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Proline isomerization is a ubiquitous process that plays a key role
in the folding of proteins and in the regulation of their functions.
Different families of enzymes, known as “peptidyl-prolyl isomer-
ases” (PPIases), catalyze this reaction, which involves the intercon-
version between the cis and trans isomers of the N-terminal amide
bond of the amino acid proline. However, complete descriptions of
the mechanisms by which these enzymes function have remained
elusive. We show here that cyclophilin A, one of the most common
PPIases, provides a catalytic environment that acts on the sub-
strate through an electrostatic handle mechanism. In this mecha-
nism, the electrostatic field in the catalytic site turns the electric
dipole associated with the carbonyl group of the amino acid pre-
ceding the proline in the substrate, thus causing the rotation of
the peptide bond between the two residues. We identified this
mechanism using a combination of NMR measurements, molecular
dynamics simulations, and density functional theory calculations
to simultaneously determine the cis-bound and trans-bound con-
formations of cyclophilin A and its substrate as the enzymatic re-
action takes place. We anticipate that this approach will be helpful
in elucidating whether the electrostatic handle mechanism that we
describe here is common to other PPIases and, more generally, in
characterizing other enzymatic processes.

enzyme catalysis | NMR spectroscopy

Different families of enzymes, often referred to as “peptidyl-
prolyl isomerases” (PPIases), catalyze proline isomerization,

a process that involves the interconversion between the cis and
trans isomers of the N-terminal amide bond of the amino acid
proline (1–3). This isomerization process is an intrinsically slow
reaction, typically occurring on the time scale of several minutes
under physiological conditions. Hence it often represents a rate-
limiting step in biochemical reactions and indeed is used ubiq-
uitously as a molecular switch in regulation (1–7).
The possible mechanisms by which PPIases speed up this

reaction have been the subject of intense scrutiny (8–16), although
consensus descriptions of such mechanisms have not yet emerged.
A question of particular relevance is the specific manner in which
the electrostatic field in the catalytic site may facilitate the isom-
erization reaction. To investigate this problem, we considered the
case of cyclophilin A, a member of the cyclophilin family of
PPIases (17–20). Previous studies have suggested that con-
formations resembling those typical of the cis-bound and the
trans-bound states are populated through conformational fluctu-
ations in the free state of the enzyme and therefore functional
insights into its mechanism of action might be obtained from the
study of the free state (21–23).
The approach that we followed in studying the mechanism of

action of cyclophilin A is based on the simultaneous de-
termination of the structures of the cis-bound and trans-bound
states of the complex between the enzyme and its substrate as the
catalytic process takes place. Our results reveal that the mech-
anism of the reaction involves the presence of an electrostatic
field that acts on the N-terminal peptide bond of the proline

residue in the substrate and induces the rotation of the electric
dipole corresponding to the carbonyl group of the residue pre-
ceding the proline. In this sense, the carbonyl group represents
a handle operated by an electrostatic field and helps overcome
the isomerization barrier.
We investigated the conformational properties of cyclophilin

A during the proline isomerization process by using NMR
spectroscopy, which can provide atomic-resolution descriptions
of the motions of macromolecules in solution (24–32). In our
strategy, NMR data are used as replica-averaged structural
restraints in molecular dynamics simulations. Such calculations,
which in general can include NOE-derived distances (29), S2-
order parameters (29), residual dipolar couplings (33–35), and
chemical shifts (36–38), are particularly suitable when multiple
conformations of a protein are present simultaneously in solu-
tion, because these conformations can be determined at the
same time (29, 37).

Results and Discussion
Simultaneous Determination of the cis-Bound and trans-Bound States.
To study the proline isomerization process catalyzed by
cyclophilin A, we considered the model peptide substrate
GSFGPDLRAGD (39, 40). We carried out chemical shift
measurements in the bound state during the catalytic reaction
(SI Text). In addition, we used NOESY measurements to obtain
information about interproton distances (i.e., intermolecular
NOE restraints) between the enzyme and the substrate; there-
fore NOEs were measured as averages over the cis-bound and
the trans-bound conformations during the isomerization reaction
(SI Text). We then performed molecular dynamics simulations
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with replica-averaged chemical shifts (37) and intermolecular
NOE restraints (29), a technique that enables the information
provided by NMR measurements to be incorporated in the
structural determination procedure in a manner consistent with
the maximum entropy principle (41–43). We used two replicas
of the system; the initial structures were chosen with the proline
in the model peptide in the cis conformation in the first replica
and in the trans conformation in the second replica (SI Text).
These calculations resulted in two (cis-bound and trans-bound)
conformational ensembles (Fig. 1) with corresponding free-
energy landscapes (Fig. 2). The agreement between experimen-
tal and calculated intermolecular NOEs and chemical shifts was
excellent (Table S1 and Fig. 3). For comparison, we also carried
out similar calculations for the free state of the enzyme (Fig. 2; see
also Conformational Fluctuations in the Free State).

A Possible Electrostatic Handle Mechanism of Catalysis. To formulate
a hypothesis about the mechanism of catalysis, we analyzed the
ensemble of conformations representing the bound state of
cyclophilin A and its substrate. This ensemble can be divided into
cis-bound and trans-bound subensembles. We then considered
the overall electrostatic field in the active site of the enzyme (44),
prompted by the observation that the presence of a conserved
arginine residue at position 55 (R55) is known to play a key role

in the function of cyclophilin A (13–15). More specifically, density
functional theory (DFT) calculations (SI Text) of the electrostatic
field acting on the glycine–proline peptide bond were carried out
for the cis-bound and the trans-bound ensembles (Figs. S1–S3).
Our results indicate that the z component, defined as the normal
to the ring plane defined by the N, Cα, and Cγ atoms of the
proline residue, is approximately the same for the cis-bound and
the trans-bound states (Fig. 4).
Having determined the electrostatic field present in the active

site of cyclophilin A during the catalytic process, we investigated
its specific effect on the proline isomerization process. To obtain
an initial insight into this effect, we performed DFT calculations
(SI Text) on a model system, the N-acetyl-L-prolyl-N-methyl-
amide (Ace-Pro-Nme) proline dipeptide, in vacuo and compared
the potential energy surface of this system in the presence and
absence of an electrostatic field corresponding to that found in
the active site of cyclophilin A. The potential energy surfaces for
the isomerization process as a function of the ω and ψ angles
(Fig. 4) indicate that in the absence of electrostatic fields the
trans isomer is about 20 kJ/mol more stable than the cis isomer,
with the clockwise (ω = −90°) and counterclockwise (ω = 90°)
energy barriers between the cis-bound and trans-bound states
being of comparable height (“clockwise” and “counterclockwise”
are defined for the trans-to-cis transition) (Fig. 4).

A B C

Fig. 1. Ensembles of structures representing the conformational fluctuations of cyclophilin A in the trans-bound (A), the cis-bound (B), and the free (C) states.
The ensembles have been determined using backbone chemical shifts as replica-averaged restraints (free state) and backbone chemical shifts and interchain
NOEs replica-averaged restraints (bound state). The simulations were performed with a modified version of GROMACS, using the Amber99SB*-ILDN force-
field and applying the CamShift and NOE restraints over two replicas (37). More details are provided in SI Text.

Fig. 2. Cyclophilin A samples regions of its conformational space in the absence of the substrate similar to those sampled during the catalytic turnover. Free-
energy surfaces for the bound state of cyclophilin A as a function of active site and protein core side chains are shown. (A) Free-energy landscape as a function
of the χ3 dihedral angle of GLN63 and the χ2 dihedral angle of LEU98. (B) Free-energy landscape as a function of the χ1 dihedral angle of ARG55 and the χ2
dihedral angle of PHE112. The isolines are plotted at intervals of 2.0 kJ/mol. The contours represent the trans-bound– and cis-bound–specific basins; the red
dots represent the free ensemble.
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The potential energy surface of the proline dipeptide model in
the presence of an electrostatic field of 50 MV/cm along the

negative direction of the z axis is shown in Fig. 4. In this case the
main effect of the electrostatic field is to reduce the energy
barrier strongly, by about 30 kJ/mol, at ω = 90° while slightly
increasing the energy barrier at ω = −90°. Furthermore this
electrostatic field increases the stability of the cis-bound state by
about 10 kJ/mol. Previous studies that used classic molecular
dynamics simulations suggested that cyclophilin A catalyzes pro-
line isomerization along a counterclockwise direction for the trans-
to-cis transition (14, 15).
Here, our model calculations enable us to put forward the

hypothesis that, perhaps not surprisingly, the source of this effect
is the electrostatic field generated by the enzyme in its catalytic
site and acting on the glycine–proline peptide bond. These
results, more in detail, also suggest that the effect of cyclophilin
A is to create an electrostatic handle that acts on the electric
dipole of the glycine carbonyl group of the glycine–proline sub-
strate (Movie S1), which is the only substantial electric dipole in
proximity of the glycine–proline peptide bond, thus stabilizing
the transition state in which the dipole is aligned with the field
(ω = 90). The lowering of the barrier (i.e., the stabilization of the
transition state) is compatible with the experimentally observed
speed-up of four to five orders of magnitude (from minutes to
milliseconds) of the isomerization process.
To investigate the presence of possible additional effects of

the electrostatic field on the electron density in correspondence
to the peptide bond, we performed a natural bond orbital anal-
ysis (SI Text) that clearly indicated that the electron density along
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Fig. 3. Comparison between the experimental and calculated chemical shifts
for the bound-state ensemble of cyclophilin A. (A) Cα atoms, (B) Cβ atoms, (C) N
atoms, and (D) HN atoms. r, correlation coefficient; sd, SE.
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Fig. 4. (A) Probability distributions of the electrostatic field (inmegavolts per centimeter) components along the z axis. The cis-bound ensemble is shown in green and
the trans-bound ensemble in blue. The electrostatic field was calculated from the electronic density derived by DFT (SI Text). (B) Illustration of the electrostatic handle
mechanism (see also Movie S1). (C) Potential energy surfaces (in kilojoules per mole) of the Ace-Pro-Nme peptide in vacuo with and without an electric field of the
magnitude found in the active site of cyclophilin A. The potential energy surfaces were calculated at the same level of accuracy (SI Text) as the electric field of A. The
negative value of the z component of the field, which has samemagnitude in both the cis-bound and the trans-bound states, has the effect of reducing the potential
energy barrier between the cis (ω = 0) and trans (ω = 180°) in the positive direction (from0° to 180°), whereas it increases the barrier in the negative direction (from0° to
−180°). (D) Schematic illustrationof theelectrostatichandlemechanismofproline isomerization. Theelectric field in the catalytic siteactson theelectricdipoleassociated
with the carbonyl group of the glycine preceding the proline in the substrate, thus causing a rotation in the ω angle of the peptide bond between the two residues.
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the peptide bond is almost completely unaffected by the presence
of the electrostatic field, showing that the nature of the chemical
bond remains unchanged.

Validation of the Electrostatic Handle Mechanism with a Thioamide-
Substituted Peptide. To test the electrostatic handle mechanism
suggested by the model calculations described above, we selec-
tively altered the electrostatic properties of the handle by
replacing the CO group with a CS group in the glycine residue
preceding the proline in the substrate. The replacement of an
oxygen atom by a sulfur atom modifies the substrate primarily by
reducing the electrostatic dipole of the handle (i.e., the CO
group in the wild-type peptide and the CS group in the modified
peptide) and thus is expected to reduce the catalytic activity of
cyclophilin A. Indeed, a calculation of the electrostatic potential
charge on the Ace-Pro-Nme proline dipeptide in vacuo indicates
that replacing a CO group by a CS group reduces the value of the
dipole from 0.65 eÅ for the CO bond to 0.35 eÅ for the CS bond.
Assuming that the average electrostatic field in the active site of
cyclophilin A is 40 MV/cm, one can estimate the increase in the
isomerization barrier associated with the CS replacement to be
∼10 kJ/mol, corresponding to a slowing down of the isomeriza-
tion process by approximately two orders of magnitude.
We verified that the thioamide modification alters the binding

affinity only marginally (Fig. S4), but, consistently with the above
prediction, the absence of exchange peaks in the homonuclear
NOESY spectrum (Fig. 5) and the absence of cross-peaks in the
ZZ-exchange spectrum (Fig. S5) correspond to a lack of proline
isomerization in the thioamide-substituted peptide.

Further Support for the Electrostatic Handle Mechanism from the
R55A Mutant. To characterize better the specific contribution to
the total electrostatic field of the arginine residue at position 55
(R55), which has been proposed to be key in the catalytic process
(22, 23), the DFT calculations were repeated over the same
ensemble of bound structures but with an R55A mutation. The
analysis of the electric field distributions in this case is consistent
with the observation of an almost complete loss of enzymatic
activity of this mutation (22). Indeed, the z component of the
electrostatic field is strongly reduced (Fig. 6). In the R55A

variant, the electrostatic field lowers the isomerization barrier by
less than 15 kJ/mol, to about half the value in the wild-type R55.
These calculations confirmed that R55 plays a key role in the
catalysis by generating the electrostatic field that turns the car-
bonyl group of glycine and by keeping the proline in place by
a hydrogen bond with its side chain. Overall, the global effect of
the electrostatic field is to reduce the counterclockwise barrier,
thus making the isomerization process much more accessible, as
well as stabilizing the alternative isomerization state.

Other PPIases. To investigate whether the electrostatic handle
mechanism is specific for cyclophilin A or is used more generally
by other PPIases, we calculated the electrostatic field acting
on the carbonyl group in three other structures representing
the three major families of PPIases: immunophilins (including
cyclophilins), FK506-binding proteins (FKBPs), and parvulins
(3). Our results were consistent with those found for cyclophilin
A: −19MV/cm for cyclophilin B (PDB ID code 1VAI), −33MV/cm
for an FKBP (PDB ID code 4ITZ), and −10 MV/cm for Pin1
(PDB ID code 1PIN), a parvulin (Fig. 4A). These values of the
electrostatic field indicate, but do not prove, that the electro-
static handle mechanism may be common among PPIases, al-
though other effects also may contribute to the isomerization
process in different cases (1–3).
The values of the electrostatic field shown in Fig. 4A for in-

dividual structures also illustrate the importance of determining
an ensemble of conformations representing the dynamics of the
enzyme because individual structures may exhibit low values
of the electrostatic field just by chance, thus making it diffi-
cult to identify the importance of the electrostatic field in the
catalytic mechanism.

Conformational Fluctuations in the Free State. We then applied the
approach we used for the bound states, i.e., using molecular
dynamics simulations with chemical shift restraints (but this time
without NOE restraints), to characterize the free conformations
of cyclophilin A (Fig. 1C). In this case also, the agreement be-
tween experimental and calculated chemical shifts was excellent
(Fig. S6). Moreover, in the absence of the substrate, residual
dipolar couplings (RDCs) were readily obtained for cyclophilin
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A (SI Text). The free-state ensemble thus was validated by using
RDC data, which were not used in the structure calculations
(Fig. S7). We found that the Q factor for the X-ray structure of
PDB ID code 1OCA (45) is 0.45, whereas that of the ensemble
is 0.31.
From relaxation-dispersion measurements of the free (21, 22,

39) and bound (46) states of cyclophilin A, it has been suggested
that the conformational fluctuations of these states are similar
(21–23). Recently presented crystal structures of the free state
(23) showed that two populations could be characterized in terms
of different rotameric states of a specific set of amino acids. An
analysis of the ensembles determined in this work demonstrates
that in the free state of cyclophilin A the cis-bound–like and the
trans-bound–like conformations are in conformational exchange
(i.e., these functionally relevant conformations already are being
sampled in the absence of the substrate). These results are illus-
trated by plotting the free-energy surface for the free state of
cyclophilin A as a function of the rotameric state of four amino
acids belonging either to the active site or to the core of the
protein. The cis-bound and trans-bound ensembles are clearly
included in the free-energy surface of the free enzyme (Fig. 2).
Further analysis of the conformational fluctuations of the side
chains shows that, in particular for S99 and F113, the free en-
semble that we determined is fully consistent with previous
results (23) (Fig. S8). The coexistence of cis-bound–like and
trans-bound–like conformations in the free state of cyclophilin A
is a defining trait of the high conformational mobility of this
enzyme in the absence of a substrate.

Concluding Remarks. To characterize the mechanism by which
cyclophilin A catalyzes proline isomerization, we simultaneously
determined the cis-bound and trans-bound states of the enzyme
as the catalytic reaction takes place (Fig. 1). This result was
obtained by using NMR spectroscopy in combination with

molecular dynamics simulations. In our approach, the NMR
measurements are used as replica-averaged structural restraints
in molecular dynamics simulations (29, 37, 41–43). Because
the experimental information is used to restrain the average
values corresponding to the measured quantities over multiple
copies of the protein molecules, it is possible to take into account
the conformational flexibility of the molecules themselves
(Figs. 1 and 2).
By analyzing the electrostatic field in the catalytic site in

the ensembles of conformations that we determined, which
represent the cis-bound and trans-bound states of the peptide
substrate in complex with cyclophilin A, we identified an elec-
trostatic handle mechanism underlying the catalytic process
(Fig. 4 and Movie S1). We then validated this mechanism by
studying the proline isomerization process of a modified version
of the substrate, in which we performed a targeted change in the
electric dipole representing the handle. We obtained this result
by replacing the oxygen atom of the carbonyl group of the amino
acid preceding the proline with a sulfur atom, a specific sub-
stitution that concerns a single atom in the substrate and con-
serves the group in the periodic table. As expected, this rationally
designed substitution, which significantly reduces the electric
dipole of the handle but leaves the other properties of the sub-
strate essentially unchanged, suppressed significantly the cata-
lytic activity of cyclophilin A (Fig. 5).
These results also provide further insights into the possible

roles of dynamics in catalysis (21–23, 27, 47–50) when no
chemical bond is formed or broken, because the conformational
fluctuations in the bound state, which resemble those previously
described in the free state (21–23), enable the population of
structures that are particularly effective in reducing the isomer-
ization barrier by providing the appropriate electrostatic fields
(Fig. 4A).
More generally, our findings illustrate that the combination of

NMR spectroscopy with molecular dynamics simulations and
quantum mechanical calculations has the potential of identifying
the specific mechanisms by which enzymes use electrostatic fields
for catalysis.

Methods
Expression and purification of recombinant 13C,15N-labeled cyclophilin A
were carried out as described in SI Text. The measurements of chemical shifts
and residual dipolar couplings in the free and peptide-bound states (in-
cluding the bound state with the thioamide-substituted peptide) were car-
ried out as described in SI Text. Molecular dynamics simulations with replica-
averaged NMR restraints and quantum mechanical calculations were carried
out as described in SI Text.
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NMR Measurements. Chemical shifts in the free state. Recombinant
13C,15N-labeled cyclophilin A was purified as described previously
(1). Briefly, 13C,15N-labeled cyclophilin A was concentrated
to ∼1.0 mM protein in 50 mM Na2HPO4 (pH 6.5), 2 mM DTT
with 10% D2O, which was the NMR solution buffer. All spectra
were collected on either a Varian 600 MHz or 800 MHz spec-
trometer at 10 °C and at 25 °C, which included a standard Bio-
pack HNCACB and CBCAcoNH. Data were processed using
NMRPipe (2) and analyzed using CcpNmr software (3).
Chemical shifts and intermolecular NOEs in the bound state. To obtain
NMR measurements in the bound state of cyclophilin A with the
GSFGPDLRAGDpeptide substrate, two samples were produced.
The first sample contained 0.5 mM 13C,15N-labeled cyclophilin
A and 4 mM of unlabeled peptide, and the second sample
contained 0.5 mM 13C,15N-labeled peptide with 4 mM of un-
labeled cyclophilin A. This two-sample strategy was used because
of the relatively weak binding constant between cyclophilin A
and the peptide substrate, which makes it impossible to approach
saturation for both the enzyme and the peptide. Instead, a 1:8
ratio allows ∼97% binding, such that the chemical shifts report
on the bound form. This strategy also reduces peak overlap. The
buffer described above for the free enzyme was used. Because
the cis-to-trans and trans-to-cis substrate isomerization rates are
1,040/s and 1,640/s, respectively (4), catalysis is within the fast
exchange regime. Thus, chemical shifts during catalysis obtained
for each of the two samples described above provide values av-
eraged over the cis-bound and trans-bound states. At these
concentrations the enzyme and peptide are about 97% bound.
C13/N15-edited/filtered intermolecular NOESY experiments,
Biopack sequence gCNfilnoesyChsqcSA, were collected using
these two samples, and the resulting NOEs were used for the
calculations.
Residual dipolar couplings in the free state. Commercially available
bicelle mixtures were found to interact specifically with the hy-
drophobic active site of cyclophilin A as monitored through
15N-heteronuclear single-quantum coherence (HSQC) spectros-
copy experiments. As previously described, specific mixtures
offer optimal alignment at different temperatures. Thus, C12E5/
hexanol mixtures were produced for amide residual dipolar
couplings (RDCs) collected at 25 °C, whereas C8E5/octanol
mixtures were produced for amide RDCs collected at both 10 °C
and 0 °C. For example, 30 μL of polyethylene glycol was added
to the NMR solution buffer, and alcohols were added at mi-
croliter increments; during these additions the monodeuterated
water splitting was used to monitor alignment of these mixtures.
Finally, 60 μL of 1.1 mM 15N-labeled cyclophilin A was added to
240 μL of the aligned mixtures, and standard in-phase/anti-phase
experiments were collected on a Varian 900 MHz at the Rocky
Mountain Regional 900 MHz NMR Facility at the three tem-
peratures described above.

Molecular Dynamics Simulations. General setup. All the simulations
in the present work were performed using GROMACS (5). The
system was simulated using the Amber99SB*-ILDN force field
(6, 7) in explicit TIP3P water (8). A time step of 2 fs was used
together with LINCS constraints (9). van der Waals interactions
were cut off at 1.2 nm, and long-range electrostatic interactions
were treated with the Particle Mesh Ewald method (10). The
canonical ensemble was enforced by keeping the volume fixed
and by thermosetting the system with the Bussi thermostat (11).
The starting conformation for the free state was taken from the

NMR structure of Protein Data Bank (PDB) ID code 1OCA
(12); the structures of PDB ID codes 1M9C and 1M9Y were
used for the cis-bound and trans-bound states, respectively (13).
The structures were protonated and solvated with 5,102 TIP3P
water molecules in a dodecahedron box with a volume of 178 nm3.
First, the energy of the system was minimized, and then the
temperature was increased to 300 K in two separate steps. In the
first step a 50-ps simulation was performed by keeping the heavy
atoms of the protein fixed; then a second 200-ps simulation was
performed without any restraint. The density of the system was
relaxed by a 200-ps run using the Berendsen barostat (14).
Replica-averaged ensemble. The starting structures for the two
replicas of the system were selected as the final structure from
two simulations, each 1 ns long. Experimental chemical shifts for
the free and bound state were measured as described in the NMR
section above and were applied as a restraint over the two rep-
licas of the system as shown previously for ribonuclease A (15).
CamShift (16) was used to back-calculate the chemical shifts
from both replicas at each time step. In the bound case, the
NOEs between the protein and the substrate were applied on the
two replicas as average restraints (17, 18).
The force constant for the chemical shifts restraints was set to

5.2 kJ/mol, and the force constant for the NOEs was set to 250
kJ·mol−1·nm−2 with a bottom flat potential that is zero between
0.3 and 0.5 nm. In term of energy per atom, the contribution of
the chemical shifts restraint was less than 0.4 kJ/mol (<3% of the
total), and the contribution of the NOEs was less than 0.02 kJ/mol
(<1% of the total). Each replica has been evolved through a
series of annealing cycles between 300 K and 450 K (100 ps at
300 K, 100 ps during which the temperature increased linearly
up to 450 K, 100 ps of constant-temperature molecular dy-
namics at 450 K, and 300 ps during which the temperature
decreased linearly to 300 K). Only structures from the 300-K
segment of the simulation are taken into account for analysis.
Each replica has been evolved for a total nominal time of 100 ns.
The final ensembles comprise all the 300-K structures sampled
by both replicas.
The averaged chemical shift restraints were added to

GROMACS by using PLUMED (19) and Almost. The NOEs were
added using the module already provided within GROMACS.

Quantum Mechanical Calculations. All the quantum mechanical
(QM) calculations were done using the Gaussian 03 suite of pro-
grams (20).
Investigation of electric field effects on the ω–ψ potential energy surface
of a proline model. The starting calculations aimed to reveal the
presence of electrostatic field effects on the energy barrier of ω
rotation at the substrate proline site. A bicapped L-proline was
used as a model to study the influence of electrostatic fields (Fig.
S4). The acetylic (Ace) and N-methyl amino (Nme) groups were
added at the L-proline imino and carboxyl termini, respectively.
The resulting structure (N-acetyl-L-prolyl-N-methylamide, Ace-
Pro-Nme) is the simplest model for studying the properties of
a proline residue while maintaining relatively correct electronic
states of the terminal atoms that, in a full-scale polypeptide
structure, participate in peptide bonding with the adjacent amino
acid residues.
Hybrid-density functional theory (DFT) (21) was used with the

Becke three-parameter exchange functional and the Lee, Yang,
and Parr correlation functional (22–24) (B3LYP) for all QM
calculations in this work.
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The geometry of the model was constructed manually using
mixed Cartesian and internal coordinates to maintain a fixed
direction for the molecule-associated coordinate system over the
course of conformational changes in the molecule but retaining
the ability to relax the structure fully when a complete geometry
optimization was needed. The origin of the coordinate system is
set at the N atom of proline, with the x axis always pointing along
the N–C bond and the z axis orthogonal to the plane of the
proline ring as represented in Fig. S2B. The choice of the axis
directions also accounted for the predicted most influential di-
rections for the uniform electric fields. The y direction is along
the (H)–N bond and is parallel to the C=O bonds of the peptide
bond that defines the ω rotation, with (H) being a carbon atom in
the case of proline imino acid. The z axis points in the direction
of the formation of a nonconventional hydrogen-bond between
the proline nitrogen and the guanidinium moiety of arginine or
histidine from an enzyme-binding site. This hydrogen bond
represents a widely accepted mechanism for the action of the
proline isomerization enzymes (25). In many cases hydrogen
bonding can be regarded as a type of electric field effect (26);
hence the further generalization of the H-bonding as electric
field effects seems to be a reasonable explanation for the ac-
tions of cyclophilins. Overall, the x and z directions selected for
the further application of a uniform electric field should be
most influential in changing the energetic characteristics of
the ω rotation.
The initial structure of Ace-Pro-Nme was fully geometry op-

timized with a split-valence 6–31G(d,p) basis set (27). This step
was followed by a complete scan of the ψ and ω space, spanning
the range of −180° to 180° for both angles with angle steps of 15°.
For each ψ/ω configuration, the geometry was optimized with
preset ψ and ω angles in nine different conditions, overall com-
pleting 5,625 (25 × 25 × 9) hybrid-DFT calculations. The nine
conditions include eight calculations with uniform electric fields of
−50, −20, 0, 20, and 50 MV/cm (the minus signs indicate the
reverse direction) applied along the x and z directions and a single
calculation without any external field application. The complete
set of results is presented in Fig. S4, where the energy of the Ace-
Pro-Nme system is plotted against the ω and ψ angles under the
above conditions. The energy is presented in kilojoules per mole,
referenced by the lowest energy conformation observed in each of
the computed landscapes. The difference map between the cor-
responding electric field condition and the normal, gas-phase (no
field) condition clearly highlights the regions in the ψ/ω space
where the electric field stabilizes (blue) or destabilizes (red) the
system (Fig. S4).
As can be inferred from the potential energy surface plots, the

electric field acting along both the x and z directions has a sub-
stantial impact on the pathway of the ω-rotation reaction. It is
clear that the electric fields along the −x, x, −z, and z directions
facilitate ω rotations by decreasing the relative barrier for the
transitions at the 0/+, +/(−,+), 0/+ and +/− regions corre-
spondingly. In a/b notation, a indicates the region of the ψ di-
hedral angle (around 0, + for positive ψ, and − for negative ψ),
and b denotes the same for ω (Fig. S4). Hence, the fine interplay
of electrostatic fields acting along different directions is capable
of modulating the pathway for the proline cis–trans transitions.
Natural bond orbital analysis of Ace-Pro-Nme. To clarify whether the
effect of the electric field on the ω-rotation barrier is the result of
substantial changes in the electronic structure at the proline site,
we performed a natural bond orbital (NBO) (28, 29) analysis of
Ace-Pro-Nme, paying attention to the bonding orbital along the
N–C bond that defines the ω rotation. In particular, if the in-
fluence of the external electric field were mediated through
abrupt changes in electronic structure, one would expect a de-
crease in the population of the N–C bonding orbital components
and/or a decrease in the contributions from the natural atomic
orbitals in p components and increase in these contributions in

s components. With such changes, the N–C bond can become
more of an s type and less of a p type, thus making the rotation
along the bond relatively more feasible.
However, the results show only slight differences in such pop-

ulations upon the application of the electric field. For instance, the
selected model transition structure with ω = 90° and ψ = −10°,
for which a substantial reduction of the potential energy is observed
while applying−50-MV/cmfield along the z axis (Fig. S4B), changes
the N–C binding natural molecular orbital from [0.7903(sp2.39) +
0.6128(sp2.22)] to [0.7911(sp2.45) + 0.6117(sp2.29)], as expressed in
the established notation system for the NBO analysis and omitting
negligibled contributions. The first term in the addition comes from
N atoms, and the second term from C atoms. The polarization
coefficients, if squared, show the percentage of the NBO on each
N-based or C-based hybrid. Shown below is the state of the N–C
bonding NBO with and without a −50 MV/cm uniform electric
field, with the whole system expressed in percentages and the sp
hybrids broken down into separate s and p contributions:

Electrostatic field = 0 MV/cm

NBO occupancy = 1.98605

Orbital energy = −0.75419 Hartree

N (62.45% contribution, of which 29.45% is s character and
70.50% is p character)

C (37.55% contribution, of which 31.02% is s character and
68.84% is p character)

Electrostatic field = − 50 MV/cm along the z axis

NBO occupancy = 1.98519

Orbital energy = −0.74989 Hartree

N (62.58% contribution, of which 28.97% is s character and
70.97% is p character)

C (37.42% contribution, of which 30.34% is s character and
69.52% is p character)

Hence, the electrostatic field affected the overall electron
occupancy of the N–C bonding NBO only slightly, increasing
(slightly destabilizing) the orbital energy by ∼11.3 kJ/mol and
slightly increasing the p character of the contributing natural
atomic orbitals. Similar negligible effects are observed in sim-
ilar calculations using the cis (ω = 0° and ψ = −10°) and trans
(ω = 180° and ψ = −10°) structures of the proline model instead
of the transition-state structure.
Therefore, the observed stabilization of the transition structure

is the result of the overall electrostatic interaction of the substrate
molecule with the external electric fields rather than specific
modulation of the electronic structure that would affect the N–C
bond of the ω rotation.
QM studies of the electric fields in the active site of cyclophilin A. The
calculations for the proline residue model detailed above clearly
demonstrate that electric fields with values within the range
typical for biomolecules (30) can be influential in defining
ω-rotation energy barriers. Here we also verify that the fields of
such magnitude are acting in cyclophilin A active site.
For the QM calculations on the cyclophilin A active site, 114

structures from each of the obtained cis and trans ensembles were
geometry optimized with an Amber99SB*-ILDN force field
(6, 7). The maximum allowed force acting on any atom was set at
100 kJ/nm. An active region is defined for cyclophilin A via an
n-layered integrated molecular orbital plus molecular mechanics
method (ONIOM) (31) routine in Gaussian 03. The region is
determined first by counting all the atoms within a 7.5-Å radius
from the nitrogen atom of the substrate proline. Next, the
fragments from the residues that were halved by this definition
were extended to complete the residues or, in the case of large
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residues, to extend the moieties toward a chemically sensible
partition. The latter step has set the distance of the most distant
(from proline N) counted atoms at around 12 Å. The resulting
QM region included 250 atoms from Arg-55, Ile-57, Phe-60,
Met-61, Gln-63, Met-100, Ala-101, Asn-102, Ala-103, Phe-113,
Trp-121, Leu-122, Lys-125, and His-126 (Fig. S3).
In this way, ONIOM calculations are done for all of the 228

structures from cis and trans ensembles. Single-point calcu-
lations were done with B3LYP/6–31G(d,p) level of theory for
the system inside the QM region. Dummy atoms replaced the
substrate atoms, so that only the electrostatic contribution from

cyclophilin A was counted, and the place markers for the
substrate atoms were retained. Electrostatic effect embedding
was not allowed; hence the electric fields in the cyclophilin A
active site reflect only the QM component from the defined
region. Then, electric field values were retrieved for the posi-
tion of the substrate N atom of the proline residue and then
were projected into the x and z coordinates of the proline
N-fixed coordinate system.
All the calculations described here were repeated for the

equivalent set of structures from cis and trans ensembles with the
R55A mutation.
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Fig. S1. Molecular model used to obtain the energy profiles of proline conformational transitions at different electric field values and directions. (A) The ω
and ψ dihedral angles, further used as potential energy-surface coordinates, are highlighted. (B) An example of the geometry is shown with the directions of
the coordinate system that is attached to the N atom of proline.

Fig. S2. Structure of cyclophilin A showing the QM region around the active substrate-binding site highlighted in ball-and-stick representation.
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Fig. S3. Potential energy surfaces for Ace-Pro-Nme across ψ/ω space without and with uniform electric field acting along the x (A) and z (B) directions. The
color scheme (from blue to red) and the isocontour lines depict the energy in kilojoules per mole. The lower rows in A and B show difference maps calculated
with respect to the model system in the absence of an electric field.
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Fig. S4. Binding of the thioamide-substituted peptide. (A) HSQC spectra of 0.5 mM 15N CypA alone (red) or with addition of 0.1 mM (orange), 0.2 mM (green),
0.5 mM (light blue), 1 mM (dark blue), and 2 mM (violet) model peptide (Left) or thioamide-substituted peptide (Right). (B) Normalized binding isotherm for
a single residue in CypA during titration of the model peptide (black) and modified peptide (red). Dotted lines represent best-fit curves using the dissociation
constant determined by simultaneous fitting to multiple peaks for each titration. The dissociation constants for the model and thioamide-substituted peptide
are 76 ± 6 μM and 156 ± 16 μM, respectively.
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Fig. S5. Comparison of the ZZ-exchange spectra of the model peptide substrate and its thioamide variant. The spectra of the peptides alone and with
cyclophilin A (20 μM added to the normal peptide, 500 μM added to the thioamide peptide variant) are shown. Although there are no cross-peaks in the
thioamide peptide variant, even with 500 μM cyclophilin A, the cis peak is shifted significantly, consistent with the observation that cyclophilin A binds to the
cis conformation. These results indicate that the thioamide substitution almost completely stops the turnover of the substrate.
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Fig. S6. Comparison of the experimental and calculated chemical shifts for the free-state ensemble of cyclophilin A. r, correlation coefficient; sd, SE.
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Fig. S7. Comparison of the experimental and calculated RDCs. (Left) Free ensemble of cyclophilin A. (Right) The structure of PDB ID 1OCA. Q, quality factor;
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Fig. S8. Comparison of dihedral angles in the free conformations determined by Fraser et al. (32) and in the present study. The black line represents the free-
state ensembles of cyclophilin A; the red and green bars represent the major and minor population, respectively, as determined by Fraser et al. (32).
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Table S1. Distances (in nanometers) for the hydrogen atom pairs restrained with NOE-derived
distances

Atom pairs cis subensemble trans subensemble Whole ensemble Experimental range

73Hg–1Ha 0.43 0.53 0.46 0.2–0.6
73Hg–2Ha 0.37 0.31 0.33 0.2–0.6
73Hg–2Hb 0.42 0.44 0.43 0.2–0.6
73Hg–3Hd 0.51 0.50 0.51 0.2–0.6
73Hg–3He 0.49 0.52 0.51 0.2–0.6
100He–3Hd 0.40 0.84 0.44 0.2–0.6
100He–3He 0.36 0.77 0.40 0.2–0.6
102Ha–3Hd 0.41 0.30 0.33 0.2–0.6
102Ha–3He 0.44 0.35 0.38 0.2–0.6
102Hb–3Hd 0.67 0.57 0.60 0.2–0.6
102Hb–3He 0.70 0.57 0.61 0.2–0.6
107Hb–3Hd 0.45 0.50 0.47 0.2–0.6
107Hb–3He 0.30 0.31 0.30 0.2–0.6
107Hg–3Hd 0.66 0.72 0.68 0.2–0.6
107Hg–3He 0.55 0.56 0.55 0.2–0.6
108Ha–3Hd 0.70 0.56 0.60 0.2–0.6
108Ha–3He 0.58 0.42 0.46 0.2–0.6
122Hd–6Ha 0.59 0.65 0.61 0.2–0.6
122Hd–6Hb 0.42 0.61 0.46 0.2–0.6
148Hg–7Hd 0.66 0.48 0.52 0.2–0.6
148Hd–7Hd 0.60 0.52 0.55 0.2–0.6
57Hd–7Hd 0.41 0.45 0.43 0.2–0.6
57Hg–7Hd 0.41 0.36 0.38 0.2–0.6
60Ha–7Hd 0.58 0.55 0.56 0.2–0.6
60Hb–7Hd 0.40 0.36 0.23 0.2–0.6
61He–7Hd 0.53 0.77 0.59 0.2–0.6
119Hg–7Hd 0.71 0.69 0.70 0.2–0.6

The columns show the averages for the cis-bound and trans-bound subensembles and for the whole bound
ensemble. Values in bold are outside the experimental bounds.

Movie S1. Illustration of the electrostatic handle mechanism. (Left) The electrostatic field (black arrow) in the catalytic site of cyclophilin A acts on the electric
dipole associated with the carbonyl group of the glycine residue preceding the proline residue in the peptide substrate, thus favoring its rotation. (Right)The
energy barrier for the rotation is shown as a function of the ω (x-axis) and ψ (y-axis) backbone dihedral angles.

Movie S1
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