to incorporate chemical shift data into
molecular simulations: a biased sampling technique (fragment
replacement) and an energy perturbation approach. With the
probabilistic method developed here, these approaches emerge
as merely two different applications of the same model, with
identical outcomes. Our results thus allow us to quantify how
fragment-based chemical shift biases affect the folding free energy
landscape. The dual nature of the model, allowing for both sam-
pling and evaluation, also provides the possibility for other appli-
cations. We give one such example (Fig. 3D) by demonstrating that
the bias introduced through sampling can be compensated for so
that the chemical shift signal is used only to improve sampling ef-
ficiency, without affecting the produced ensemble.
It has recently been suggested (30) that using chemical shift

data as collective variables in a metadynamics simulations might
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Fig. 3. Comparison of the free energy landscapes of four proteins using different Monte Carlo sampling strategies made possible by CS-TORUS. Each plot shows
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provide substantial gains in the exploration efficiency of free en-
ergy landscapes. The biased sampling approach presented here
(Fig. 3D) offers a new perspective on this approach, where the bias
is introduced directly through sampling. Metadynamics is often
conducted using molecular dynamics frameworks, where the move
set is given. The results above suggest that there might be benefits
to looking at aMonte Carlo based metadynamics approach, where
the bias is included directly through the move set.

Conclusions
The molecular fragment replacement approach is highly effec-
tive in incorporating local structural information into molecular
simulations of complex biomolecular systems. This method
plays a central role in the success of protein structure prediction
methods (13) and in the recent developments in the ability to
perform protein structure determination using only NMR residual
dipolar couplings and chemical shifts (14, 15, 16, 20, 21).
In this work we have presented a probabilisticmodel, CS-TORUS,

to extend the molecular fragment-replacement approach from the
energy minimization needed for structure determination to the
equilibrium sampling required for the determination of the free
energy landscapes of proteins. At variance with existing molecular
fragment replacement approaches, the probabilistic nature of
CS-TORUS makes it possible to quantify the bias introduced
through the fragment assembly process—and to compensate for
it if so desired. This feature makes the method well-suited for
general Markov chain Monte Carlo simulations, and, as we have
illustrated in this work with several examples, introduces the pos-
sibility for novel simulation approaches. The flexibility provided by
this probabilistic approach thus expands the scope of molecular
fragment replacement, and provides new opportunities for the ef-
ficient characterization of the structure and dynamics of proteins.

Materials and Methods
Model Training. The model parameters were estimated using the RefDB
dataset (April 2011), containing PDB structures with rereferenced chemical
shifts (32). Proteins from this set were excluded if they belonged to the same
superfamily as any of the proteins used for our simulations (SI Appendix).
This left 1,349 PDB structures (SI Appendix, Fig. S4), for which ϕ, ψ angles,
amino acid labels, secondary structure, peptide bond cis/trans information,
and CA, CB, C, N, HA, and H chemical shift information was extracted. The
model was trained using the stochastic EM algorithm in the Mocapy++
software package (33). The hidden node size was estimated by training
models with varying number of hidden node components, and using the
Bayesian information criterion for model selection (SI Appendix, Fig. S1). See
SI Appendix for details.

Simulations. A standard set of Monte Carlo moves was used for the simu-
lations (34). Sidechain χ angles were sampled uniformly, while backbone
dihedrals were sampled using biased Gaussian steps (31) and either standard
or CS-TORUS pivot moves, altering a single (ϕ, ψ) pair. When using the latter,
the CS-TORUS bias was included in the acceptance criterion of the biased
Gaussian step, to ensure that both moves sample from the same distribution
(SI Appendix). Simulations were conducted using the PHAISTOS software
package (35), except for the unbiased simulation of Top7-Cfr, for which we
used the PROFASI software package (34) (with identical settings). All simu-
lations were conducted using generalized ensembles in the MUNINN soft-
ware library (36). See SI Appendix for details.

Availability. The CS-TORUS model is implemented as part of the PHAISTOS
simulation framework, which is freely available at http://sourceforge.net/
projects/phaistos/.
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Model estimation and analysis
Training set selection RefDB [1] is a database of X-ray and
NMR structures with associated chemical shifts that have
been re-referenced to be internally consistent, and thereby
constitutes an ideal training set for the model in this paper.
The version used in this paper was downloaded in April 2011.
This dataset was filtered to exclude any proteins which were
in the same SCOP superfamily [2] or had the same CATH
architecture [3] as proteins used for testing in this paper (see
Fig. S4 for the complete list). For each of the remaining set
of 1349 structures, sequences of amino acid labels, dihedral
angle pairs and chemical shift values were extracted, and the
DSSP program [4] was used to assign the secondary structure.

The Ubiquitin simulations were added later, and conse-
quently, Ubiquitin had not been excluded from the original
training set. A separate model was therefore prepared for
this purpose, using the same criteria as above to exclude any
Ubiquitin-related proteins from the dataset (See Fig. S4).

The effect of redundancy in the dataset was probed by
experimenting with weighting the individual sequences based
on the size of the corresponding protein family, but no ap-
parent effect on model quality was observed, and we therefore
used equal weights for all RefDB entries for the final model
presented in this paper.

Training procedure The number of parameters of the model,
np, is a sum of the contributions from the transition matrix
(60− 1), the torus node (5: κ1, κ2, κ3, µ1, µ2), the cis/trans
node (1), the secondary structure node (2), the amino acid
node (19), and 6 chemical shift nodes (2: µ, σ), multiplied by
the number of hidden node states:

np = 60(59 + 5 + 1 + 2 + 19 + 12) = 5880 [1]

The 1349 proteins give rise to 138283 observations of each
of the emission nodes, and there is thus more than enough
data to reliably estimate the parameters in the model, which
is evident from the similar likelihood scores obtained in re-
peated estimations of the same model (Fig. S1). We used the
stochastic EM (SEM) algorithm [5] to estimate the parame-
ters. In each iteration, the procedure consisted of two steps:
1) for each protein in the training set, all hidden nodes were
resampled using the forward-backtrack algorithm [6, 7], which
assigned the input data for each residue in the training set to
a specific hidden node component; 2) the parameters were
updated using maximum likelihood as if the model was fully
observed. The SEM algorithm has been shown previously to
work well for estimating models of this type [6, 5, 8].

The number of hidden node states was determined by
training models of different size, and using the Bayesian In-
formation Criterion [9] to select the appropriate model. Since
the training process is stochastic, each model was trained five
times, and the highest scoring model (with 60 states in our
case) was selected for use in this paper (Fig. S1).

Information encoded in the hidden nodes The hidden node
states do not have a direct physical interpretation. They are
merely a convenient mechanism for encoding the sequential
dependencies along the protein chain, using discrete states
rather than for instance the continuous (φ, ψ) angular values.
The hidden node states can be understood as a classification
of local structure similar to the classic secondary structure
classification, but using 60 states rather than the usual three.
Each state corresponds to a particular distribution in (φ, ψ)
angular space, and to a distribution of amino acids that de-
scribes the preferences of particular amino acids to adopt this
state. Likewise, they correspond to a particular chemical shift
signal that correlates with the associated (φ, ψ) distribution.
The transition matrix encodes the probability of moving from
one state to the other, and is thus similar in spirit to a Zimm-
Bragg helix coil transition model [10], but generalized to a
higher number of structural states. As an example, we high-
light three states in Fig. S3, representing three different sec-
ondary structure preferences, and corresponding differences in
amino acid and chemical shift distributions.

Analysis of correlation length in the model An eigen-analysis
of the hidden node transition matrix can provide an estimate
of the correlation length in the model, measured in terms
of residues along the chain. The highest eigenvalue will be
unity, corresponding to the stationary state of the model,
while lower values indicate the slowest decaying states in the
model [11]. For the model in this paper, the next-to high-
est eigenvalue is 0.84, which implies a correlation length of
τ = 1/(1 − 0.84) = 6.25. Fragment libraries will typically
contain fragments that are longer than this, which implies
that certain longer range local signals are not captured in the
current model. A natural topic for future research would be
to extend our model to capture these effects, for instance by
employing higher order Markov models or multiple layers of
hidden nodes.

Simulation setup
Choice of moves We chose Monte Carlo moves similar to a set
that has been used successfully in the past to fold peptides
and small proteins [12]. The set consists of a single side chain
move (uniform proposals of side chain χ angle updates), and
two backbone moves: a pivot-like move which alters a single
backbone dihedral pair, and a semi-local move which alters
a stretch of dihedral angles, but restrains the movement of
the endpoint of the stretch [13]. The pivot-move used either
unbiased proposals for the dihedral changes (unbiased sim-
ulations), or dihedral angles sampled from the CS-TORUS
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‡W.B and P.T contributed equally to this work.
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model. As described in the main text, the CS-TORUS sup-
ports efficient resampling of entire stretches of dihedral angles
using the forward-backtrack algorithm [6, 7]. The choice of al-
tering only a single dihedral angle pair at a time was made to
ensure a fair comparison between unbiased and biased simu-
lations. The acceptance rate of standard pivot moves drops
when altering many dihedral angle pairs at once, which would
penalize the unbiased simulations excessively.

Generalized Ensembles Simulations were conducted using
generalized ensembles in the MUNINN software library [14,
15]. Rather than sampling from the Boltzmann (canoni-
cal) distribution, generalized ensembles replace the exp(−βE)
term with a weight function w(E): PC(x) = Z−1

C w(E(x)). In
the multicanonical ensemble, the goal is a uniform distribution
over energies, which is obtained by setting the weight function
to the inverse of the density of states, g(E). After conducting
a simulation in this ensemble, it is possible to reconstruct av-
erage properties according to the Boltzmann distribution at
a given temperature using a reweighting technique. The mul-
ticanonical method can thus be viewed as a method which
simultaneously collects statistics at different Boltzmann dis-
tributions corresponding to a range of temperatures. For our
purpose, it is convenient to rewrite the Boltzmann factor in
units of 1/kT0: PMC(x) ∝ exp(−γ 1

kT0
E(x)), where T0 is the

temperature at which we wish to extract statistics, and we
specify our temperature range in terms of the scaling factor γ.
In a biased simulation, we have a factor PDBN arising from the
proposal distribution, PMC(x) ∝ exp(−γ 1

kT0
E(x))PDBN (x).

This factor can be viewed as an implicit energy, but it should
be noted that it does not scale with temperature. However,
we can set up the simulation such that the bias will can-
cel out at T0 by constructing the modified energy Ẽ(x) =
E(x) − ln(PDBN (x)). At γ = 0, only the proposal distribu-
tion is active, corresponding to a simulation where the only
energy is the chemical shift signal. At γ = 1, the proposal
bias fully cancels the corresponding negative bias term in the
explicit energy function, corresponding to an ensemble where
only the original force field is used. This procedure corre-
sponds to variant five in Table S2, which gives an overview of
different simulation strategies that are available when using
a probabilistic proposal distribution. For further details, we
refer to ref. [16] and [17].

Trajectory analysis The round-trip time is measured based on
the Q-factor reaction coordinate, which is related to the frac-
tion of native contacts formed, and has previously been re-
ported as a good reaction coordinate for protein dynamics
studies [18, 19, 20]. We use a similar definition of Q-factor as
was recently used for folding time calculations in molecular
dynamics simulations [21]. In order to find the ’native con-
tacts’, we first divide all the conformations into 5 or 10 clusters
using K-means clustering [22, 23], selecting the cluster with
the lowest mean RMSD as the folded state. From this clus-
ter, native contacts were defined as those which were closer
than 10 Å for more than 80% of the time, only considering
Cα atoms, and only atom-pairs separated by more than four
(for the shorter systems: GB1-hairpin, Trp-cage and Beta3s)
or seven (for the larger Top7-Cfr) residues along the sequence.
Using these contacts, the Q-factor was then defined as

Q =

Naa∑
i=1

ni∑
j=1

1

1 + e10(dij−(d0ij+1))

/
Naa∑
i=1

ni [2]

where Naa is the number of amino acid resiudes, ni is the num-
ber of contacts of residue i, dij is the Cα-Cα distance between

residue i and residue j, and d0ij is the distance between the
same contacts in the native state. According to the Q value,
the trajectory is partitioned into segments: folded( Q > 0.9),
unfolded ( Q < 0.1) and “transition path” segments. At any
given point in time along the trajectory, the system is labeled
as an up walker (+) or a down walker (−). The label ’+’ is left
unchanged upon visits to Q = 0.1 but changed to ’−’ when
it reaches Q = 0.9. Let τup and τdown represent the average
length of the up-walker and down-walker trajectory segment,
respectively. The round-trip time is counted as the time (MC
steps) the system takes to move from one boundary to the
other and back again, which can be found as τ = τup + τdown.
The round-trip time of all our simulations are shown in Fig. 3
and the time evolution of the Q-factor reaction coordinate is
illustrated in Fig. S5.

Performance The CS-TORUS represents no significant perfor-
mance bottleneck when used in simulation. As is normally the
case, the pairwise interactions from the force field dominate
the computational cost. The simulations in this study were
done using the PROFASI force field, which is extremely effi-
cient due to an efficient caching mechanism, and the choice
of rather short pair-wise cutoffs [24]. Even with this choice
of force-field, however, there was no significant impact when
using the CS-TORUS model compared to the unbiased case.
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Fig. S1. Bayesian Information Criterion (BIC) [25] scores for different values of the

hidden node size. For each size, five models were trained. The red circle represents

the model chosen for the simulations in this article. For the Ubiquitin simulations in

the article, a separate model was used (since these simulations were added later, and

Ubiquitin was not excluded from the training set for the original model). This model

was trained using the exact same procedure, on a data set excluding any Ubiquitin

related proteins (see main text for the selection criteria), resulting in a similar BIC

curve.

Table S1. The coverage of chemical shift data for each of the simulated proteins.

The numbers specify the fraction of residues for which a given chemical shift value

was available. N/A is used to highlight that a given type of chemical shift value were

not available for any of the residues.

protein length C CA CB HA H N

GB3 56 0.96 1.00 0.93 0.98 0.93 0.98
Ubiquitin 76 0.91 1.00 0.91 0.95 0.92 0.92
GB1-hairpin 16 1.00 1.00 0.94 N/A N/A 1.00
Trp-cage 20 N/A N/A N/A 0.75 0.85 N/A
Beta3s 20 N/A 1.00 N/A 0.95 1.00 N/A
Top7-Cfr 49 0.96 0.86 0.84 0.98 0.94 0.94

Fig. S2. Comparison of sampling accuracy of the model when using different

chemical shift atom types (CA, CB, C, H, HA, N), in addition to the amino acid

information (AA). The plot shows the average angular deviation (in radians) from the

crystal structure for all proteins in the training set for which chemical shifts for all six

atom types were recorded. For each protein, 10 samples were drawn from the model,

and the angular deviation was calculated as described in ref. [6].
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Fig. S3. Examples of emission probabilities for three hidden node states, representing three different secondary structure preferences: state 18 is helix prone, state 60

corresponds to beta structures while state 1 is mainly used for Prolines, and is one of the few states with a non-zero probability for adopting a cis state. Note that since Proline

has no H (HN) atom, the H distribution for node 1 is due to the other (sparsely populated) amino acids for this node. Similarly, the N signal for node 1 is extremely broad,

which is presumably due to the fact that Proline N atoms are often not assigned in NMR experiments since they do not have an associated hydrogen (and are therefore not

visible in HSQC-based experiments).
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Original training set: 108m, 109m, 1a43, 1a5j, 1a6j, 1a7g, 1a91, 1aab, 1ab1, 1aba, 1adw, 1ae3, 1aep, 1af8, 1agt, 1ahl, 1ail, 1ake,
1akh, 1akp, 1ans, 1aoo, 1apo, 1aq5, 1aq5, 1ass, 1atb, 1atx, 1auu, 1avs, 1axh, 1az6, 1b0c, 1b10, 1b1v, 1b2v, 1b3c, 1b56, 1b5a, 1b64, 1b72,
1b88, 1bbi, 1bbl, 1bci, 1bcx, 1bd9, 1bdo, 1bds, 1bed, 1bf4, 1bfc, 1bgf, 1bhi, 1bhu, 1bi7, 1bja, 1bk8, 1bku, 1bm4, 1bm9, 1bnz, 1bo0, 1bpv,
1bqv, 1bqz, 1bri, 1brj, 1bv8, 1bw5, 1bwo, 1bwx, 1bxl, 1byf, 1bzb, 1c3t, 1c49, 1c4z, 1c55, 1c5a, 1c6w, 1c76, 1c7f, 1c7w, 1c89, 1c8a, 1c8c,
1cb9, 1cbh, 1ccv, 1ce3, 1cex, 1cfe, 1cho, 1cix, 1cku, 1ckv, 1ckw, 1ckx, 1cm2, 1cmz, 1cnr, 1col, 1com, 1com, 1cpz, 1cqm, 1cr8, 1crb, 1csg,
1cw5, 1cw6, 1cx1, 1cxw, 1cy5, 1cz5, 1d03, 1d1d, 1d1o, 1d5g, 1d8k, 1d9s, 1dav, 1dbd, 1dcd, 1dcj, 1dd2, 1dd5, 1de3, 1df6, 1dfj, 1dfu, 1dhn,
1div, 1dk0, 1dk3, 1dkc, 1dl0, 1dp3, 1dpu, 1dqc, 1dqe, 1dsb, 1dtk, 1du9, 1dv0, 1dwy, 1dx7, 1dx8, 1dyt, 1e0e, 1e0m, 1e17, 1e3y, 1e8b, 1e9t,
1edn, 1egj, 1egx, 1eh1, 1ehx, 1eih, 1eij, 1eik, 1ejf, 1ejm, 1ejq, 1ejq, 1ek8, 1el0, 1emx, 1emz, 1enf, 1eoq, 1epg, 1et1, 1ev0, 1exk, 1exp, 1eyf,
1ez9, 1ezg, 1ezt, 1f0z, 1f2l, 1f2m, 1f53, 1f62, 1f81, 1f8h, 1f94, 1f95, 1fbr, 1fd3, 1fd9, 1fdq, 1fe4, 1fex, 1ffj, 1fho, 1fil, 1fj7, 1fjc, 1fkh, 1fmm,
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1uap, 1ub1, 1ubq, 1uc6, 1uck, 1ud7, 1udr, 1ue9, 1uem, 1ueo, 1uep, 1uew, 1uff, 1ufg, 1ufm, 1ufn, 1ufx, 1ug7, 1ugl, 1uhf, 1uhi, 1uht, 1uhu,
1ujo, 1ujs, 1ujt, 1uju, 1ujv, 1ujx, 1ukx, 1ul7, 1umq, 1uoh, 1utx, 1uuc, 1uug, 1uw0, 1uzc, 1v31, 1v32, 1v4r, 1v5k, 1v5m, 1v5n, 1v5p, 1v5q,
1v5r, 1v5s, 1v5u, 1v63, 1v66, 1v6p, 1v6r, 1v86, 1v88, 1v9v, 1v9w, 1va9, 1vae, 1vb0, 1vc1, 1vcx, 1vd0, 1vdi, 1vdq, 1vj6, 1vp6, 1vpc, 1vsa,
1vyf, 1vyn, 1w0t, 1w41, 1w6b, 1w6v, 1w80, 1wcj, 1wej, 1wey, 1wez, 1wf1, 1wf2, 1wf5, 1wf9, 1wfg, 1wfi, 1wfj, 1wfm, 1wfn, 1wfo, 1wfq,
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1wha, 1whn, 1whr, 1whu, 1wi0, 1wi8, 1wik, 1wil, 1win, 1wj1, 1wjd, 1wji, 1wjj, 1wjk, 1wjl, 1wjn, 1wjo, 1wjp, 1wjq, 1wjr, 1wjs, 1wjt, 1wju,
1wjz, 1wk0, 1wk1, 1wkt, 1wkx, 1wlm, 1wlx, 1wpi, 1wqk, 1wqq, 1wqu, 1wt7, 1wtq, 1wu0, 1wum, 1wvk, 1wwy, 1wxl, 1wxn, 1wyl, 1wyn,
1wyo, 1wyw, 1wzv, 1x05, 1x1f, 1x1g, 1x22, 1x32, 1x3q, 1x5b, 1x5i, 1x5k, 1x6b, 1x6d, 1x6e, 1x6f, 1x6h, 1x8r, 1x9a, 1x9b, 1xbl, 1xd3, 1xdg,
1xfl, 1xhj, 1xhs, 1xjh, 1xke, 1xlq, 1xm0, 1xmt, 1xn5, 1xn6, 1xn7, 1xn9, 1xna, 1xne, 1xo8, 1xoy, 1xpa, 1xpn, 1xq8, 1xrd, 1xrk, 1xs8, 1xsc,
1xsf, 1xsw, 1xu6, 1xwe, 1xwn, 1xyj, 1xyk, 1xyq, 1xyw, 1y0j, 1y0j, 1y15, 1y1b, 1y1c, 1y2g, 1y4o, 1y5k, 1y62, 1y7n, 1y93, 1ycq, 1ydu, 1yel,
1yez, 1yh5, 1yjt, 1ykg, 1yky, 1yla, 1ynr, 1yob, 1yp7, 1yqa, 1ysb, 1ysm, 1yu7, 1yua, 1yvc, 1yws, 1ywu, 1yww, 1yx3, 1yyb, 1yzc, 1z1m,
1z3r, 1z6h, 1z6s, 1z9i, 1zdn, 1zdv, 1zfs, 1zgu, 1zit, 1zk6, 1zkh, 1zli, 1zlq, 1znd, 1zq3, 1zr7, 1zr9, 1zrf, 1zts, 1zu1, 1zu2, 1zv6, 1zwv, 1zyn,
1zza, 1zzp, 2a00, 2a0a, 2a0b, 2a0n, 2a2p, 2a36, 2a37, 2a4h, 2a5d, 2a5e, 2a7y, 2adf, 2adr, 2adz, 2afg, 2afj, 2afp, 2aih, 2aje, 2akk, 2akl, 2al3,
2al4, 2alg, 2aoj, 2aq0, 2arw, 2asw, 2asy, 2av5, 2avg, 2axd, 2axl, 2ayj, 2ayx, 2b3a, 2b3i, 2b3w, 2b59, 2b5x, 2b6f, 2b7e, 2b86, 2b88, 2b89,
2b8x, 2b95, 2bay, 2bbg, 2bc5, 2bem, 2bf5, 2bid, 2bjx, 2bky, 2bky, 2bl5, 2bru, 2buo, 2bvo, 2bvu, 2bye, 2bz2, 2bzb, 2c0s, 2c6y, 2ca5, 2cbs,
2cdn, 2cg7, 2ch4, 2cjr, 2cly, 2cnj, 2cnp, 2cnr, 2co8, 2coa, 2coc, 2cod, 2cof, 2com, 2cpb, 2cu7, 2cue, 2cuf, 2cum, 2cwi, 2d07, 2d3g, 2d7m,
2d7n, 2d7o, 2d7p, 2d7q, 2d82, 2d9t, 2d9y, 2d9z, 2dbj, 2dc2, 2dez, 2dgc, 2dhj, 2di8, 2di9, 2dia, 2dib, 2dic, 2diz, 2dj4, 2djs, 2dk9, 2dkq,
2dlg, 2dmb, 2dmc, 2dml, 2dmq, 2dn6, 2dn7, 2do8, 2dtq, 2e29, 2e45, 2e6i, 2eb8, 2ecc, 2ech, 2end, 2ers, 2esp, 2etl, 2ewl, 2exd, 2exf, 2exn,
2ezh, 2f05, 2f09, 2f1e, 2f30, 2f3y, 2f3z, 2f5m, 2f91, 2fa4, 2fb7, 2fe0, 2ffk, 2fft, 2fi2, 2fj3, 2fj6, 2fjy, 2fk4, 2fke, 2fki, 2fm4, 2fnb, 2fnf, 2frw,
2fs1, 2fvn, 2fvt, 2fxp, 2fy9, 2fz5, 2g0l, 2g0u, 2g1d, 2g7j, 2g9j, 2g9j, 2g9o, 2ga5, 2gab, 2gbs, 2ge9, 2git, 2gjf, 2gl1, 2gm2, 2gmg, 2goo, 2gov,
2gqb, 2gs0, 2gtg, 2gvs, 2gw6, 2gyk, 2gyt, 2gzo, 2gzz, 2h0p, 2h2r, 2h3j, 2h3k, 2h5m, 2h7a, 2h80, 2hcc, 2hdm, 2heq, 2hg7, 2hga, 2hgc, 2hgk,
2hgu, 2hh8, 2hi3, 2hi6, 2hj8, 2hjj, 2hjq, 2hoa, 2hpu, 2hsh, 2hst, 2hsx, 2htj, 2hym, 2hym, 2i32, 2i3b, 2i9a, 2i9y, 2ida, 2ido, 2idy, 2if1, 2ife,
2iim, 2iln, 2ilx, 2in2, 2io2, 2ion, 2irf, 2itl, 2j03, 2j4t, 2jm4, 2jmp, 2jmu, 2jn0, 2jn4, 2jn6, 2jn7, 2jn9, 2jna, 2jne, 2jng, 2jnu, 2jny, 2jo6, 2joe,
2jol, 2joq, 2jov, 2joy, 2joz, 2jq5, 2jqo, 2jr5, 2jra, 2jrj, 2jrm, 2jrp, 2jrr, 2jrz, 2js4, 2ktx, 2mb5, 2mfn, 2mob, 2nmo, 2noc, 2npr, 2nwg, 2nwm,
2nwt, 2nxn, 2o3b, 2oa4, 2oi3, 2orc, 2out, 2ovo, 2ow9, 2pea, 2pjf, 2pjg, 2pji, 2pkt, 2plh, 2pp4, 2pph, 2pst, 2q00, 2rn2, 2sgd, 2sni, 2uub,
2uyz, 2uzg, 2vpf, 2xbd, 2z2i, 3eza, 3icb, 3lri, 3ncm, 3pdz, 3pyp, 3ssi, 3wrp, 451c, 4ake, 4hir, 4icb, 5cro, 5hpg, 5pnt, 7hsc, 7rxn, 8abp, 8tfv,
9pcy

Ubiquitin training set: excluded compared to above 1c3t, 1gnu, 1kjt, 1l7y, 1mg8, 1s3s, 1se9, 1t0y, 1ubq, 1ud7, 1v86, 1wf9,
1wfy, 1wgr, 1wgy, 1wh3, 1wjn, 1wju, 1wyw, 1xd3, 1zgu, 1zkh, 2al3, 2b3a, 2bye, 2d07, 2d3g, 2hj8, 2io2, 2pea, 2uyz

Ubiquitin training set: included compared to above 1b1h, 1clv, 1cwc, 1cyn, 1eio, 1f2r, 1f3v, 1f93, 1fcl, 1fd6, 1h4h, 1i8h, 1lq7,
1m15, 1mw4, 1q10, 1rb9, 1rx2, 1rx4, 1skm, 1u7e, 1uea, 1uwx, 1x27, 1xct, 1zxh, 2aiz, 2axi, 2brz, 2c7p, 2crd, 2fi4, 2fi5, 2g46, 2gfe, 2h61,

2h61, 2hze, 2pg1, 2pg1, 2pld, 2psp

Fig. S4. PDB IDs of proteins used as the training set of the model. The Ref-DB [1] chemical shift annotated files are available for download from

http://refdb.wishartlab.com/.
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Fig. S5. Run time trajectories from a representative thread from each simulation. From the left to the right column: Unbiased simulation, Biased move simulation, Biased

energy simulation, Compensated bias simulation. From the top to the bottom row: GB1-hairpin, Trp-cage, Beta3s, Top7-Cfr.
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Fig. S6. Analysis of the unbiased and the compensated bias simulations for the Top7-Cfr system. a) The progression of convergence over time (number of iterations), b)

The structures corresponding to the different peaks in the free energy landscape (native structure in blue). The structures corresponding to the high RMSD peaks (in grey)

have beta structure instead of the helix, which is at odds with the chemical shift signal, and is therefore never sampled by CS-TORUS.
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Table S2. Five strategies for simulations using a generative probabilistic model. 1) Standard Metropolis-Hastings simulation with uniform proposal distribution. 2) Biased

simulation using biased moves. 3) Biased simulation using an explicit bias in the potential. 4) The standard correction when conducting Metropolis-Hastings simulations with a

non-uniform sampling bias. 5) Compensated bias simulations, using generalized ensembles a range of γ values are explored; at γ = 1, this corresponds to method 4). Variants

1, 2, 3, and 5 were explored in this paper (see Fig. 3(a), 3(b), 3(c), and 3(d), respectively).

Proposal Evaluation in acceptance criterion Effective probability target

1 uniform exp(−βE(x)) exp(−βE(x))
2 PDBN (x) exp(−βE(x)) exp(−βE(x))PDBN (x)
3 uniform exp(−βE(x) + ln(PDBN (x))) exp(−βE(x))PDBN (x)
4 PDBN (x) exp(−βE(x)− ln(PDBN (x))) exp(−βE(x))
5 PDBN (x) exp(γ(−βE(x)− ln(PDBN (x)))) γ = 0⇒ PDBN

γ = 1⇒ exp(−βE(x))
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