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ABSTRACT: A statistical mechanics description of complex
molecular systems involves the determination of ensembles of
conformations that represent their Boltzmann distributions.
The observable properties of these systems can be then
predicted by calculating averages over such ensembles. In
principle, given accurate energy functions and efficient
sampling methods, these ensembles can be generated by
molecular dynamics simulations. In practice, however, often
the energy functions are known only approximately and the
sampling can be carried out only in a limited manner. We
describe here a method that enables to increase simultaneously both the quality of the energy functions and of the extent of the
sampling in a system-dependent manner. The method is based on the incorporation of experimental data as replica-averaged
structural restraints in molecular dynamics simulations and exploits the metadynamics framework to enhance the sampling. The
application to the case of α-conotoxin SI, a 13-residue peptide that has been characterized extensively by experimental
measurements, shows that the approach that we describe enables accurate free energy landscapes to be generated. The analysis of
these landscapes indicates the presence of a low population state in equilibrium with the native state in which the only aromatic
residue of α-conotoxin SI is exposed to the solvent, which is a feature that may predispose the peptide to interact with its
partners.

■ INTRODUCTION

Molecular dynamics simulations represent a powerful approach
to explore the behavior of molecular systems.1−4 There are,
however, two main limitations in the use of this method to
predict the behavior of systems of biological interest: the
quality of the energy functions (force fields) and the extent of
the sampling of the conformational space, which is associated
with the achievable length of the simulations.1−4 These two
issues are not independent, as in order to assess the quality of a
given force field one needs to calculate statistical averages of
specific properties of a system and compare them with those
measured experimentally, for instance, by nuclear magnetic
resonance (NMR) spectroscopy, small-angle X-ray scattering
(SAXS), fluorescence resonance energy transfer (FRET), or
cryo-electron microscopy (cryo-EM) methods.5−7 Both an
accurate force field and an accurate sampling are therefore
needed to establish whether the computations are consistent
with the experiments.
In the case of proteins, in recent years, force fields have been

improved systematically, both by changing their functional form
and by choosing better values for the parameters.8−12 At the
same time, to address the problem of increasing the extent of
the sampling, major advances have been made to improve the
software and the hardware used to run the simulations4,13−15

and to develop efficient advanced sampling techniques.1,2,16 In
the latter case, a common feature is that by trading off some
information about the dynamics one can sample the relevant
conformations by enhancing the crossing of high-energy
barriers. Among the most commonly used advanced sampling

methods, we mention here those classified as collective variable
based techniques (e.g., umbrella sampling2,17) or as extended
ensemble techniques (e.g., replica-exchange2,18). It has also
been shown that the incorporation of experimental data as
structural restraints in molecular simulations enables the
structures and dynamics of proteins to be determined quite
accurately.19−25 Furthermore, it has also been shown that if the
restraints are averaged over several copies, or replicas, of a given
protein, this approach generates ensembles of conformations
compatible with the maximum entropy principle.26−28 These
findings demonstrate that the incorporation of experimental
data as replica-averaged structural restrains in molecular
dynamics simulations provides an accurate representation of
the unknown Boltzmann distribution of a system given an
approximate force field and a set of experimental data.26−28 In
practice, however, although the use of replica-averaged
structural restraints enables one to improve the quality of the
force field for the specific systems for which experimental data
are available, it also makes it very challenging to sample the
conformational space efficiently, because it increases the
number of degrees of freedom proportionally to the number
of replicas. In order to be generally applicable, therefore, this
approach should be implemented together with enhanced
sampling methods.
To address this problem, in this paper we introduce the

replica-averaged metadynamics (RAM) method. In this
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approach, experimental data are incorporated as replica-
averaged structural restraints in molecular dynamics simu-
lations, and the sampling is enhanced using the metadynamics
method, in this case with replica exchange26−28 in the well-
tempered ensemble (WTE) framework.29,30 This approach
improves at the same time, and in a system-dependent manner,
the quality of the force field by the direct addition of
experimental information and the extent of the sampling by
the use of metadynamics. In order to assess the quality of the
distribution of structures obtained by the RAM method, we
compare the results obtained with it with those obtained by
sampling the unmodified force field through the use of the
parallel-tempering metadynamics (PTMetaD) technique.31,32

In this sense, our goal here is not to compare the efficiency of
the sampling of the RAM and PTMetaD methods, but instead
to identify the differences in the free energy landscapes
associated with the incorporation of experimental information
to generate replica-averaged structural restraints in the
simulations. The PTMetaD and RAM methods are represented
schematically in Figure 1.

In order to illustrate the RAM method, we studied α-
conotoxin SI,33 a neurotoxic 13-residue peptide with two
disulfide bridges that strongly constraint the accessible
conformational space of this molecule (Figure 2a). The small
dimensions of this system, with a well-defined folded
conformation and wide range of experimental data available
(including a high-resolution X-ray structure, NMR chemical
shifts, 3JHNHA-couplings, and NOE-derived distances), make it
well suited for the purpose of the present work. Furthermore α-
conotoxins bind selectively in a way that is not yet fully
understood nicotinic acetylcholine receptors, which represent a
diverse family of homo- or heteropentameric ligand-gated ion
channels.34 A detailed characterization of the conformational
space populated by this peptide is thus expected to be helpful
for future studies of the mechanism of binding between α-
conotoxins and its associated receptors.

■ METHODS

The simulations described here were performed using the
Amber03W force field35,36 with the TIP4P05 water model.37 All
the simulations were run in GROMACS14 modified with
PLUMED38 and Almost.39 A time step of 2 fs was used
together with LINCS constraints.40 The van der Waals
interactions were implemented with a cutoff at 0.9 nm, and
long-range electrostatic effects were treated with the particle
mesh Ewald method.41 All simulations were carried out in the
canonical ensemble by keeping the volume fixed and by
thermosetting the system with the Nose−̀Hoover thermostat.42
The starting conformation was taken from an available X-ray
structure (PDB code 1HJE). This structure was protonated and
solvated with 1224 water molecules in a dodecahedron box of
43 nm3 of volume. The energy of the system was first
minimized and then the temperature was increased to 283 K in
two separate steps, in the first one a 50 ps simulation was
performed by keeping fixed the heavy atoms of the protein, and
successively a second 200 ps simulation was performed without
restraints. The density of the system was relaxed by a 200 ps
run using the Berendsen barostat.43

In the RAM simulations, the experimental data are used to
modify on the fly in a system-dependent manner the underlying
force field by employing a replica averaging procedure over
back-calculated experimental parameters, which are compared
with their experimentally measured values. In this way, in the
implementation of the RAM approach discussed here, the
ensemble of structures resulting from the simulations at the
lowest temperature represents the free energy of the force field
modified, in this case, by NMR chemical shifts. The equilibrium
values of the observables can be thus calculated directly on this
ensemble without the use of a reweighting procedure.26−28 In
the implementation of the RAM method described here, we
augmented the force field using a term based on the replica
averaging of the backbone NMR chemical shifts,44 where the
chemical shifts themselves are back-calculated at each time step
and averaged over four replicas of the system.45 The replica-
averaged chemical shifts are restrained to be close to their
experimental values using a quadratic potential.45 As a parallel
tempering approach applied to the RAM case would require
four times more replicas than in a standard parallel tempering,
to reduce the number of replicas we employed the WTE
technique, which is a metadynamics approach that uses the
energy as the only collective variable.29,30 The six temperatures
used were 283, 288, 318, 353, 394.2, and 443.1 K, so that also
in this case 24 replicas were needed. Furthermore, the
metadynamics bias was not used over the first four replicas,
in such a way that the resulting ensemble was biased only by
the chemical shifts. In this way an ensemble of structures that
incorporates the information provided by the experimental
chemical shifts in the sense of the maximum entropy
principle26−28 can be easily obtained and analyzed. Alter-
natively, the RAM method could be implemented by using the
metadynamics also on the first four replicas, adopting then a
reweighting procedure to obtain the correct statistical weights
of the conformations. The bias factor of the well-tempering was
set to 10, and the exchanges were tried every 250 steps. Each
replica was simulated for 60 ns, where the first 10 ns were
discarded, and the convergence was tested by comparing two
halves of the simulation (Figure 2b).
In the PTMetaD simulations, the parallel tempering method,

in which multiple copies of a system are simulated at different

Figure 1. Schematic representation of the PTMetaD and RAM
methods. In the PTMetaD method, metadynamics, in the version of
the RAM method discussed in this work, is used together with parallel
tempering to enhance the sampling of the unmodified force field. By
contrast, in the RAM method the experimental data are used as
replica-averaged structural restraints to enhance on the fly in a system-
dependent manner the quality of the force-field, while metadynamics is
used to increase the acceptance rate between replicas at different
temperature in the WTE approach29,30 to parallel tempering.
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temperatures and exchanges between neighboring simulations
are performed with a Metropolis criterion, is coupled with the
metadynamics method on a set of collective variables.31,32 The
coupling of the two methods ensures that slow degrees of
freedom not included in the collective variables are sampled
correctly through parallel tempering. In the PTMetaD
simulations that we carried out here, we used two collective
variables. The first, called CamShift,46 is the root-mean-square
difference between calculated and experimental (BMRB
4503)33 chemical shifts, where the calculated chemical shifts
are obtained using the CamShift method;47 for this collective
variable, we used a functional form described previously.48 The
second collective variable, called Alpha-Beta, is a measure of the
deviation from zero of the φ and ψ dihedral angles as
implemented in PLUMED38 and defined as

∑ φ ψ= + + +AB
1
4

[(1 cos( )) (1 cos( ))]
Nres

i

i i

where the sum runs over all the Nres residues of the protein.
The temperatures, which were chosen using an algorithm
proposed recently,49 were 283, 288, 293.1, 298.4, 303.8, 309.4,
315.1, 321.0, 327.0, 333.3, 339.7, 346.2, 353.0, 360.0, 367.2,
374.6, 382.2, 390.1, 398.2, 406.6, 415.2, 424.2, 433.4, and 442.9
K for a total of 24 replicas. The Gaussian functions in the
metadynamics were deposited every 200 steps, with a height of
0.05 kJ/mol and a width of 5.0 and 0.1, respectively, for the
CamShift and Alpha-Beta collective variables;46 a bias factor of
10 was used to rescale the Gaussian functions as in the well-
tempered formulation of metadynamics.50 Exchanges were tried
every 250 steps. In order to back-calculate collective variables
and observables not included in the metadynamics simulations,
we used a reweighting algorithm.51−53 Each individual replica
was simulated for 60 ns, which we verified was sufficient to
reach convergence in the free energy calculations (Figure 2c).
The exchange rules for the PTMetaD and the RAM methods

follow those of the replica-exchange method.44,45 In the replica-
exchange approach, multiple replicas of a system are simulated

in parallel and exchanges between the replicas are tried at a
given rate and accepted with a probability p according to the
Metropolis rule2, p = min(1,exp(−Δ)). In the PTMetaD
method,31 independently from the collective variables em-
ployed, given two replicas i and j the factor Δ required to
calculate the probability of exchange is
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where β is the inverse of the temperature times the Boltzmann
constant, E is the value of the force field for a configuration X,
and V(q(X)) is the value of the bias resulting from the
metadynamics rules on the collective variable q. In the version
of the RAM method discussed here, at each temperature β, M
replicas (four in this case) are coupled together by a restraint
imposed on the average value of multiple observables.26−28

Furthermore, all the replicas of each block b, except those at the
reference temperature (b = 0), experience also a metadynamics
bias on the energy.51 In principle, the exchange rule of two
replicas belonging to two different blocks should include the
back-calculation of the new average chemical shifts. A problem
with this approach, however, is that the coupling of the replicas
resulting from the chemical shifts reduces the exchange
probability. Furthermore, one can only try one exchange
between two blocks at different temperatures, thus resulting in
a poor exchange rate. Alternatively, one can attempt to
exchange all the replicas at two given temperatures. This
second approach does not need the recalculation of the
chemical shifts, and a move is accepted using the product of the
four probabilities of exchange. In the present implementation,
we used this second exchange move, and because of the
enhancement of the probability of exchange resulting from the
WTE approach, we obtained an average acceptance rate of the
10%. Concerning the factor Δij, for two replicas belonging to
two different blocks, this factor is the same of PTMetaD with

Figure 2. (a) X-ray structure of α-conotoxin SI (PDB code 1HJE). The two disulfide bonds are shown in yellow. (b) Comparison of the free energy
profiles calculated for the Alpha-Beta collective variable for the first and second halves of the RAM ensemble. (c) Comparison of free energy profiles
for the PTMetaD calculations plotted at 6 ns intervals from 36 to 60 ns. In both simulations the round trip time for the replica-exchange is estimated
to be of around 6 ns. These results illustrate the convergence of the PTMetaD and RAM simulations. The insets in panels b and c indicate that the
errors in the estimates of the free energies are small compared to the thermal energy of the system.
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the difference that now E(X) that is the energy of the force-field
includes also the energy of the chemical shift restraints
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where the αi are force constants, k runs over the amino acids of
the peptide or protein, l runs over the six backbone atoms used
in the simulations (Cα, Cβ, C′, Hα, HN, and N), and m runs
over the M replicas composing the ith block.

■ RESULTS
In order to assess the quality of the ensembles obtained by the
RAM method, we applied it to determine the conformational
fluctuations in the native state of α-conotoxin SI, and compared
the resulting free energy landscape with the corresponding one
obtained for an unmodified force field using the PTMetaD
method (Figure 3). Since in both cases we reached

convergence, the differences in the free energy landscapes are
a consequence of the additional restraining term. Both
simulations explored a similar range of values for the collective
variable Alpha-Beta (see Methods) of the backbone, while the
PTMetaD explored a wider range of values of the collective
variable CamShift (see Methods), which correspond to
conformations with larger deviations from the experimental
chemical shifts. In the PTMetaD simulations, the extension of
the lower region of the free energy with respect to CamShift is
larger than in the RAM case, indicating that structures with very
different levels of agreement with the experimental data have
similar statistical weights.
The quality of the two extensive samplings of the

conformational space that we have described above has been
assessed using different sets of experimental data. In the RAM
ensemble, after discarding the first 10 ns, all the structures
sampled by the four replicas at the lowest temperature were
used for the analysis. In the PTMetaD ensemble all the

Figure 3. Comparison of the free energy landscapes of the RAM (a) and PTMetaD (b) ensembles as a function of the collective variables utilized in
the PTMetaD simulations (on the x-axis we report the square root of the CamShift collective variable). The isolines are plotted at 2 kJ/mol intervals.
In the PTMetaD simulations, the ensemble spans a larger range of the collective variable CamShift (see Methods), while both the ensembles cover a
similar range of value for the collective variable Alpha-Beta (see Methods).

Figure 4. Assessment of the quality of the different structural ensembles of α-conotoxin SI described in this work (see also Table 1). The RAM
ensemble is shown in green, the PTMETAD ensemble in cyan, the MD ensemble in blue, the NMR structure33 (PDB code 1QMW, which was
generated by using NOEs and 3JHNHA-couplings) in red, and the X-ray structure (PDB code 1HJE) in orange. (a−d) Comparison of the errors in the
chemical shifts of Cα, Cβ, Hα, and HN atoms, respectively. (e) Comparison of the errors in the 3JHNHA-couplings. (f) Comparison of the NOE
violations. (g) The native resolution is defined as the RMSD with respect to the X-ray structure calculated over all the atoms of a representative
structure of the major cluster.
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structures sampled by the lowest temperature replica have been
used with a standard reweighing procedure.51 Chemical shifts
were back-calculated using the SPARTA+ method,54 3JHNHA-
couplings were back calculated using the Karplus equations
with the “DFT2” set of parameters55 and NOE distances were
back calculated by using a 1/r6 distance dependence.21 The
average errors of the back-calculated data with respect to the
experimental sets are reported in Figure 4 and Table 1. In all
cases, the RAM ensemble was found to be in better agreement
with the experimental data than the PTMetaD ensemble
(Figure 4 and Table 1), thus indicating that the use of replica-
averaged chemical shift restraints enables to find an ensemble of
structures in better agreement with experimental observations.
In order to test whether the Amber03W force field

corresponds to a well-defined folded conformation, we used
the PTMetaD free energy landscape, which was generated
without the use of structural restraints, as a function of the
collective variable Alpha-Beta and the RMSD calculated over all

the atoms with respect to an X-ray structure (1HJE, Figure 5).
We found that in the PTMetaD ensemble the native minimum
is farther from the X-ray structure (0.18 nm) than the RAM
ensemble (0.11 nm). A second minimum is almost in the same
place for both the ensembles, with a RMSD value of 0.3 nm and
an Alpha-Beta value of 11. A third minimum at a RMSD value
of 0.4 nm and an Alpha-Beta value of 13.5 is only present in the
RAM ensemble, and a fourth minimum at a RMSD value of 0.5
nm is present in both the ensembles but with a different value
of the Alpha-Beta collective variable (14 for the RAM and 11
for the PTMetaD ensembles).
The native state population has been estimated at 92%,33 a

value that corresponds quite accurately to the value of 90% that
we obtain for the RAM ensemble by considering all the
conformations in which Tyr11 is buried (first and second
minima in Figure 5a). Representative conformations for these
minima are shown in Figure 6a,b. Further analysis of the free
energy landscapes reveals the presence of low population states

Table 1. Assessment of the Quality of the Different Structural Ensembles of α-Conotoxin SI Described in This Worka

experiment RAM PTMetaD RA MD NMR (1QMW) X-ray (1HJE)

Cα (ppm) 0.69 0.98 0.72 0.97 0.93 0.72
Cβ (ppm) 0.52 0.88 0.59 0.90 1.42 1.15
Hα (ppm) 0.20 0.38 0.23 0.38 0.22 0.22
HN (ppm) 0.31 0.47 0.32 0.49 0.44 0.35
3JHNHA (Hz) 1.30 1.90 1.51 2.10 1.30 1.60

NOE violations 20(10) /143 26(18) /143 23(12) /143 32(21) /143 17(2) /143 27(13) /143
aAverage differences between the experimental values and those back-calculated from the different ensembles. The best agreement between
experimental and calculated parameters is shown in bold. The RAM and PTMetaD ensembles are discussed in the main text, while the molecular
dynamics (MD) ensemble is generated with a NVT 250 ns simulation; this simulation never leaves the native minimum of the PTMetaD ensemble.
The higher quality of the PTMetaD ensemble with respect to the MD ensemble illustrates the importance of taking account of a the broad ensemble
of conformations explored by a protein through its equilibrium fluctuations when calculating NMR observables; this observation holds in particular
for the Cβ chemical shifts, which are related to the averaging of the side chains. The higher quality of the RAM ensemble with respect to the
PTMetaD ensemble shows how the use of the experimental data as replica-averaged structural restraints can improve in a system-dependent manner
the underlying force field. The comparison of the NMR structure33 (PDB code 1QMW, which was generated by using NOEs and 3JHNHA-couplings)
and the X-ray structure (PDB code 1HJE) shows that a single structure cannot fully reproduce all the available experimental data. For the NOE
violations, the numbers in parentheses indicate the NOE violations larger than 0.05 nm.

Figure 5. Comparison of the free energy landscapes of the RAM (panel a) and PTMetaD (panel b) ensembles as a function of the collective variable
Alpha-Beta (see Methods) and the all-atom RMSD with respect to the X-ray structure (isolines at 2 kJ/mol). The ensembles span a similar range of
values, but there are notable differences. The RAM ensemble shows a native minimum closer to the X-ray structure than that of the PTMetaD
ensemble (the RMSD value is 0.1 nm for the RAM simulations while it is 0.2 nm for the PTMetaD simulations). The X-ray structure is shown in
blue in the lower right corner of panel superposed to the central structure of most populated cluster (a). A second minimum is almost in the same
place for both the ensembles, with a RMSD value of 0.3 nm and an Alpha-Beta value of 11. A third minimum at a RMSD value of 0.4 nm and an
Alpha-Beta value of 13.5 are only present in the RAM ensemble, and a fourth minimum at a RMSD value of 0.5 nm is present in both the ensembles
but with different Alpha-Beta values (14 for the RAM and 11 for the PTMetaD simulations).
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(third and fourth minima in Figure 5a) that differ from the
native state primarily in terms of the orientation of a tyrosine
residue at position 11 along the sequence (Tyr11), which is
buried in the structure in the native state but exposed to the
solvent in the low population states. Although the major effect
of the structural restraints that we incorporated in the
simulations should be expected to be reflected in the quality
of the structures corresponding to the most populated minima,
as higher-energy structure would contribute much less to the
statistical averages, these results suggest the intriguing
possibility that the exposure of Tyr11, which is the only
aromatic residue of α-conotoxin SI (sequence ICCNPACGP-
KYSC),33 in the low population state (Figure 6b) may create
the possibility of forming intermolecular interactions. Although
there are no structures in the PBD of α-conotoxin SI in a
bound state, we investigated this idea by analyzing the bound
state of α-conotoxin IMI, a peptide closely homologous to of α-
conotoxin SI, in which Tyr11 is replaced by another aromatic
residue, Trp10 (Figure 6c). In this case of α-conotoxin IMI,
Trp10 is oriented in the bound state so that its side chain
points outward in a configuration that stabilizes the complex
(Figure 6d, where only α-conotoxin IMI is shown in the bound
state). Based on these results, we can speculate that the
exposure of Tyr11 in the low population state may predispose
α-conotoxin SI to bind its partners.
These results show that the addition of the chemical shifts as

replica-averaged structural restraints in the simulations, by
changing the free energy landscape of the system to increase
the agreement with the experimental data, increases the overall
quality of the resulting conformations. The two ensembles
generated by the RAM and PTMetaD methods can also be
compared with the experimental structures and with both a
standard molecular dynamics simulations and a standard

Replica-Averaged simulations.45 Both the 250 ns unbiased
molecular dynamics simulation (MD run) and four replica-
averaged (RA, i.e. the RAM method without metadynamics) 60
ns long molecular dynamics simulations are in an overall worse
agreement with all the available data than the corresponding
simulations in which the sampling is enhanced (PTMetaD and
RAM), thus showing the importance of enhanced sampling
techniques in exploring high energy conformations and that of
replica-averaging in correcting the force-field. RAM can address
both the problems at the same time. By contrast, a previously
determined NMR structure33 (PDB code 1QMW) was found
to be in better agreement with NOEs and 3JHNHA-couplings,
which were the data employed to generate it,33 than the
PTMetaD ensemble; the agreement with the chemical shifts is
poorer for the 1QWM structure than the PTMetaD ensemble.
The X-ray structure too is not in good agreement with the
chemical shifts and the 3JHNHA-couplings, despite having only a
few NOE violations. These results show the importance of
considering conformational averaging in the comparison with
experimental measurements also in the case of a peptide with a
well-defined folded conformation and suggest that the RAM
method will be useful in the case of disordered system such as
intrinsically disordered proteins.

■ CONCLUSIONS
We have described the RAM method, which combines the use
of experimental data as replica-averaged structural restraints in
molecular dynamics simulations and the metadynamics scheme.
This approach enables one to simultaneously enhance the
sampling efficiency and improve the force field for specific
systems, and thus represents an efficient tool to generate
ensemble of structure representing the structure and the
dynamics of proteins.
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