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Abstract. The genetic code is redundant, as there are about three times more
codons than amino acids. Because of this redundancy, a given amino acid can be
specified by different codons, which are therefore considered synonymous. Despite
being synonymous, however, such codons are used with different frequencies, a
phenomenon known as codon bias. The origin and roles of the codon bias have
not yet been fully clarified, although it is clear that it can affect the efficiency,
accuracy and regulation of the translation process. In order to provide a tool to
address these issues, we introduce here the codon information index (CII), which
represents a measure of the amount of information stored in mRNA sequences
through the codon bias. The calculation of the CII requires solely the knowledge
of the mRNA sequences, without any other additional information. We found
that the CII is highly correlated with the tRNA adaptation index (tAI), even if
the latter requires the knowledge of the tRNA pool of an organism. We anticipate
that the CII will represent a useful tool to study quantitatively the relationship
between the information provided by the codon bias and various aspects of the
translation process, thus identifying those aspects that are most influenced by it.
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1. Introduction

Molecular biology is undergoing profound changes as major advances in experimental
techniques are offering unprecedented amounts of data about the molecular components
of living systems [1]–[4]. Most notably, the analysis of the thousands of genomes that have
been sequenced [4] is revealing the mechanisms and principles through which the genetic
information is maintained and utilized in living organisms [5]–[8].

A question of central importance concerns the causes and consequences of the
redundancy of the genetic code. During translation, each amino acid is specified by a triplet
of nucleotides (a codon). A given amino acid, however, may correspond to more than one
codon, so that 61 codons correspond to 20 amino acids. For instance, lysine is encoded by
two codons, valine by four and arginine by six. The way in which these synonymous codons
are used shows a marked bias, a phenomenon known as codon bias [9, 10]. For instance, in
humans, for the amino acid alanine the codon GCC (guanine–cytosine–cytosine) is used
four times more frequently than the codon GCG. The codon bias is characteristic of a
given organism and has been associated with three major aspects of mRNA translation,
which are efficiency, accuracy and regulation [10, 11].

The first aspect is efficiency. The codon bias and the tRNA abundance in a given
organism appear to have co-evolved for optimum efficiency [12]–[14]. Since synonymous
codons can be recognized by different tRNAs and translated with different efficiencies, the
codon bias is related to the translation rates [15]–[18]. Moreover, codon usage has been
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shown to correlate with expression levels [19]–[26], so that the use of particular codons
can increase the expression of a gene by up to two or three orders of magnitude [27, 22].

The second aspect is accuracy. The codon bias can be used to control the accuracy in
the translation, an effect that appears to have been optimized to reduce misfolding and
aggregation [28].

The third aspect is regulation. Different codon choices can produce mRNA transcripts
with different secondary structure and stability thus affecting mRNA regulation and
translation initiation [22, 29]. The codon usage has also been associated with the folding
behaviour of the nascent proteins, by timing the co-translational folding process [30].

Since all these aspects of the translation process rely in some form on the information
provided by the codon bias, in this work we address the question of establishing a measure
of the amount of information encoded in the codon bias itself. For this purpose, by using a
combination of statistical mechanics and information theoretical techniques, we introduce
the codon information index (CII).

An immediate question is about the need of a new measure associated with the codon
bias, when several measures for it have already been proposed, including the ‘effective
number of codons’ (N̂c) [31], the ‘frequency of optimal codons’ (Fop) [12], the ‘codon bias
index’ (CBI) [20], the ‘codon adaptation index’ (CAI) [32], and the ‘tRNA adaptation
index’ (tAI) [33]. Among these measures, the CII is specifically designed to describe
the amount of information encoded in mRNA sequences through the codon bias, and
it is the only one with the following properties: (i) it requires only information about
the mRNA sequences and does not depend on any additional data, i.e. the CII is self-
contained, and (ii) it produces a codon-wise profile for each sequence which is sensitive
to the spatial organization of the codon. As examples, we mention in particular that, for
a given organism, the tAI requires the knowledge of the tRNA pool, and that the CAI
requires the knowledge of the most expressed genes.

We first analyse the general properties of the CII and then we apply it to a pool of
3371 genes of yeast. We find that the CII correlates with protein and mRNA abundances,
as well as with the tRNA adaptation index (tAI) [33]. The latter result shows that two
independent forms of information, which are stored in different parts of the genome, the
tRNA copy number and the codon bias in the coding region, are remarkably dependent
on one another. These results also show that the spatial organization (i.e. the order) of
the codons inside the transcript is a relevant part of the information stored in the gene.

2. Construction of the CII

A natural representation of the information contained in the codon bias can be given in
terms of strings of bits (i.e. (0, 1) variables) or of distributions over bit strings. In other
words, we associate a bit to each codon. This procedure corresponds to binning the codons
into two classes, each with its own codon usage distribution, given by the frequencies of
the codons in that class. The first ingredient to build the CII is an assignment of bits to
codons that is maximally informative, in a way to be specified later. This also implies
that the information encoded in this way is optimally retrievable. The second ingredient
is a local codon organization along the sequence (see figure 1). We analyse these two
contributions separately below.
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Figure 1. In the calculation of the CII each codon has an associated binary
variable. Synonymous codons interact via the information theoretic part of the
Hamiltonian (solid lines), nearest neighbour sites interact via the Ising interaction
(dashed line).

2.1. Maximum information

We first consider the special case of a protein of length L composed of only one amino acid
type, which can be translated by K different codons [34]; the generalization to the full set
of amino acids is described below. The sequence {c1 . . . , cL}, ci = 1, . . . , K is given, where
ci is the ith codon. We associate a binary variable si = ±1 (i.e. a spin variable, rather
than a bit ({0, 1}) variable) to each site of the sequence; this spin variable identifies the
class each codon is assigned to.

Let pc|s be the probability for the codon c to be used on a site with spin s. A priori,
the only information available is that an amino acid can be encoded by any of its possible
codons. This state of ignorance is described by the choice of a uniform prior distribution
for the probabilities of the parameters pc|s, with the normalization ensured by a δ function

P0(p̂) =
∏
s=±1

Γ(K)δ

(
K∑
c=1

pc|s − 1

)
. (1)

For any assignment ~s = (s1, . . . , sL) of the spins, the statistical information contained

in the sequences is encoded in the codon counts ns(c) =
∑L

i=1δK(si− s)δK(ci− c), i.e. the
number of times codon c is used on a site with spin s. The probability of observing
~ns = (ns(1) . . . ns(K)) is modelled using a product of two multinomial distributions

P (~ns|p̂) =
∏
s=±1

Γ (Ns + 1)∏
c Γ(ns(c) + 1)

∏
c

p
ns(c)
c|s , (2)

where Ns =
∑K

1 ns(c) and obviously N+ +N− = L.
Using the Bayes formula P (θ|x) ∝ P (x|θ)P0(θ), we obtain the posterior distribution

P (p̂|~ns) =
∏
s=±1

Γ (Ns +K)∏
c Γ(ns(c) + 1)

K∏
c=1

ps(c)
ns(c)δ

(∑
c

ps(c)− 1

)
. (3)

An important quantity that can be derived from the prior and the posterior is how
much information is gained by observing the codon frequencies. This quantity is the
symmetrized Kullback–Leibler divergence between the two distributions

I(~ns) = DKL(P‖P0) +DKL(P0‖P )

=

〈
log

P (p̂|~ns)
P0(p̂)

〉
P (p̂|~ns)

+

〈
log

P0(p̂)

P (p̂|~ns)

〉
P0(p̂)

,

doi:10.1088/1742-5468/2013/04/P04031 4
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where the averages are performed with respect to the posterior, equation (3), and the prior,
equation (1), respectively. The integration can be performed analytically and leads to

I(~ns) = −
∑
s=±1

K∑
c=1

ns(c) [ψ (Ns +K)− ψ (ns(c) + 1)] + Const, (4)

where ψ(x) is the digamma function.
The generalization to the whole set of amino acids is simply the sum of the I(~s, ~ns)

for each amino acid

I({~ns,a}) = −
20∑
a=1

∑
s=±1

Ka∑
ca=1

ns,a(ca)[ψ(Ns,a +Ka)− ψ(ns,a(ca) + 1)] + Const, (5)

where Ka is the number of codons encoding for the amino acid a, ns,a(ca) is the number of

times a spin s is associated to the codon ca of the amino acid a and Ns,a =
∑Ka

ca=1ns,a(ca).
To extract as much information as possible from the codon counts we have to maximize

equation (5). However, the contributions of different amino acids are independent and each
amino acid sector is invariant under a spin flip. Therefore, the minima of equation (5)
are highly degenerate. Moreover, the amino acids with only one codon, methionine and
tryptophan, do not contribute to equation (5).

These issues can be cured observing that the previous derivation does not use any
information about how the codons are arranged along the sequence. Therefore, information
carried by the codon order can be used to weight the minima of equation (5).

2.2. Codon spatial organization

In order to remove the degeneracy, we add to equation (5) an interaction between nearest
neighbour spins that favours their alignment. This coupling is also consistent with the
observation of the existence of a ‘codon pair bias’ [35, 36]. We thus define the cost function

H{~s} = −J
L−1∑
i=1

sisi+1 − I({~ns,a}), (6)

where J is a parameter to be tuned which accounts for the degree of spatial homogeneity of
the sequence. In statistical physics terms, equation (6) can be regarded as the Hamiltonian
of a spin system that, besides the 1D Ising interaction J , also has a long range interaction
I as shown in figure 1.4 This analogy makes it possible to apply techniques used to study
spin systems in statistical physics to the present model.

We are interested in the spin arrangements minimizing the Hamiltonian (6), given the
codon sequence. Numerically, energy minimization was performed by simulated annealing
Monte Carlo [37]. When the states of minimal H were found to be degenerate, an average
over all of them was considered.

The optimization of the cost function H is carried out simultaneously on a pool of
genes of the same organism, but clearly the nearest neighbour interaction is defined only
for neighbouring codons within the same gene.

4 The Hamiltonian (6) is invariant under a global spin flip, thus the average magnetization would be zero. To
break this symmetry it is sufficient to add a term Hh = h

∑
isi, which favours the configuration aligned with the

external field h. The field h will be taken vanishingly small ideally, very small in practice.
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Figure 2. Local cII, as in equation (7), for the first 100 codons of the
TFC3/YAL001C gene.

We define the local codon information index as the magnetization at site i on the
transcript g, i.e. the thermodynamic average of the spin at site i

c
(g)
II (i) = 〈s(g)

i 〉 (7)

(an example is given in figure 2), and the codon information index of the gene g as the
average of the local cII on the gene codons

C
(g)
II =

1

Lg

Lg∑
i=1

c
(g)
II (i). (8)

3. Phase diagram of the Hamiltonian (6)

In this section we characterize the properties of H in equation (5) and its minima. We
will also prove the existence of a phase transition in temperature at J = 0. Finally, we
will describe the effect of the nearest neighbour interaction.

3.1. Maximum of equation (5)

As a first step in the characterization of (5), we want to show that each term of the
form (4) has a minimum and is convex. Let us rewrite (4) setting n±(c) = n(c)/2 ± δc,
δc ∈ [−n(c)/2;n(c)/2] and ∆ =

∑
cδc

I(~δ) = −
∑
s=±1

[(
N

2
+ s∆

)
ψ

(
N

2
+ s∆ +K

)
−

K∑
c=1

(nc

2
+ sδc

)
ψ
(nc

2
+ sδc + 1

)]

=
∑
s=±1

[
−gK

(
N

2
+ s∆

)
+

K∑
c=1

g1

(nc

2
+ sδc

)]

= − GK

(
N

2
,∆

)
+

K∑
c=1

G1

(nc

2
, δc
)
, (9)

where gi(x) = x ψ(x+ i) and Gi(n, x) = gi(n+ x) + gi(n− x).

doi:10.1088/1742-5468/2013/04/P04031 6
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We observe that I is symmetric with respect to a transformation ~δ →−~δ. Since gi(x)

is continuous and differentiable in the domain, the derivative must be zero in ~δ = ~0. This
point corresponds to a uniformly distributed posterior and, since I is computed as the KL
divergence of the posterior from a uniform prior (which is a non-negative quantity and is
zero iff the two distributions are equal), it is an absolute minimum. It is the only critical
point since the system of equations

∂I

∂δi
= −G′K

(
N

2
,∆

)
+G′1

(ni
2
, δi
)

= 0 i = 1 . . . K (10)

has the δi = 0 solution only, observing that ∂δiG
′
1 (ni/2,∆) > ∂δiG

′
K (N/2,∆).

This implies that the maxima must reside on the boundary. Repeating the argument
on the boundary faces, we end up concluding that the maxima must lie on the boundary
vertices, i.e. the points such that δ∗i = ±ni/2. On these points I becomes

I(~δ∗) =
K∑
c=1

ncψ (nc + 1)−
(
N

2
+ ∆

)
ψ

(
N

2
+ ∆ +K

)
−
(
N

2
−∆

)
ψ

(
N

2
−∆ +K

)
.

The function is now only dependent on ∆ and observing again that it is symmetric and
concave we see that there is a maximum in ∆ = 0.

The maximum is thus obtained on the vertices which minimize the difference |N+−N−|
(e.g., for four codons with {n(c)} = (5, 3, 4, 2) the maximum is obtained for (+,−,−,+)
or (−,+,+,−), since I is symmetric under a global spin flip). This is an instance of
the number partition problem which belongs to the NP-complete class. However, we are
dealing with sets which contain at most six elements.

Considering the full set of amino acids, we can finally ask how many states have

the same I({~δa}). Using the fact that the contribution for each amino acid is invariant
under a spin flip and that the amino acids with one codon only are not considered, there
are at least 218 states in addition to the trivial degeneracy coming from the amino acids
methionine and tryptophan which do not contribute to (5).

3.2. Phase transition in temperature at J = 0

It is possible to analytically work out the thermodynamics of equation (6) at J = 0. At high
temperatures we expect a disordered paramagnetic phase, while at low temperatures the
system falls into one of its many minima, which correspond to the maxima of equation (5)
described in the previous section. Here we prove that a phase transition exists by showing
that the concavity of the free energy changes sign at a critical temperature Tc in the large
nc limit.

At J = 0 we can easily compute the entropy of a state specified by ~n+. The number of
different configurations is simply the number of permutations of nc elements, given that
the n+(c) and n−(c) are equivalent. The entropy is thus the logarithm of the product of
binomials

S(~n+|~n) = log
∏
c

(
nc

n+(c)

)
(11)

doi:10.1088/1742-5468/2013/04/P04031 7
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and we can easily write the free energy F = H − TS,

F =

[
GK(N/2,∆)−

K∑
c=1

G1(nc/2, δc)

]
− T

K∑
c=1

log

(
nc

nc

2
+ δc

)
. (12)

At high temperature the thermodynamics of the system is governed by the entropic

term which has a minimum at ~δc = 0 (paramagnetic phase).
To prove that this minimum becomes repulsive at a critical temperature we study the

concavity of the free energy. Taking the second derivatives gives

∂2F

∂δ2
i

= G′′K(N/2,∆)−G′′1(ni/2, δi) + T (ψ1(ni/2 + δi + 1) + ψ1(ni/2 + δi + 1)),

∂2F

∂δi∂δj
= G′′K(N/2,∆).

At high temperature we expect that |δi| � ni. Expanding in large ~nc, we find

∂2F

∂δi∂δj
∼ 4

N
+ δKRij

[
− 4

ni
+ T

(
4

ni
+

4

n2
i

)]
+O(n−3)

which can be written as ∂2F = b+aiδ
KR
ij +O(n−3), where both ai = −4(1 +T +T/ni)/ni

and b = 4/N are independent of δi up to terms of order n−3
c .

The free energy F is convex (concave) if the Hessian matrix is positive (negative)
definite, i.e. if each eigenvalue is positive (negative). Its characteristic polynomial can be
easily computed using the Sylvester’s determinant theorem and reads as

PK(λ) =
K∏
i=1

(ai − λ) + b
K∑
i=1

K∏
j 6=i

(aj − λ).

Using some combinatorics, we obtain

PK(λ) = (−λ)K +
K∑
i=1

(−λ)K−i

 ∑
j1<···<ji

aj1 . . . aji + b(K − i+ 1)
∑

j1<···<ji−1

aj1 . . . aji−1


(13)

with the convention α0 = 1. If T > T+
c = maxc(1 − n−1

c ) we immediately see that each
coefficient is positive and thus the Hessian is positive definite, while if T < T (−)

c =
minc(1 − n−1

c ) the Hessian is negatively defined because of the Descartes rule of signs5.
At T < T (−)

c the free energy becomes convex and the ground state moves discontinuously

far from the paramagnetic (~δ = ~0) state.
The order parameter which captures this phase transition is the codon coherence

φJ=0(T ) ≡
∑

c6=M,W

〈(
2δc
nc

)2
〉
T

, (14)

where the sum is intended on every codon except methionine and tryptophan and the
thermodynamic average is performed at temperature T . This parameter is small in the

5 The Descartes rule of signs states that the number of positive roots of a polynomial (known to have all real
roots, like in this case, since we are computing the eigenvalues of a symmetric matrix) is equal to the number of
sign differences between consecutive non-zero coefficients.
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Figure 3. Codon coherence φJ(T ) as a function of the temperature for increasing
J and codon coherence at T = 0 (inset). As the nearest neighbour interaction is
turned on, the phase transition becomes smoother. At T = 0, the codon coherence
is preserved up to a critical value of J ∼ 0.3.

paramagnetic phase (which has 2δc = n+(c) − n−(c) = o(nc)) while it is one in the
partitioning phase. Its plot is given in figure 3: the phase transition at T = 1 is evident,
albeit smoothed out due to finite size effects.

3.3. Effects of the nearest neighbour interaction: J > 0

The introduction of the nearest neighbour interaction makes the analytical treatment
much more difficult. Nevertheless, we expect that the phase transition will become
smoother and smoother as J is raised, since the Ising model in 1D does not exhibit
any phase transition. This observation is numerically tested in figure 3, where the profiles
of φJ(T ) are plotted for increasing J .

The T > 1 behaviour is easily understandable by observing that in the paramagnetic
phase (δc � nc) the information theoretical part of the Hamiltonian is flat around
~δ = 0 in the large nc limit. We expect the high temperature (T > 1) behaviour to be
dominated by the magnetic field and the nearest neighbour interaction terms: excluding
the information theoretical part, the Hamiltonian reduces to the Ising model one, HIsing =

−J
∑L−1

i=1 σiσi+1 − h
∑L

i=1σi. Thus, the thermodynamics at T > 1 should be described by
the phenomenology of the Ising model.

To check this hypothesis, we numerically computed the magnetization for the
Hamiltonian (6)

m =
1∑
c nc

〈∑
c

n+(c)− n−(c)

〉
(15)

as well as, analytically, the magnetization for the Ising model,

mIsing =
1

L

〈
L∑
i=1

σi

〉
=

sinh(h/T )√
e−4J/T + (sinhh/T )2

. (16)

These quantities are plotted in figure 4, where is clearly shown that the Ising model
correctly describes the T > 1 behaviour of (6).
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Figure 4. Solid lines: numerically computed magnetization as a function of
temperature (equation (15)). Dashed lines: analytically computed magnetization
of the Ising model in 1D (equation (16)). The inset shows the ratio m/mIsing.
The magnetization for T > 1 is correctly described by the Ising model, and as J
is raised the behaviour at T < 1 becomes more and more similar to that of the
Ising model.

We introduced the nearest neighbour interaction to weight the many minima of the
information theoretical part of the Hamiltonian and to extract information from the spatial
arrangement of the codons. Observing the inset of figure 3, we see that at J > 0.3 the
codon coherence at T = 0 is lost. This means that the same codon is assigned a different cII
on different positions. Since there is no a priori biological reason for this differentiation,
we restrict the admissible J to those such that φJ(0) = 1. Moreover, since we want to
maximize the information extracted from the spatial arrangement of the codons, we fix J
as the maximum value such that φJ(0) = 1. Interestingly, we find that for this value of J

the correlation of C
(g)
II with the tAI exhibits a maximum.

4. Analysis of the CII

4.1. CII correlates with protein and mRNA abundance

We computed the CII for a set of 3371 transcripts of S. cerevisiae and compared it with the
logarithms of the measured protein [38] and mRNA [39] abundances, finding a significant
correlation (C ' 0.60 and C ' 0.69 for proteins and mRNAs, respectively, figure 5).

Indeed, computing the same quantities for the half of the set comprising the most
abundant proteins and mRNAs we observe a sharp increase in the correlation coefficients
C ' 0.70 and C ' 0.79 for proteins and mRNAs, respectively.

4.2. CII correlates with tAI

A common method to address the translational efficiency of a gene is given by the tRNA
adaptation index (tAI) [33], defined as

tAI =

 Lg∏
i=1

wci

1/Lg

, (17)
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Figure 5. The CII correlates with the logarithms of protein abundance (left) and
mRNA abundance (right). The correlation is most evident for the most abundant
half of the set (insets).

Figure 6. The tAI is highly correlated with protein (left) and mRNA (right)
abundance.

where wci is the weight associated to the cith codon in the gene g. These wc are defined as

wi =


Wi

Wmax

if Wi 6= 0

wavg otherwise
, Wi =

ni∑
j=1

(1− sij)tGCNij,

where ni is the number of tRNA isoacceptors recognizing codon i, tGCNij is the number
of the jth tRNA recognizing codon i and sij gauges the efficiency of codon–anticodon
coupling. The sij are then optimized to maximize the correlation with protein abundance.
The computation of this index requires information about two of the most influential
factors affecting translation efficiency, namely tRNA abundance (tRNA copy number is
highly correlated to tRNA abundance [40]) and codon coupling efficiency.

Computing the tAI for the same 3371 transcripts and comparing it with the CII

we observe an extremely high correlation (ρ ∼ 0.93, see figure 7). We thus are able to
reproduce all the results obtained from the tAI without needing any additional information
beyond the codon sequences and without any parameter optimization: the CII depends
only upon the parameter J which can be fixed from thermodynamics considerations, as
explained in section 3.3.

The tAI is known to correlate well with protein abundance (ρ ' 0.61) and mRNA
abundance (ρ ' 0.70), see figure 6. Moreover, also in this case the correlation improves
for the most abundant proteins (ρ ' 0.70) and mRNAs (ρ ' 0.77) but to a significantly
smaller extent with respect to the CII case.
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Figure 7. The CII is highly correlated with the tAI.

Table 1. Pearson correlation coefficients between numerical and experimental
quantities. The values between parentheses, when present, refer to correlations
computed for the most abundant half of the set.

CII tAI
Protein levels
(log)

Half-life
(log)

mRNA levels
(log)

CII 1 0.93 0.60 (0.70) 0.18 0.69 (0.79)
tAI 1 0.61 (0.68) 0.20 0.70 (0.77)
Abundance (log) 1 0.30 0.60
Half-life (log) 1 0.22

Another quantity usually taken into consideration in this kind of study is protein half-
life. We computed correlations among all these quantities; the results are summarized in
table 1. Between parentheses are the correlations computed for the 1600 most abundant
proteins and mRNAs. All these values are statistically significant (P -value ∼ 10−9 at
most). Those involving CII, tAI, protein and mRNA abundance are highly significant
(P -value < 10−20).

It has been suggested that the correlation between the CII and the mRNA levels can
be caused by evolutionary forces acting more effectively on highly expressed genes [22],
as beneficial codon substitutions are more likely to be fixed on these genes because the
gain in fitness is likely to be higher, although a fully causal relationship can be more
complicated and involve other determinants [11, 10].

4.3. Average CII profile along the proteins

In the previous sections we analysed the properties of the global CII value for whole genes,
but the cII(i) gives another local layer of information. We thus ask whether the local cII(i)
can be interpreted as a local measure of translational optimality. Unfortunately too few
data exist to confirm or falsify this hypothesis, but we can explore whether a common
behaviour at the beginning of the transcripts exists. Similarly to the case of the tAI [29],
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Figure 8. Local cII averaged along the proteins, as in equation (18). The straight
line is a guide for the eye.

it is possible to compute the average of the c
(g)
II (i) across the transcripts,

〈cII(i)〉G =
1

NG

NG∑
g=1

c
(g)
II (i). (18)

The plot in figure 8 reveals the presence of a ‘ramp’ roughly 120 codons long followed by
a plateau.

This result is consistent with the findings in [29] for the tAI, where this procedure
reveals a signal at the beginning of the transcript: the average local tAI has a minimum
at the beginning of the sequence and rises up to the average value in ∼100 codons. Since
the authors claim that the tAI carries information about codon translational efficiency,
they hypothesize that this feature helps translation stabilization by avoiding ribosome
jamming.

5. Conclusions

In this work we have introduced the codon information index (CII) as a measure of the
amount of information stored in mRNA sequences through the codon bias. We have shown
that CII can capture at least as much complexity as previously introduced codon bias
indices, but its computation does not require additional data beyond transcript sequences.
In order to calculate the CII we do not make any assumption on the origins and roles of
the codon bias, but quantify the amount of information associated with it in an unbiased
manner, with a procedure that enables us to fully quantify the amount of such information.

We calculated the CII for a set of over 3000 yeast transcripts and found values highly
correlated with the tAI scores, as well as with experimentally derived protein and mRNA
abundances. Furthermore, we were able to reproduce the result that the first 70–100
codons are, on average, translated with low efficiency, a feature which is thought to help
translational stabilization [29].

We anticipate that by using the CII it will be possible to investigate open questions
about the role of the codon bias in optimizing translational efficiency, improving codon
reading accuracy, and minimizing the risk of misfolding and aggregation.
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Data sets

The set of RNA transcripts for S. Cerevisiae was downloaded from [41]. Protein half-lives
were extracted from [42]. Protein and mRNA abundances were found in [39, 43]. Protein
abundances were found in [44, 38].

Source code and details of the algorithm

The thermodynamic averages (and thus the CII) were computed using a Monte Carlo
algorithm implemented with simulated annealing [37] and frequent reannealings: the
temperature is a function of the simulation time and is slowly lowered. Provided that
the cooling schedule is sufficiently slow, this method is guaranteed to sample the whole
space, a vital feature if the free energy landscape is rough (meaning that the Hamiltonian
has many metastable states).

The algorithm run time for the set of 3371 proteins was of the order of 1 day on a
dual core workstation. The algorithm is massively parallelizable. A major speedup was
obtained by observing that the energy differences of the information theoretical part of
the Hamiltonian (6) (which are required in the Monte Carlo step) can be efficiently and
locally computed using the properties of the digamma function. The code is available at
the web page www-vendruscolo.ch.cam.ac.uk/CII/index.php.
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