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ABSTRACT: The characterization of denatured states of proteins is challenging because the lack of permanent structure in
these states makes it difficult to apply to them standard methods of structural biology. In this work we use all-atom replica-
averaged metadynamics (RAM) simulations with NMR chemical shift restraints to determine an ensemble of structures
representing an acid-denatured state of the 86-residue protein ACBP. This approach has enabled us to reach convergence in the
free energy landscape calculations, obtaining an ensemble of structures in relatively accurate agreement with independent
experimental data used for validation. By observing at atomistic resolution the transient formation of native and non-native
structures in this acid-denatured state of ACBP, we rationalize the effects of single-point mutations on the folding rate, stability,
and transition-state structures of this protein, thus characterizing the role of the unfolded state in determining the folding process.

■ INTRODUCTION

Molecular dynamics simulations represent a powerful approach
to study biomolecules at atomic resolution.1,2 This method has
a long history in structural biology, and the range of its
applications is steadily increasing.1−14 Most of the methodo-
logical efforts are being devoted to overcoming two major
aspects of this method, the extension of sampling of the
conformational space and the accuracy of the force fields used
to integrate the equations of motion. Great advances have been
recently made in the improvement of hardware and
software,15−18 in the parametrization of the force fields,19−30

and in the implementation of advanced algorithms to enhance
the sampling efficiency.31−41

In particular, a great variety of approaches have been
proposed to improve the quality of the force fields by
considering available experimental information.19−30 Among
these approaches, replica-averaged molecular dynamics simu-
lations have been successfully employed with a number of
different experimental observables, including specifically those
measured by NMR spectroscopy, for a number of different
systems.42−54 Recently, it has been shown that the use of
replica-averaged simulations represents an effective way to
interpret experimental data in the sense of the maximum
entropy principle,55−58 a result that implies that the inclusion of
experimental data in a force field in this way provides the

approach with the least number of assumptions needed to
modify the force field itself to make it consistent with the
measured data.55−58

In order to combine the strengths of replica-averaged
simulations with that of advanced sampling techniques we
recently proposed the replica-averaged metadynamics (RAM)
approach,59 in which a force field is modified in a system-
dependent manner through the use of replica-averaged
experimental data, while the conformational sampling is
enhanced by metadynamics,37 a versatile advanced sampling
technique that has been applied to a number of challenging
problems.36 In the RAM approach we used NMR chemical
shifts, as these parameters have recently emerged as powerful
reporters of the structure and dynamics of native,60−69

intermediate70−72 and disordered73−75 states of proteins. In
unfolded and denatured states and for intrinsically disordered
proteins chemical shifts are routinely used as probe for
secondary structure propensities76 and populations77 and
have been also used to probe tertiary structure contact
propensities.78,79

In this work we implemented the RAM approach59 with
backbone chemical shift restraints64,80 and bias-exchange
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metadynamics38 to sample the conformational space of the
acid-denatured state of ACBP at pH 2.3, a 86-residue protein
(Figure 1) whose folding mechanism has been extensively

characterized.52,54,78,79,81−86 This approach enabled us to obtain
a converged sampling and thus to characterize the major
structural features of this state. From the converged sampling,
we can derive an accurate free energy landscape, which is a
fundamental quantity in a statistical mechanics description of a
disordered protein. The ensemble of conformations that we
determined provides insights into the relationship between the
residual structure of the denatured state and the folding
mechanism of this protein. We found in particular correlations
between the fractions of native and of non-native contacts and
the change in the folding rate upon mutation as well as the Φ-
values for the transition state. We also found negative
correlations between the fractions of native and of non-native
contacts and the change in stability upon mutation. Taken
together, these results suggest that the residual structure of the
denatured state, both native and non-native, can provide
quantitative information about the folding process of this
protein.

■ METHODS
Molecular dynamics simulations of ACBP were performed using the
Amber03W force field87 with the TIP4P05 water model.88 All the
simulations were run in GROMACS89 using PLUMED2.90 A time step
of 2 fs was used together with LINCS constraints.91 The van der Waals
interactions were implemented with a cutoff at 0.9 nm, and long-range
electrostatic effects were treated with the particle mesh Ewald
method.92 All simulations were carried out in the canonical ensemble
at constant volume and by thermosetting the system with the Nose-̀
Hoover thermostat.93 The starting conformation was taken from an
available NMR structure (PDB code 1NTI). This structure was fully
protonated in order to mimic the acidic conditions and solvated with
18,000 water molecules in a dodecahedron box of 700 nm3 of volume.
A high-temperature (450 K) 30 ns preliminary unfolding simulation
was used to select four starting conformations. Each conformation was
then subsequently relaxed at 300 K for 10 ns.
RAM simulations59 were performed using chemical shifts as replica-

averaged restraints64,94 and bias-exchange metadynamics.38 The bias-
exchange metadynamics approach combines replica exchange95 with
metadynamics,36,37 in which several metadynamics simulations are
performed in parallel on different replicas of the system, each replica
biasing a different collective variable (CV). Exchanges between the
replicas are attempted periodically according to a replica-exchange
scheme.
The introduction of the bias-exchange metadynamics method in the

RAM scheme offers the possibility of performing replica-averaged

restrained simulations without the need of using further replicas at
different conditions, as in the case of a previous RAM implementa-
tion59 (Figure S1). It is thus possible to maximize the use of the
available computational resources by simulating a limited number of
replicas.

Four replicas of the system were simulated in parallel at 300 K with
a restraint applied on the average value of the CamShift80,96 back-
calculated NMR chemical shifts94
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where the α is the force constant, set to 24 kJ/(mol ppm2), k runs over
the amino acids of the protein, l runs over the six backbone atoms used
in the simulations (Cα, Cβ, C′, Hα, HN and N) and m runs over theM
= 4 replicas (the chemical shifts of Pro, Gly, Asp, Glu and His residues
were not used in the simulations). In this way the system evolves with
a force field that is perturbed in such a way to increase the agreement
with the experimental chemical shifts84 as resulting by the application
of the maximum entropy principle.55−58 In principle the number of
replicas can be increased at expense of an increasing computational
cost, but, as previously shown,59 four replicas are sufficient to recover
with very good accuracy the dynamics from chemical shifts.

In the present case four CVs have been employed: the total α-
helical content (the “αC” CV),97 the total β-sheet content (the “βC”
CV),97 the radius of gyration (the ‘Rg’ CV), and the distance between
the centers of mass of α-helix I (residues 2−13) and α-helix IV
(residues 66−85) (the “dI-IV” CV), as described.31,98 The choice of
the secondary structures and radius of gyration as CVs was guided by
the hypotheses that transient secondary structures formation, and the
volume fluctuations of the polypeptide chain capture to a good extent
the relevant dynamics of a disordered protein. The additional choice of
dI-IV as a CV was suggested by the fact that the docking of α-helix I
and IV has been identified as the rate-limiting step for the folding of
ACBP. dI-IV and Rg are weakly correlated along the simulations, r ∼
0.3, suggesting that dynamic of the two α-helices is in part
independent by the volume fluctuations. Gaussians deposition was
performed with an initial rate of 0.125 kJ/mol/ps, where the σ values
were set to 0.15, 0.11, 0.027, and 0.08 nm, for αC, βC, Rg and dI-IV,
respectively.

It has been shown that if the collective variables capture the relevant
slow dynamics of a system, a metadynamics run can converge to the
opposite of the free energy landscape along the selected collective
variables, but only if the heights of the Gaussians are slowly rescaled to
zero33,35 and if the borders of the collective variables are properly
treated.99 In order to keep under control the convergence of the
simulations we rescaled the height of the Gaussians using the well-
tempered scheme100 with a bias-factor of 10. Furthermore, in order to
limit the extent of accessible space along each collective variable and
correctly treat the problem of the borders, we set the bias as constant
outside a defined interval for each CV,101 as it has been shown that this
approach lead to a correct reconstruction of a one-dimensional free
energy landscape inside the chosen range; intervals were set to 0−36,
0−11, 1.3−3.8, and 0−4.2 for the four CVs, respectively. Each replica
have been evolved for 650 ns, with exchange trials every 50 ps.

The convergence of the sampling was assessed by monitoring the
differences of the free energies in the range between 0 and 50 kJ/mol
at increasing simulation length during the simulations. The average
differences between two free energy landscapes calculated at 13 ns
intervals are shown in Figure S2. After the first 450 ns the free energy
landscapes are stable within <2.5 kJ/mol, suggesting that all the
relevant minima in the landscape have been found, and the average
changes in the free energy landscapes over the last 80 ns of simulations
are below 1 kJ/mol (Figure 3). These results suggest that the free
energies that we obtained from the RAM simulations are on average
correct within <2 kJ/mol (Figure S2).

The sampling of the four replicas was used to generate a four-
dimensional free energy landscape where a set of microstates is
identified by dividing the four-dimensional CV-space into a
homogeneous grid of small hypercubes whose free energies were

Figure 1. Native structure of ACBP. The four native α-helices (I−IV)
are colored from the N-terminal in red to the C-terminal in blue. The
structure is taken from the PDB file 1NTI.
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obtained using a standard weighted histogram analysis.31,101−103 The
free energy of each microstate and its estimated error are shown in
Figure S3. The free energy landscape as a function of three out of four
CVs is shown in Figure 3 together with three representative
microstates, which were selected as the microstates that corresponds
to local minima separated by the highest barriers in the landscape.

■ RESULTS

Convergence of the Free Energy Landscape and Role
of the Chemical Shifts. In order to determine the
conformational properties of the acid-denatured state of
ABCP at pH 2.3 that we studied here, we used replica-
averaged metadynamics (RAM)59 simulations. This technique
combines the sampling efficiency of the metadynamics
approach,37 which we implemented here in its bias-exchange
version,38 with the on-the-fly modification of the force field
using experimental data, in this case backbone NMR chemical
shifts,59 as ensemble-averaged structural restraints.52−54 It has
been recently shown that this ensemble-averaged approach
provides ensembles of structures that, given a force field, are in
the best possible agreement with the experimental data used as
restraints.55−58

The application of the RAM simulations to the acid-
denatured state of ACBP provides a description of this state
at a fraction of the computational cost needed for unrestrained
molecular dynamics simulations. Indeed, it has been recently
shown that it is challenging to reach convergence in the free
energy calculations of the denatured state of ACBP using
standard molecular dynamics simulations.104 It has also been
reported that the quality of current force fields is still often
relatively poor when they are used to describe unstructured
states of proteins.105,106 For example, the stability of secondary
structures elements is strongly dependent on the force field
employed, and the overall conformations of the proteins are in
many cases too compact.105,106

Using the RAM approach, after a total simulation time of 2.5
μs we obtained a converged sampling resulting in a free energy
landscape within a statistical uncertainty of <2 kJ/mol for free
energies up to 10 kJ/mol (Figures 2, S2, and S3). The collective
variables explore their accessible phase space in a relatively

uniform manner (Figure S4) and the exchange rate among
replicas is ∼10%. The structures in the ensemble representing
the acid-denatured state of ACBP cover a broad range of values
for the collective variables (CVs) used in the simulations: the
radius of gyration (Rg) was between 1.6 and 3.8 nm, the α-
helical content (αC) between 0% and 36%, the β-sheet content
(βC) between 0% and 10%, and the dI-IV distance between 0.7
and 4.0 nm. The distribution of the RMSD values calculated
among all pairs of sampled structures provides a measure of the
size of the conformational space visited during the simulations;
the sampled structures are on average at 1.7 ± 0.7 nm RMSD
from each other (Figure S5).
The effects of the chemical shift restraints on the force field

can be analyzed from the point of view of their contributions to
the energy. We estimated these effects to be small since their
associated energy is on average 480 ± 40 kJ/mol per replica, a
value to be compared with an average total energy of −6.66 ×
105 ± 2 × 103 kJ/mol per replica. We also carried out an
analysis of the average force intensities per atom resulting from
the addition of the chemical shift restraints to the force field.
The average chemical shift contributions to the total forces on
the protein is ∼15% (Figure S6). An analysis per amino acid
suggest that in the case of Amber03W the chemical shifts are in
particular acting on the Trp side chain atoms and Arg backbone
and side chain atoms (Figure S6).

Analysis of the Microstates in the Acid-Denatured
State of ACBP. The free energy landscape as a function of
three of four CVs used in the simulations is characterized by the
presence of three distinct free energy basins (Figure 3). The
most populated basin (84% population, labeled as A in Figure
3) corresponds to a Rg of 2.0 nm (the folded protein has a Rg of
1.3 nm), a αC of 12% (which is localized in the region of α-
helix IV), and a βC of the 8% (which is localized in the region
or residues 22−27). The second most populated basin (12%
population, labeled as B in Figure 3) corresponds to a Rg of 1.7
nm, an αC of 32% (which is localized in the region of α-helices
I and IV), and a βC of 3%. The third basin (4% population,
labeled as C in Figure 3) is the most extended and less
structured, with a Rg of 2.7 nm, an αC of 6%, and a βC of 1%. A
clear feature that emerges from this free energy landscape is
that the acid-denatured state is characterized by two well-
separated regions (Figure 3). The first region, which is formed
by basins A and B is more compact and structured with an
average Rg of about 2.0 nm, and the second, less populated
region corresponding to basin C, is more extended and less
structured, at higher free energy with an average Rg close to 3.0
nm. This expanded state resembles a random coil conforma-
tion, and the separation between the two basins resembles a
coil−globule transition. The overall ensemble averaged over the
entire free energy landscape Rg is of 1.96 ± 0.04 nm, a value
significantly higher than that of 1.75 ± 0.05 nm found in a
recent 200 μs long standard molecular dynamics simulation,
which did not reach convergence.104 We also note that the
height of the barriers in the free energy landscapes that we
presented does not necessarily correspond quantitatively to the
height of the barriers along the reaction coordinates, which is
consistent with the idea that the basins that we identified are in
fast exchange on the chemical shifts time scale.
The visualization of the microstates presented above was

based on the collective variables employed in the metadynamics
simulations. In order to generalize the results to other
parameters that can be employed to represent the free energy
landscape we used the recently developed SketchMap

Figure 2. Convergence of the free energy calculations. The free energy
landscapes (in kJ/mol) of the four different collective variables (see
Methods) are averaged over the final segment (the last 80 ns) of the
RAM simulations, and their standard deviations are reported as red
error bars.
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projection technique.107−109 Sketchmap provides a way of
reducing a multidimensional representation to two dimensions
by means of Mercator-like approach in which the distance
between two structures in the multidimensional space is
qualitatively preserved after a rescaling through a step
function.107−109 In the present case we analyzed our trajectories
in terms of the 172 backbone dihedral angles of ACBP, and we
employed SketchMap to identify two parameters (or CVs) for
the projection of the free energy. We then used these two CVs
together with the four old ones to build a new bidimensional
free energy landscape as a function of the SketchMap CVs only
(Figure 4). The most populated microstate corresponds to the
ground state (i.e., basin A) identified in Figure 3. In the lower
right region of the free energy landscape in Figure 4 the
microstates show a partially formed α-helix IV with the rest of
the protein largely disordered. Going toward the left side of the
landscape, α-helix IV becomes less and less formed while a
partial structuring emerges in α-helix I. In the upper region of
the free energy landscape α-helices I and IV are not formed,
while there is a partial formation of α-helix II and the presence
of some β-structure. The free energy landscape in Figure 4 is
thus particularly suitable to represent the transient formation of
secondary structure elements in the acid-denatured state of
ACBP. An additional representation of the transient structure
of the denatured state is provided in Figure 5 where the average
contact maps of the various microstates of the denatured
ensemble are compared with the native contact map.
Consistent with the results presented in Table 1, microstate
D exhibits the largest number of transient contacts, while
microstate C the lowest one.
Validation with Experimental Data Not Used As

Restraints in the Simulations. In order to validate the

ensemble of structures of the acid-denatured state of ACBP
determined in this work, we used it to back-calculate a series of
experimental observables that were not used as restraints in the
RAM simulations. Each observable was first averaged over the
structures of each microstate and then was weighted for the free
energy of the microstate.31,101−103

We first verified that the back-calculated backbone NMR
chemical shifts (obtained using SPARTA+),110 which were used
as restraints in the RAM simulations (where they were
calculated using CamShift)96 are in agreement with the
experimental ones (Figure S7). The quality of this agreement
(0.49, 0.37, 0.09, 0.15, 0.48, and 1.26 ppm for Cα, Cβ, Hα, HN,
C′, and N chemical shifts, respectively) can be assessed by
considering that the differences between experimental and
back-calculated chemical shifts are smaller, in particular for the
Cα and Hα atoms, than the average deviations between the
experimental chemical shifts and the random coil chemical
shifts predicted using the CamCoil method111 (0.83, 0.37, 0.17,
0.20, 0.56, and 1.30 ppm for Cα, Cβ, Hα, HN, C′, and N
chemical shifts, respectively, Figure S7). We also compared the
experimental and calculated secondary chemical shifts with
respect to an intrinsic experimentally measured scale78 (Figure
S8). The agreement between the two approaches for estimating
residual secondary structures is particularly good (coefficient of
correlation of 0.64) if one consider the limitations of the
current empirical chemical shifts predictors.66

Since the secondary structures populations also reflect the
agreement with the secondary chemical shifts, we calculated
secondary structures for the ensemble using STRIDE112 and
using a polyproline II (PPII) definition recently reported.113

The total average α-helical content in the acid-denatured
ensemble of ACBP that we determined was of 13 ± 1% to be

Figure 3. Identification of three major microstates in the acid-denatured state of ACBP. (a) Three-dimensional free energy landscape (in kJ/mol) as
a function of the collective variables for the α-helical content, the β-sheet content, and the radius of gyration (αC, βC and Rg); representative
structures (color code as in Figure 1) are shown for the three major microstates, which are labeled as A, B and C, and have statistical weights of,
respectively, 84%, 12%, and 4%. (b,c) Two-dimensional projections of the three-dimensional free energy landscape shown in (a).
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compared with the 16% estimate obtained for the same
conditions using circular dichroism.84 The total β-content and
PPII-content account for 4 ± 1% and 10 ± 1%, respectively.
Also, we used the δ2D method to predict secondary structures
populations from chemical shifts,77 with a total α-, β- and PPII-
content of 8%, 2%, and 3%, respectively. These predictions are
in good agreement with the results obtained by calculating
directly the secondary structure populations from the structures
in the ensemble considering that in the δ2D predictions the
standard error is about 5%77 and that the calculated and
predicted secondary structure population profiles follows very
closely each other (Figure S9). The largest difference is in the
population of α-helix III. Overall, the differences in secondary
structure populations in Figure S9 are within the uncertainties
of the different methods used to calculate them. One could thus
expect such differences will be reduced in the future upon
further development of these methods. In particular, with the
ever-increasing expansion of the BMRB the δ2D method will
increase in accuracy, and with the inclusion of other types of
restraints (e.g., residual dipolar couplings) the RAM method
will also provide more accurate results. The secondary structure
populations of the ensemble are also compared with the
experimental Cα secondary chemical shifts, determined using
an intrinsic random coil scale.78 We observed the presence of
transient β structure in regions near residues with negative

secondary chemical shifts, consistently with previous reports
about the presence of non-native β structure in the acid-
denatured state.78

The overall average value of Rg of 1.96 ± 0.04 nm reported
above for the acid-denatured state of ACBP corresponds to a
hydrodynamic radius Rh, calculated using a standard model,52,54

of 2.30 ± 0.05 nm, which is larger than the one derived recently
by standard molecular dynamics simulations,104 although still
slightly smaller than the measured value of 2.5 nm.81

In addition to transient secondary structures78,82,84 and the
hydrodynamic radius,81 the acid-denatured state of ACBP has
been studied by means of chemical shift perturbations.79 With
this technique the effect of a single-point mutation is measured
in terms of the small corresponding variations of the chemical
shifts of other residues along the chain. By using this technique
it has been suggested that the presence of transient long-range
native and non-native contacts could provide possible initiation
sites for the folding of ACBP.79 In order to compare our results
with these measurements we calculated the contact probability
among residues, by considering a residue−residue contact to be
formed every time at least two respective heavy atoms are
within 5 Å. The resulting contact map is shown in Figure 5
(“ensemble” panel, above the diagonal) where it is compared
with the native one (below the diagonal) and in Figure S10
where it is compared with the results from chemical shifts

Figure 4. Characteristion of the microstates in the acid-denatured state of ACBP. Two-dimensional free energy landscape (in kJ/mol) as a function
of the two SketchMap collective variables. A set of representative structures (color code as in Figure 1) is shown for all the microstates with a free
energy lower than 5 kJ/mol. The statistical weights of the microstates are, respectively, A 57% (A 43%, A′ 5%, A″ 9%), B 11%, C 4%, and D 22% (D
11%, D′ 11%).
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perturbation;79 the rectangular boxes in Figure S10 represent
the regions where the effect of the mutation was measurable.
With the same goal of probing transient long-range structure,

the acid-denature state of ACBP has been studied by
paramagnetic relaxation enhancement (PRE) methods, a
technique that reports on the distances between residues.52,54,83

Here, PRE intensities have been simulated using the standard
r−6 averaging114 and considering an uncertainty of 5 Å to take
into account the absence of the spin labels in the structures of
our ensemble, which were obtained for the wild-type protein.
The comparison with the measured PRE intensities52 is shown
in Figure S11. While the chemical shift analysis suggested that

α-helix IV is more stable and the other α-helices are weakly
populated in the acid-denatured state, chemical shifts
perturbation and PRE suggested that the region comprising
α-helix I is not very much in contact with the rest of the
polypeptide chain. This result is also in agreement with a Φ-
value analysis that suggested the docking α-helices I and IV to
be the rate-limiting step for the folding process.115 Our
ensemble, even if it is slightly more compact than expected, is
in agreement with all these observations. Indeed, from the
contact maps in Figure 5 as well as from the free energy
landscapes in Figures 3 and 4, it is clear that α-helix IV is more
populated than the other ones and also that the region
comprising α-helix I form less contacts with the rest of the
chain than any other regions (see also Figure S12 for the total
number of contacts per residue). From these results we thus
conclude that the ensemble that we determined here captures
well both for the long and the short-range behavior of the
protein.

Residual Structure in the Acid-Denatured State of
ACBP and Its Relationship with the Folding Process. The
ensemble of structures calculated in this work gives us the
possibility to visualize at atomistic detail the structure and
dynamics of a denatured state of a protein. An important
question that we can address is whether there is a relationship
between the transient structure in this denatured state and the
folding process of this protein under physiological conditions.
T h i s q u e s t i o n h a s b e e n i n v e s t i g a t e d f o r
ACBP,52,54,78,79,81−84,115,116 as well as for other pro-
teins,51,117−123 with indications that in many cases the transient
structure is native-like. Using the ensemble of structures
determined in this work we can investigate this relationship in a
quantitative manner.

Figure 5. Residual structure in the acid-denatured state of ACBP. (a) Comparison of the average probability of contact formation in the acid-
denatured state ensemble (above the diagonal) with the native state contact map (below the diagonal). (b−i) Comparison of the average probability
of contact formation in the different microstates shown in Figure 4 making up the acid-denatured state ensemble (above the diagonal) with the
native state contact map (below the diagonal).

Table 1. Distance of the Microstates from the Native Statea

microstate III−IV II−IV II−III II−III−IV I−II−III−IV

A 0.57 1.04 1.10 1.25 1.84
A′ 0.69 0.88 0.82 1.09 1.62
A″ 0.59 0.91 1.00 1.21 1.62
B 0.59 1.24 0.66 1.25 1.84
C 0.95 1.42 1.52 1.78 2.18
D 0.66 0.86 0.96 0.85 1.69
D′ 0.83 0.65 0.85 1.05 1.43

aFor each microstate in Figure 4 we calculated the average distance (in
nm) from the native structure. The average distance is given in terms
of the root mean square distance (RMSD) with different combinations
of native α-helices (Figure 1): III−IV (α-helices III and IV), II−IV (α-
helices II and IV), II−III (α-helices II and III), II−III−IV (α-helices II,
III and IV), I−II−III−IV (α-helices I, II, III, and IV). For each
combination of native α-helices the most native-like microstate is
shown in bold, while the more unstructured one is shown in italics.
The overall most unstructured microstate is C, while the overall most
native-like microstate is D.
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To achieve this goal, we analyzed the fraction of native
contact as well as the fraction of non-native contacts with
respect to the total number of contacts formed by each residue
in the acid-denatured state, and we compared these fractions
with the effects of single point mutations on the folding kinetics
and thermodynamic stability of the native state.115 The
standard interpretation of the changes in folding rates upon
conservative mutations of the type employed in the Φ-value
analysis is based on the observation that the mutations can
change the stability of the folded state (i.e., the free energy
difference between the folded and the unfolded states) and the
free energy barriers for folding and for unfolding, i.e., the free
energy differences between the unfolded and transition states
and between the native and transition states, respectively.124

We found a relationship between the change in the folding
rate upon single-point mutation and the fraction of non-native
side-chain contacts with respect to all side-chain contacts (not
only those directly affected by the mutation) at the position of
the mutation in the acid-denatured state of wild-type ACBP
(Figure 6). These results are statistically significant, with a
coefficient of correlation of 0.66. In order to understand this
relationship we consider the indications that the residual
structure in the acid-denatured state resembles that in the
unfolded state under physiological conditions,52,54 and the
observation that the Φ-value analysis is based on the rapid
denaturation (to probe unfolding rates) and renaturation (to
probe folding rates) of a protein, and thus the folding process
that is observed is related to both the unfolded state and the
denatured state of a protein.124 Given these observations, the
results shown in Figure 6 suggest that a mutation that affects a
position along the polypeptide chain in which there is a
significant residual native structure in the acid-denatured state
of wild-type ABCP can slow down the folding process. These
results also suggest that a mutation that affects a position in
which there is a large fraction of non-native contacts in the
unfolded state can speed up the folding process.
As a control we verified that the change in unfolding rate

upon mutation is not correlated with the residual structure of
the denatured state (Figure S13a); the change in folding rate
upon mutation is instead correlated with the residual structure

of the denatured state (Figure S13b). These correlations are
weaker if one compares, instead of the ratio of the non-native
over the total number of contacts formed in the acid-denatured
state, the fraction of side-chain native contacts with respect to
the folded state (Figure S14), suggesting that it is the balance
between native and non-native structures that matters in the
folding process of ACBP.
Complementary to these results we found that the change in

the stability upon mutation (ΔΔGU−F) has a weak negative
correlation with the residual structure of the acid-denatured
state (Figure 7a) suggesting that single point mutations that

increase the fraction of non-native contacts at expense of the
native ones can stabilize the denatured state instead of
destabilize the native one. Furthermore, we observed a weak
positive correlation with the unfolding Φ-values (Φu, Figure
7b). Again, by building on the observation that the residual
structure in the acid-denatured state resembles that in the
unfolded state under physiological conditions,52,54 the results in
Figure 7 are in agreement with the idea that residues that form
native contacts in the unfolded state are those that guide the
formation of the transition state, while residues that are strongly
non-native in the unfolded state can conserve non-native

Figure 6. Relationship between the residual structure in the acid-denatured state and the folding process of ACBP. (a) Correlation between the
fraction of non-native contacts formed in the acid-denatured state and the change in folding rates upon mutation. All the residues belonging to the
rate-limiting native-like state (RLNLS) slow down folding when mutated (green-shaded region). (b) Representation of the interactions of Y73 in the
denatured state ensemble.

Figure 7. Relationship between the residual structure in the acid-
denatured state and the free energy landscape of ACBP. (a)
Correlation between the change in folding stability upon mutation
(x-axis) and the residual structure of the acid-denatured state (y-axis).
(b) Correlation between unfolding Φ-values (x-axis) and the residual
structure of the acid-denatured state (y-axis). The mutants are the
same as shown in Figure 6.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja5027584 | J. Am. Chem. Soc. 2014, 136, 8982−89918988



contacts (Φu > 1) also in the transition state. By contrast, we
did not find a significant correlation between the changes in m-
values upon mutation and the fraction of non-native contacts in
the denatured state (Figure S15). This lack of correlation is
mainly caused by a set of mutants with a very high ratio of non-
native contacts (top left region in Figure S15), whose response
to increasing concentration of denaturants (which is the effect
reported by the m-values) does not involve a further increase in
this ratio. Taken together, these results suggest the intriguing
possibility that all the residual structure of the denatured state,
both native and non-native, can play a role in the folding
process.
Overall these findings confirm the notion that the residual

structure present in the unfolded state, at least for fast-folding
proteins, is a key feature in the folding process pro-
teins.51,117−123 Although the correlations that we reported
(Figures 6, 7, S13, and S14) by themselves do not represent
direct evidence of a causative effect, they are particularly
interesting because the observables that we have analysed
report on the whole folding process and so they are a function
of both the denatured, the transition, and the folded states.
These results are also consistent with the assumption
underlying the Φ-value analysis that it is possible to introduce
mutations that do not modify the unfolded state independently
of the transition state.
Evolutionary Conservation of the Residues with

Native-Like Residual Structure in the Acid-Denatured
State. The eight residues (F5, A9, V12, L15, Y73, I74, V77,
and L80) that were observed to slow down the folding process
when mutated (Figure 6a, green shaded region) were suggested
to be important in the formation of the rate-limiting native-like
state (RLNLS).115 Seven of these residues are evolutionary
highly conserved, with I74 being the only non-conserved one.
An analysis of the structures of the acid-denatured ensemble
that we determined in this work revealed that these residues
have a very high probability of forming native contacts, with I74
being the only one that departs from this trend (Figure 6).
These results suggest that the native-like residual structure in
the unfolded state of ACBP favors the folding process.
To investigate further this aspect we analyzed in more detail

the interactions formed by Y73 in the acid-denatured state. It
has been observed that while the Y73A mutation reduces the
folding rate, the Y73F mutation increases it;115 this latter
mutation is also one of the two out of 30 mutations that were
reported to increase the stability of the folded state.115 These
results suggested that while the phenyl group of Y73 is
important to promote folding by forming a number of
interactions in the RLNLS, the phenolic hydroxyl group of
Y73 is instead inhibitory in the folding process.115 To verify this
suggestion we analyzed the presence of a hydrogen bond
formed by the phenolic hydroxyl group of Y73 in the acid-
denatured state finding a remarkable 10% population for this
interaction, which is non-native. For comparison, the removal
of the phenolic hydroxyl group of Y73 results in the value
kf(Y73F)/kf(WT) = 1.13,115 i.e., a speed up in the folding of
about 13%. Despite the negative effects of the phenolic
hydroxyl group of Y73 on the folding process, the evolutionary
conservation of this group could be explained by its role in
protein function, as it forms a hydrogen bond with palmitoyl-
coenzyme A in all the known structures of the complex (1ACA,
1NVL and 2CB8).

■ DISCUSSION

Denatured and unfolded states of proteins exhibit in many
cases more transient structure than random coil
chains.51,117−123 This transient structure, in particular if
native-like, is considered to be a fundamental feature in the
folding process.51,117−123 It has been shown that transient
native-like contacts in the acid-denatured state of ACBP govern
its compactness,52,54,78,79,81−84,115,116 suggesting a minimally
frustrated unfolded state, i.e., a state with a minimal amount of
non-native interactions.83 In particular it was observed that, by
mutating residues that form transient native interactions in the
denatured state, the overall size of the denatured protein
increases.83 Furthermore, computational studies suggest that, at
least for fast folding proteins, only native contacts are relevant
in determining the search for the native state.118−120,125

The results that we have presented provide a converged
sampling of a denatured state of a globular protein determined
using NMR chemical shift restraints (Table 1, Figures 2−4, S2,
and S3), which gives us the possibility of analyzing
quantitatively and extending earlier conclusions obtained from
experimental studies. The acid-denatured state of ACBP is
characterized by the presence of significant residual α-helical
structure, in particular in the C-terminal α-helix IV, with some
non-native β structure also being transiently present in the
central region of the polypeptide chain (Table 1 and Figure
S9). The ensemble of structures that we have determined
exhibits a relatively compact and structured state of low-free
energy and an unstructured state of high-free energy (Figures 3
and 4). The presence of both native and non-native tertiary
contacts is in agreement with chemical shifts perturbation and
PRE measurements (Figures S7−S11). In particular the region
comprising α-helix I is on average more detached from the rest
of the polypeptide chain than any other region (Figures 5 and
S12). By studying in detail the role of the transient structure of
the denatured state we have found a significant correlation
between the fraction of non-native contacts and the variation of
the folding rates upon single-point mutations (Figure 6). This
relationship is also reflected in a weak correlation with the
unfolding Φ-value and a weak negative correlation with the
effect of mutation on the stability (Figure 7). Overall these
observations suggest that the structure in the denatured state
has a functional role in driving the folding process as perturbing
non-native interactions in the denatured state can speed up the
folding and increase its stability. Furthermore residues that
show more transient structure in the denatured state show a
higher degree of native or non-native structure also in the
transition state.

■ CONCLUSIONS

We have presented an approach that enables converged free
energy landscapes to be calculated for unstructured states of
proteins. This approach is based on the combination of bias-
exchange metadynamics to enhance the sampling of the
conformational space with the use of ensemble-averaged
chemical shift restraints to modify the force field to increase
the consistency of the sampling with experimental measure-
ments. Application of this approach to the acid-denatured state
of ACBP has enabled us to characterize the relationship
between the transient native and non-native structures in the
unfolded state and the folding process.
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(16) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.;
Walker, R. C. J. Chem. Theory Comput. 2013, 9, 3878.
(17) Wang, K.; Chodera, J. D.; Yang, Y.; Shirts, M. R. J. Comput.-
Aided Mol. Des. 2013, 27, 989.
(18) Lindert, S.; Bucher, D.; Eastman, P.; Pande, V.; McCammon, J.
A. J. Chem. Theory Comput. 2013, 9, 4684.
(19) Bottaro, S.; Lindorff-Larsen, K.; Best, R. B. J. Chem. Theory
Comput. 2013, 9, 5641.
(20) Best, R. B.; Mittal, J.; Feig, M.; MacKerell, A. D., Jr. Biophys. J.
2012, 103, 1045.
(21) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig,
M.; MacKerell, A. D., Jr. J. Chem. Theory Comput. 2012, 8, 3257.
(22) Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Eastwood, M. P.;
Dror, R. O.; Shaw, D. E. PLoS One 2012, 7, e32131.
(23) Best, R. B.; Hummer, G. J. Phys. Chem. B 2009, 113, 9004.

(24) Freddolino, P. L.; Harrison, C. B.; Liu, Y.; Schulten, K. Nat.
Phys. 2010, 6, 751.
(25) Beauchamp, K. A.; Lin, Y.-S.; Das, R.; Pande, V. S. J. Chem.
Theory Comput. 2012, 8, 1409.
(26) Cerutti, D. S.; Rice, J. E.; Swope, W. C.; Case, D. A. J. Phys.
Chem. B 2013, 117, 2328.
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(79) Bruun, S. W.; Iesm̌antavicǐus, V.; Danielsson, J.; Poulsen, F. M.
Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 13306.
(80) Robustelli, P.; Kohlhoff, K.; Cavalli, A.; Vendruscolo, M.
Structure 2010, 18, 923.
(81) Fieber, W.; Kragelund, B. B.; Meldal, M.; Poulsen, F. M.
Biochemistry 2005, 44, 1375.
(82) Fieber, W.; Kristjansdottir, S.; Poulsen, F. M. J. Mol. Biol. 2004,
339, 1191.
(83) Ozenne, V.; Noel, J. K.; Heidarsson, P. O.; Brander, S.; Poulsen,
F. M.; Jensen, M. R.; Kragelund, B. B.; Blackledge, M.; Danielsson, J. J.
Mol. Biol. 2014, 426, 722.
(84) Thomsen, J. K.; Kragelund, B. B.; Teilum, K.; Knudsen, J.;
Poulsen, F. M. J. Mol. Biol. 2002, 318, 805.
(85) Voelz, V. A.; Jag̈er, M.; Yao, S.; Chen, Y.; Zhu, L.; Waldauer, S.
A.; Bowman, G. R.; Friedrichs, M.; Bakajin, O.; Lapidus, L. J. J. Am.
Chem. Soc. 2012, 134, 12565.
(86) Heidarsson, P. O.; Valpapuram, I.; Camilloni, C.; Imparato, A.;
Tiana, G.; Poulsen, F. M.; Kragelund, B. B.; Cecconi, C. J. Am. Chem.
Soc. 2012, 134, 17068.
(87) Best, R. B.; Mittal, J. J. Phys. Chem. B 2010, 114, 14916.
(88) Abascal, J. L.; Vega, C. J. Chem. Phys. 2005, 123, 234505.
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