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Molecular dynamics simulations with replica-averaged structural restraints
generate structural ensembles according to the maximum entropy principle
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In order to characterise the dynamics of proteins, a well-established method is to incorporate ex-
perimental parameters as replica-averaged structural restraints into molecular dynamics simulations.
Here, we justify this approach in the case of interproton distance information provided by nuclear
Overhauser effects by showing that it generates ensembles of conformations according to the max-
imum entropy principle. These results indicate that the use of replica-averaged structural restraints
in molecular dynamics simulations, given a force field and a set of experimental data, can provide
an accurate approximation of the unknown Boltzmann distribution of a system. © 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4793625]

I. INTRODUCTION

Proteins are molecules involved in essentially all the
complex biochemical reactions that take place in living
organisms.1 As in order to perform their functions they un-
dergo conformational fluctuations on timescales ranging from
nanoseconds to milliseconds and beyond,2–7 it is important
to develop methods capable of characterizing these motions.
In this context, nuclear magnetic resonance (NMR) spec-
troscopy is a powerful technique that enables the determi-
nation of the structures and dynamics of proteins at atomic
resolution.8–12 Since NMR measurements produce values
of observables resulting from time and ensemble averages,
their interpretation is facilitated by considering ensembles of
structures.13–23 The accurate determination of such ensembles
is, however, very challenging. If the measurements are carried
out for proteins in fully folded states, an average structure can
normally be defined, so that the ensembles can be represented
in terms of conformational fluctuations around such aver-
age structure. These averages structures, however, do not de-
scribe very accurately the dynamical properties of more flexi-
ble states, since in these cases the conformational fluctuations
are of larger amplitude.19–22 In these cases, the ensembles of
structures are very heterogeneous and include conformations
that can range from very compact to very extended,19–22, 24

making it difficult to apply standard methods of structure
determination.

In principle, one could generate an ensemble of con-
formations consistent with the Boltzmann distribution of
a protein by running molecular dynamics or Monte Carlo
simulations under appropriate conditions.25 In this approach,
the experimental measurements would be automatically
consistent with the generated ensemble, provided that one
has accurate methods of calculating the experimental ob-
servables from the available structures. A complication of
this strategy, however, is that existing force fields results in
only approximate values of the Boltzmann weights,26, 27 and
thus it is often difficult to obtain a close agreement between
calculated and measured parameters. To overcome this

problem, it has been suggested to use experimental measure-
ments as averaged structural restraints in molecular dynamics
simulations.16, 18, 23, 28 This idea was first implemented for
the case distances derived from nuclear Overhauser effects
(NOE) by applying a penalty if the time-average of an NMR
observable calculated from a molecular dynamics trajectory
differs from experiment.14, 15, 29–34 In an alternative approach,
penalizing forces are applied if the calculated average
distances at a given time across an ensemble of simulated
molecules (or replicas) do not match the experimental ones.
Since the early implementations of this approach in the case
of the replica-averaged NOE distance restraints,13, 15, 16 a
variety of restraining algorithms, including simultaneous
time and ensemble averaging,35 have been developed for
an array of experimental observables measured for native,
transition, intermediate, and unfolded states.17, 36–42

One of the challenges in using replica-averaged struc-
tural restraints in molecular dynamics simulations, however,
is that while the experimentally-determined average values
are known, the underlying distribution (i.e., ensembles of
structures) from which they come are not.19, 37 There is
thus an ambiguity arising from the fact that infinitely many
distributions may exist with the given set of average values.43

It would thus seem that determining ensemble of confor-
mations from experimental information about just average
values is an ill-defined problem. By using the maximum
entropy principle,44, 45 however, it is possible to chose a
special distribution (i.e., an ensemble of structures) among all
those that are consistent with the experimentally-determined
average values by imposing the average values themselves
as thermodynamic constraints.46, 47 This particular maximum
entropy distribution provides an accurate representation of
the unknown Boltzmann distribution of the system. The prob-
lem of determining structural ensembles can thus be solved
unambiguously without making any additional assumption
apart from the requirement that the experimental data should
be consistent with it in the sense of the maximum entropy
principle. To implement the maximum entropy principle
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in a computationally efficient manner, as we demonstrate
in this paper in the case of NOE data, it is possible to use
experimental measurements as replica-averaged structural
restraints in molecular dynamics simulations.

II. MODELLING NOES WITH THE MAXIMUM
ENTROPY PRINCIPLE

The acquisition of a nuclear Overhauser effect spec-
troscopy (NOESY) spectrum of a protein makes it possible
to determine for each visible proton pair ij the value of 〈 1

r6
ij

〉,
where rij is the interproton distance in a given conformation
and the average is taken as a time and ensemble average over
the equilibrium distribution of the system.19, 34, 37, 48

The question that we address here is how to use this
NOE-derived interproton distance information to determine
ensembles of structures representing the thermal fluctuations
of proteins. The task is thus to find a probability distribution,
P(x), compatible with the measured NOEs, where x indicates
the Cartesian coordinates of the atoms comprising the protein.
For each proton pair ij for which a measurement is available,
this probability distribution should satisfy the relationships∫

dx
1

r6
ij

P (x) =
〈

1

r6
ij

〉
= Iij , (1)

where Iij is proportional to the experimentally-determined in-
tegrated intensity of the peak corresponding to the proton
pair ij. In this equation, the experimentally-determined inte-
grated intensities (peak volumes) are converted into distance
restraints by using the isolated spin pair approximation, which
relates the volume to the inverse sixth power of the distance
between the two interacting spins. As mentioned above, there
is an infinite number of distributions that are solutions of
Eq. (1). However, since the measurements are performed un-
der equilibrium conditions, we also know that the distribution
P(x) should correspond to the Boltzmann distribution of the
system

Q (x) = 1

Z
e−βE. (2)

The condition P(x) = Q(x), which can be derived from the
maximum entropy principle (MEP) applied to the average
energy,49 defines the distribution P(x) that satisfies Eq. (1)
and is consistent with the underlying energy function of the
system.

If we could perform molecular dynamics simulations
with the true force field E, we would generate the distribu-
tion P(x) = Q(x), and thus satisfy Eq. (1). However, in prac-
tical applications we have only available an approximate ex-
pression EMM (a molecular mechanics force field) of E, which
corresponds to a distribution

PMM (x) = 1

ZMM

e−βEMM . (3)

Therefore, as Q(x) is not known, we would like to find the
smallest possible perturbation of PMM(x) to find a distribution
that satisfy at least approximately Eq. (1). This requirement
can be met by searching the distribution P̃ (x) that minimizes

the Kullback-Leibler divergence,50

DKL(P̃‖PMM ) =
∫

dxP̃ (x) log
P̃ (x)

PMM (x)
, (4)

with the boundary conditions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
dx P̃ (x) = 1,

∫
dx

1

r6
ij

P̃ (x) = Iij ,

(5)

for each proton pair for which a measurement is available.
Equations (3) and (4) can be solved using the method of the
Lagrange multipliers

∂

∂P

⎧⎨
⎩DKL(P̃‖PMM ) + κ

(∫
dxP̃ (x) − 1

)

+
∑
ij

λij

(∫
dx

1

r6
ij

P̃ (x) − Iij

)⎫⎬
⎭ = 0, (6)

which provides

P̃ (x) = 1

Zλ

e
− 1

kT
(EMM−∑

ij λij
1

r6
ij

)
, (7)

where Zλ is the normalization factor (with λ = {λij}), and the
constants κ and λij are the Lagrange multipliers. The λij can
be computed from

∂

∂λij

log Zλ = Iij . (8)

The accurate determination of the structure and dynamics of
proteins can therefore be viewed as a re-parameterization of
the force field EMM in which we search for parameters λij that
minimally perturb the background force field by correcting
for inaccuracies, so that at the end the NOE information is
consistent with the resulting maximum-entropy-principle en-
semble.

III. MODELLING NOES USING MOLECULAR
SIMULATIONS WITH REPLICA-AVERAGED
RESTRAINTS

While feasible in principle, the previous approach has the
disadvantage that in order to model the dynamics accurately
the force field has to be reparameterized, a procedure that can
be very time consuming. It would be therefore advantageous
to have a method that does not require the reparametrisation
of the force field. A simple possibility18 is to take N-copies of
the system for which we want to study the dynamics and to
enforce the averages with δ-function restraints

P̃N (x1, . . . , xN )

= 1

ZN
e−β

∑
α EMM (xα )

∏
ij

δ

[
1

N

∑
α

(
1

rα,ij
6

− Iij

)]
, (9)

where the index α runs over the N replicas,xα indicates the
Cartesian coordinates of the atoms comprising replica α, and
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rα, ij is the rij distance for replica α. Molecular dynamics simu-
lations carried out in this way generate a set of conformations
that we call a ‘‘replica-averaged’’ ensemble. The question is
whether the modification introduced in this way is minimal in
the MEP sense, i.e., if the replica-averaged ensemble satisfies
the MEP. In Sec. IV, we will show that in the limit of N going
to infinity the two methods are equivalent.

IV. EQUIVALENCE OF THE
MAXIMUM-ENTROPY-PRINCIPLE AND
REPLICA-AVERAGED ENSEMBLES

In order to establish the equivalence between the MEP
and replica-averaged ensembles, we start from the expression
for the partition function ZN of a replica-averaged ensemble

ZN =
∫

e−β
∑

α EMM (xα )

×
∏
ij

δ

[
1

N

∑
α

(
1

rα,ij
6

− Iij

)]
dx1 . . . dxN . (10)

This expression is equivalent to

ZN =
∫

e
−β

∑
α [EMM (xα )+ 1

N

∑
ij γij ( 1

rα,ij
6 −Iij )]

×
∏
ij

δ

[
1

N

∑
α

(
1

rα,ij
6

− Iij

)]
dx1 . . . dxN, (11)

which holds for any set γ = {γ ij}, in particular for the value
of γ = Nλ that would enforce the right average in the MEP
case. Therefore,

ZN = 1

ZN
λ

∫
e
−β

∑
α [EMM (xα )+∑

ij λij ( 1
rα,ij

6 −Iij )]

×
∏
ij

δ

[
1

N

∑
α

(
1

rα,ij
6

− Iij

)]
dx1 . . . dxNZN

λ .

(12)

In the limit N → ∞, we get

ZN → ZN
λ , (13)

because the term

1

ZN
λ

∫
e
−β

∑
α [EMM (xα )+∑

ij λij ( 1
rα,ij

6 −Iij )]

×
∏
ij

δ

[
1

N

∑
α

(
1

rα,ij
6

− Iij

)]
dx1 . . . dxN (14)

is, by construction, equal to 1 in the limit N → ∞. Since Zλ

is obtained from the MEP, Eq. (13) demonstrates that the two
ensembles are equivalent since the replicas become decoupled
in the N → ∞ limit.

V. TAKING INTO ACCOUNT EXPERIMENTAL ERRORS

In the previous discussion, we implicitly assumed that
the experimental averages are known without errors. How-
ever, using the equivalence of replica-averaged and MEP

ensembles, we can provide a generalization to the case in
which also the experimental errors are known,

P̃Nσ (x1, . . . , xN , {Iij })

= 1

Z
e−β

∑
α EMM (xα )

×
∏
ij

δ

[
1

N

∑
α

(
1

rα,ij
6

− Jij

)]
e−σ−2

ij (Jij −Iij )2

, (15)

where Iij and Jij are proportional, respectively, to the mea-
sured and actual NOE intensities (see Eq. (1)), and the σ ij

are the experimental errors on the Iij. Integrating over the (not
observed) Jij, we get

P̃Nσ (x1, . . . , xN , {Iij })

= 1

Z
e
−β

∑
α [EMM (xα )+ 1

N

∑
ij λij ( 1

rα,ij
6 −Iij )2]

. (16)

From this equation, we obtain that taking into account
the experimental errors of the experimental observables is

TABLE I. List of the 34 distances used as restraints between non-
consecutive Cα atoms in the simulations (see Figure 1).

THR_1 ILE_3 5.96854
THR_1 TYR_11 5.49480
THR_1 GLN_12 4.97910
TRP_2 GLN_4 5.92948
TRP_2 TRP_10 5.82122
TRP_2 TYR_11 4.64691
ILE_3 LYS_9 5.95770
ILE_3 TRP_10 5.13310
GLN_4 GLY_6 5.50290
GLN_4 THR_8 5.90928
GLN_4 LYS_9 4.01273
GLN_4 TRP_10 5.86225
ASN_5 SER_7 5.96451
ASN_5 THR_8 4.98059
ASN_5 LYS_9 5.79457
GLY_6 THR_8 5.58211
SER_7 LYS_9 5.91313
LYS_9 THR_20 5.94459
TRP_10 GLN_12 5.86253
TRP_10 LYS_17 5.97016
TRP_10 ILE_18 5.34757
TRP_10 TYR_19 4.51873
TRP_10 THR_20 5.88665
TYR_11 ASN_13 5.83155
TYR_11 ILE_18 5.04964
GLN_12 GLY_14 5.61545
GLN_12 SER_15 5.96628
GLN_12 THR_16 5.28133
GLN_12 LYS_17 4.45604
GLN_12 ILE_18 5.89949
ASN_13 SER_15 5.64519
ASN_13 THR_16 4.96147
GLY_14 THR_16 5.83866
THR_16 ILE_18 5.84907
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FIG. 1. Ribbon representation of native state structure of the GS
peptide.52, 53 The NOE-like distances used in the calculations (Table I) are
shown as blue bonds.

equivalent to performing simulations with the modified en-
ergy function

ẼNσ (x1, . . . , xN , {Iij })

=
∑

α

⎡
⎣EMM (xα) + 1

N

∑
ij

kBT

σ 2
ij

(
1

rα,ij
6

− Iij

)2
⎤
⎦. (17)

This expression provides a way to estimate the weight of the
energy term with respect to the underlying force field.

VI. ILLUSTRATION OF THE REPLICA-AVERAGED
APPROACH

The replica-averaged approach does not have free param-
eters except the number of replicas N. To be used in practice,
it is therefore essential to define how many replicas are nec-
essary to accurately describe the dynamics in the native en-
able. When N is too large, calculations are not practical. As
we show here, however, N can be relatively small. In order to
obtain this result, we study how the Shannon entropy51

S =
∑

πklogπk, (18)

where π k indicates the probability of observing a given value
for an observable, grows as a function of N. To determine this
behaviour, we performed a set of molecular dynamics simu-
lations using a model system, the 20-residue GS peptide,52, 53

and N = 4, 8, 16, 32, and 64. The GS peptide has been shown

TABLE II. Comparison of the entropy as a function of the number of repli-
cas (see Figure 2) using only the full-length of the simulations and only the
second half.

Nrep Full-length Half-length Error %

4 0.121714 0.121963 0.0020
8 0.373462 0.373073 0.0010
16 0.540298 0.540746 0.0008
32 0.571818 0.571661 0.0003
64 0.576687 0.576863 0.0003
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FIG. 2. Shannon entropy of the Cα-RMSD distribution and percentage of
folded structures (RMSD < 2 Å) as a function of the number of replicas.

to reversibly fold into a triple-stranded antiparallel β-sheet
conformation52, 53 and being relatively small, it represents an
ideal system to perform simulations long enough to reach con-
vergence.

For the GS peptide, we generated a set of 34 NOE-like
distances (Table I) by considering the distances between all
non-consecutive Cα atoms closer than 6 Å in the native state
(Figure 1). Then, five molecular dynamics simulations were
performed using N = 4, 8, 16, 32, and 64 replicas. All sim-
ulations were carried out using the replica-averaged distance
restraints implemented in the molecular simulation package
ALMOST.52, 53 The ALMOST software and scripts are available
for download from the website (http://www.open-almost.org),
or upon request from the authors. Simulations were run using
the CHARMM 19 force field with neutralized ionic side-chains
[1] in conjunction with an implicit solvation model based on
the solvent accessible surface (SASA) [2]. The SHAKE algo-
rithm [3] was used to fix the length of bonds of the cova-
lent bonds having hydrogen atoms at one end. The leapfrog
algorithm and an integration time step of 2 fs were used to
integrate the Newton’s equations of motion. All simulations
were started from the native state and the temperature was
kept close to 330 K by weak coupling to an external bath with
a coupling constant of 5 ps [4]. The simulations were started
from the native conformation and each of the five systems
was simulated for 4 μs. At convergence (see Table II), we
computed the Shannon entropy of the distribution of the root
mean square distances (RMSDs) between Cα atoms from the
native state. We found that the entropy converges for about 16
replicas (Figure 2), thus suggesting that the replica-averaged
approach accurately describes the native state dynamics with
a relatively small number of replicas, which can be simulated
using standard computational resources. In our calculations,
we found that the percentage of folded structures (Figure 2)
is consistent with that found in previous studies52, 53 thus in-
dicating that the replica-averaged restraints approach repro-
duces the correct behaviour of the system.

VII. CONCLUSIONS

In this work, we have illustrated in the case of NOE
measurements that the incorporation of NMR information
as replica-averaged structural restraints in molecular dynam-
ics simulations generates a sampling of the conformational
space of proteins consistent with the maximum entropy prin-
ciple. The equivalence between the maximum entropy prin-
ciple and the replica-averaging methods enables also the

http://www.open-almost.org
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estimation of the weight of the restraint term with respect
to the underlying force field used in the molecular dynam-
ics simulations. Therefore, the incorporation of experimental
data as replica-averaged structural restrains in molecular dy-
namics simulations provides an accurate representation of the
unknown Boltzmann distribution given an approximate force
field and a set of experimental data.
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