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Fibrillogenic propensity of the GroEL apical domain: A Janus-faced minichaperone
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The chaperonin GroEL plays an essential role in promoting protein folding and in protecting against
misfolding and aggregation in the cellular environment. In this study, we report that both GroEL and
its isolated apical domain form amyloid-like fibrils under physiological conditions, and that the
fibrillation of the apical domain is accelerated under acidic conditions. We also found, however, that
despite its fibrillation propensity, the apical domain exhibits a pronounced inhibitory effect on the
fibril growth of b2-microglobulin. Thus, the analysis of the behaviour of the apical domain reveals
how aggregation and chaperone-mediated anti-aggregation processes can be closely related.

Structured summary of protein interactions:
groEL and groEL bind by circular dichroism (View interaction)
b2m and b2m bind by transmission electron microscopy (View interaction)
b2m and b2m bind by fluorescence technology (View interaction)
groEL and groEL bind by transmission electron microscopy (View interaction)
groEL and groEL bind by nuclear magnetic resonance (View interaction)
groEL and groEL bind by fluorescence technology (View interaction)

� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction gested that that almost all proteins have at least one structural seg-
Misfolded proteins that escape the surveillance of molecular
chaperones can aggregate and form stable highly ordered assem-
blies known as amyloid fibrils [1]. This process was initially stud-
ied because of its links with disease, but it was subsequently
recognised as very general, so that even proteins not associated
with any known disease may form amyloid-like fibrils depending
on the experimental conditions [2,3]. According to the ‘‘life on
the edge’’ hypothesis, proteins are expressed in living organisms
at levels at which they are only just soluble, and therefore they
are readily susceptible to aggregation [4]. It has also been sug-
chemical Societies. Published by E

-crystallin domain of aB-
phate; CD, circular dichroism
d correspondence should be
oto), +81 564 59 5234 (K.

shi@protein.osaka-u.ac.jp (H.
am.ac.uk (M. Vendruscolo),
. Nakamura), ygoto@protein.
jima).
ment with a high propensity to aggregate [5].
The generic nature of the phenomenon of protein aggregation

raises the question of how molecular chaperones, which are key
player in the cellular defenses against aggregation, can control
their own propensity to aggregate. This question is especially rele-
vant as many molecular chaperones have been reported to undergo
aggregation, such as in the case of the small heat shock proteins
(sHsps) [6–8], the chaperone-like casein proteins [9], or the pro-
teins in the crystallin family from human eye lenses [6,10,11].

In this study, we identified the aggregation-prone regions of the
chaperonin GroEL, which together with GroES, plays a central role
in the cellular quality-control system [12]. It is now well estab-
lished, both from in vivo and in vitro studies, that the GroEL/GroES
system is capable of assisting the folding process of a variety of dif-
ferent proteins [12–14]. Thus, the GroEL/GroES system has been
the subject of a large number of structural and kinetic studies
aimed at characterising the molecular mechanism by which it per-
forms its function [15,16]. The oligomeric GroEL consists of 14
identical subunits arranged into two heptameric rings in a back-
to-back manner. Each GroEL subunit has three functional domains
termed apical, intermediate and equatorial. The equatorial domain
lsevier B.V. All rights reserved.
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accounts for most of the contacts between the heptameric rings,
the apical domain is involved in the binding of GroES and substrate
proteins, and the intermediate domain acts as a hinge region to
flank equatorial and intermediate domains [15,17].

The GroEL co-chaperonin, GroES was observed to form amyloid-
like fibrils after long incubation in the presence of guanidine
hydrochloride [18,19], and thus was correlated with some intrinsic
disordered properties [18,19]. As the intrinsic disordered region in
many cases is involved in the amyloid-formation of a protein [1],
we therefore investigated whether GroEL, as the structural and
functional partner of GroES, may also contain aggregation-prone
regions so as to fibrillate. We found that the GroEL apical domain,
previously defined as minichaperone, has a high propensity to
form amyloid-like fibrils when incubated with agitation under
both physiological and acidic conditions. Interestingly, despite its
amyloidogenic tendency, the apical domain is still capable of inhib-
iting the seed-dependent fibril growth of b2m. Therefore, the GroEL
apical domain, owing to its dual properties, represents a minichap-
erone system that contributes to our understanding of the relation-
ship between the generic phenomenon of amyloid formation and
chaperone functions.

2. Materials and methods

2.1. Proteins and fibrils preparation

Recombinant human b2m was produced as described [20]. The
isolated GroEL apical domain (GroEL residues 191–376, for sim-
plicity, we use ‘‘apical domain’’ to denote hereafter) was cloned
into a PET24a vector (Invitrogen, Carlsbad, CA), yielding an expres-
sion plasmid with an N-terminal histidine-tag. Both apical domain
and GroEL were produced as described [21,22]. Prior to use, the
proteins were dialysed overnight against 20 mM Tris–HCl at pH
7.0. The isolated human aB-crystallin fragment (residues 68–
162) was prepared as reported [23].

The b2m amyloid fibrils were formed at 37 �C by repeated seed-
dependent extension reactions, starting with 0.3 mg/ml recombi-
nant b2m. To prepare the seeds, the b2m fibrils were ultrasonicated
by using a Microson sonicator (Misonix, Farmingdale, NY) with ten
1-s pulses on ice. The frequency and power of output were set to
17–20 kHz and 700 W, respectively.

To investigate the fibrillation behaviour of apical domain, we
adopted optimised incubation conditions for forming b2m amyloid
fibrils previously established in this laboratory (Table 1). As it was
previously reported that agitation of stirring or shaking may short-
en the lag phase and promote the fibrillation process of a protein
such as insulin or b2m [24,25], we also examined the effect of
the agitation (stirring) in this study. Apical domain was incubated
in a physiological buffer at pH 7.0 in the presence of sodium dode-
cyl sulphate (SDS) and under two acidic conditions at pH 2.5 as
shown in Table 1. The sample solutions were incubated in a ther-
mostatic cabinet at 37 �C. As the yield of fibril formation at neutral
pH is relatively lower than under acidic conditions, apical domain
and GroEL fibrils formed under the neutral condition were further
purified in order to be best characterised. Briefly, 900 ll apical do-
Table 1
Tested conditions for the fibrillation of apical domain and GroEL.

Solution/buffer pH Composition

HCl (acidic) 2.5 3.2 mM HCl, 0.1
Citrate (acidic) 2.5 50 mM citrate b
Sodium phosphate (physiological) 7.0 50 mM sodium

buffer, 0.1 M Na
main or GroEL sample solution incubated with agitation at pH 7.0
was spinned down at 17000g for 1 h at 20 �C. The supernatant was
carefully removed and the pellet was resuspended with a volume
of incubation buffer to optimise a protein concentration for the
spectroscopic measurement.

2.2. Fibril assay

The formation of amyloid fibrils was quantitatively character-
ised using a fluorescent dye, Thioflavin T (ThT) [26]. Five microli-
ters of incubated sample or resuspended fibril solution of apical
domain was mixed with 1.0 ml of 5 lM ThT in 50 mM glycine–
NaOH buffer (pH 8.5). To monitor the fibrillation kinetics, 5% (v/
v) 100 lM ThT was added to the protein solution (a final dye con-
centration of 5 lM), and the signal change of ThT fluorescence was
recorded. Fluorescence was measured with a Jasco FP 6500 spec-
trofluorometer (Jasco, Tokyo, Japan) at the indicated temperatures.
The excitation wavelength was set to 445 nm (slit: 20 nm), and the
emission spectra (slit: 10 nm) was scanned three times in the
range of 455–550 nm and averaged afterwards. An increase in
the fluorescence emission intensity at 485 nm was considered to
be indicative of amyloid formation.

2.3. Far-UV circular dichroism (CD) spectroscopy

Far-UV CD spectra were measured in a 1-mm quartz cuvette un-
less otherwise specified on a Jasco J-720 spectropolarimeter
equipped with a constant-temperature water bath. To probe struc-
tural changes of apical domain with different SDS concentrations,
167 lM apical domain was aged overnight in the presence of
1 mM SDS without stirring prior to a dilution to a residual SDS con-
centration of 0.06 mM. The sample was subsequently incubated at
room temperature for 12 h followed by the recording of CD spectra.
To measure the CD spectra of apical domain fibrils, sample solution
was homogenised by sonication with five 1-s pulses on ice before
the measurement using a 0.2-mm quartz cuvette.

2.4. 1H NMR spectroscopy

NMR experiments were performed on a Bruker Avance 500 MHz
spectrometer. At the indicated temperatures, 270 ll apical domain
in 95% H2O/5% D2O with a protein concentration of 1 mM was
placed in a Shigemi NMR microtube to record the NMR spectra at
pH 2.5 and 7.0, respectively. The experimental temperature was
maintained with a variable temperature unit. In general, protein
samples are invisible to NMR once fibrils formed inside [6]. In order
to allow for a structural comparison under different experimental
conditions, NMR spectra of apical domain were recorded immedi-
ately after the sample solution was prepared without stirring.

2.5. Electron microscopy

The microscopic structures of apical domain fibrils formed at
specified conditions were observed using a HITACHI H-7650 trans-
mission microscope (Hitachi, Tokyo, Japan) operated at 80 kV. Five
Static
incubation

Agitated incubation
(stirring)

M NaCl Yes Yes
uffer, 0.1 M NaCl Yes Yes
phosphate
Cl, 0.5 mM SDS

Yes Yes
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microliter samples were placed on a 400-mesh copper grid covered
by a carbon-coated colloidal film for 60 s. Grids were negatively
stained with 5 ll of 2% (w/v) uranyl acetate solution for 60 s. Ex-
cess sample solutions were removed with filter paper. The magni-
fication was set to 10000–30000.

3. Results

3.1. Theoretical predictions

To study the amyloidogenicity of GroEL, several algorithms
including PASTA, TANGO and Zyggregator were employed to gen-
erate the aggregation profile of GroEL [27–30]. Fig. 1A shows the
prediction result by PASTA. Intriguingly, the aggregation-prone
segment generated by PASTA is mainly located within the GroEL
apical domain region (residues 260–280) with a score of about
0.05, which is close to the value of highly amylodogenic peptides,
such as Ab1–40 [27]. The high aggregation propensity of the apical
domain was also found using TANGO and Zyggregator (Fig. S1).
Moreover, as shown in Fig. 1B, these aggregation-prone residues
mainly compose helix I, the region identified previously to bind
substrate proteins [31,32]. Despite having aggregation-prone seg-
ments, most proteins with known structures generally do not form
fibrils under physiological conditions [4,5]. Therefore, our theoret-
ical aggregation analysis led us to ask whether GroEL or isolated
apical domain fragment, shown as a stable, functional form
[33,34], may have a propensity to fibrillate. We therefore prepared
the isolated apical domain and GroEL and studied their amyloidog-
enicity.

3.2. Fibrillation of apical domain in a physiological buffer

Fibrillation of apical domain was firstly monitored by ThT assay
[26] in a physiological buffer (Table 1) in the presence of SDS. As
shown in Fig. 2A, when incubated at pH 7.0 without stirring, apical
domain showed a lack of fluorescence signal increase by ThT assay
(dash black vs solid red). However, purified fibrils from agitated
sample showed a remarkable ThT fluorescence signal increase
compared with statically incubated sample (solid black vs red).
Furthermore, transmission electron microscopy (TEM) observa-
tions revealed an apparent fibrillar structure formed under the agi-
tated condition (Fig. 2B), suggesting that apical domain forms an
Fig. 1. Fibrillogenic propensity of the GroEL apical domain. (A) Aggregation propensity pr
coloured GroEL subunit based on the h value predicted by PASTA.
amyloid-like structure. It should be noted that compared with
the purified fibrils, ThT assay of bulk incubation solution of apical
domain (without spinning down the fibrils) showed a less pro-
nounced fluorescence signal increase (dash red vs solid black),
indicating a relatively low population of fibrils in physiological
buffer. Fibrillation behaviour of GroEL was also investigated. In
contrast to apical domain, purified GroEL fibrils exhibited a mar-
ginal increase of fluorescence signal (Fig. S2A). Interestingly, TEM
measurement of GroEL sample also showed distinguishable amy-
loid-like formation in the solution (Fig. S2B).

To investigate the secondary structure of the protein samples,
we measured the far-UV CD spectra of apical domain under differ-
ent conditions. As shown in Fig. 2C, the overall CD spectra of the
native apical domain displayed a helix-abundant structure with
two minima at around 208 and 220 nm. In the presence of
0.5 mM SDS, the CD spectra showed a more negative spectral min-
imum at around 207 nm (open circles), suggesting that the domain
core was retained with C-terminal helices partially unfolded [33].
After overnight incubation with agitation, the overall CD spectrum
of apical domain fibrils showed a high content of b-sheet composi-
tion similar to that observed in GroES [18] with a negative spectral
minimum around 225 nm (open triangles). The key role of agita-
tion in the fibrillation of apical domain was further corroborated
by recording far-UV CD spectra of SDS-aged apical domain without
agitation (Fig. 2D). In contrast to that obtained from the sample
incubated with agitation (open triangles in Fig. 2C), CD spectra of
apical domain incubated overnight without agitation at 1 mM
SDS (open triangles in Fig. 2D) showed a partially disordered struc-
ture. When stock solution at 1 mM SDS was diluted to a residual
SDS concentration of 0.06 mM, we observed a CD spectrum (open
circles in Fig. 2D) of apical domain superimposable to that of
0.06 mM SDS-aged sample (filled circles in Fig. 2D) indicating that
submicellar concentration of SDS (1 mM) causes a partial albeit
reversible structural change of apical domain ready for its later
fibrillation if the agitation is introduced.

3.3. Fibrillation of apical domain under acidic conditions

We also investigated acidic conditions, since these may acceler-
ate the fibrillation of b2m in our protocol. As shown in Fig. 3A,
when incubated in a dilute HCl solution (pH 2.5) for 12 h at
37 �C, the ThT fluorescence signal of apical domain was increased
ofile of GroEL by PASTA with aggregation-prone regions indicated by an arrow. (B) A



Fig. 2. Fibrillation of apical domain under a physiological condition. (A) ThT fluorescence spectra of 0.3 mg/ml apical domain at time 0 (dash black line) and incubated
without agitation (solid red line) or incubated with agitation (bulk solution: dash red line; purified fibrils resuspended in 100 ll buffer: solid black line) after 30 h at 37 �C. (B)
TEM observation of apical domain. Representative microscopic pictures are shown. (C) Far-UV CD spectra of 0.3 mg/ml apical domain solution: native state (d), incubated
after 1 h (s) and purified fibrils from 24 h (4) incubation with agitation at 37 �C. (D) Far-UV CD spectra of 10 lM apical domain in neutral incubation buffer with 0.06 mM
SDS (d), 1 mM SDS (4) and 0.06 mM SDS by dilution from the stock sample of apical domain in 1 mM SDS (s).
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more than four-fold, suggesting the formation of amyloid-like
structures. Moreover, sample incubated without agitation showed
marginal differences of fluorescence signal increase with that incu-
bated with agitation (solid black vs red), implying that a similar
fibrillation process was involved for both conditions. A substantial
increase of fluorescence signal was also observed for sample incu-
bated in citrate buffer (Fig. S3), suggesting that the acidic condi-
tions may promote fibril formation of apical domain.
Interestingly, we also observed a ThT fluorescence increase for
full-length GroEL (Fig. 3F), but unlike apical domain, the agitation
greatly contributes to its signal increase. The amyloid-like fibrils
of apical domain were further visualised by TEM. As shown in
Fig. 3B, although GroEL also showed a remarkable ThT signal in-
crease at acidic pH, large aggregate-like structures instead of amy-
loid-like fibrils were observed. In contrary, apical domain can still
form clear amyloid-like fibrils when incubated with agitation, but
not without, for both acidic conditions, suggesting a crucial role of
agitation in terms of apical domain fibrils-formation. The amyloid-
like fibrils of apical domain are relatively short compared to those
of b2m (Figs. 3B and 5B).

Far-UV CD spectra of apical domain at acidic pH were also re-
corded. As already shown in Fig. 2C, the native protein showed
CD spectra minima at around 208 and 220 nm (Fig. 3C). After incu-
bated for 1 h, we observed a disappearance of the double-well
spectra minima (208 and 220 nm) suggesting the disruption of
the helical structure. After we incubated the apical domain at pH
2.5 with agitation for 12 h, the overall CD spectra resembled the
formation of a b-sheet-rich structure with an observable negative
peak at 216 nm. The overall secondary structural change was fur-
ther reflected in the 1D-1H NMR spectra. At both 25 �C (experimen-
tal temperature) and 37 �C (physiological temperature), apical
domain at pH 7.0 showed widely distributed resonance signals
(Fig. 3D and Fig. S4) including backbone amide 1Hs (7–10 ppm)
and up-field aliphatic 1Hs (0–2 ppm) (red curve), indicating the
presence of the natively folded form of the protein [35]. However,
at pH 2.5, apical domain exhibited an NMR spectrum typical for an
unfolded protein, and the up-field shifted resonances observed in
the native state at pH 7.0 (red curve) were vanished (black curve),
indicating a disruption of the tertiary structure under acidic
conditions.

The fibrillation kinetics of apical domain was monitored by add-
ing dye directly in the solution. During the first 4–5 h of incuba-
tion, we observed a sharp fluorescence increase without any
observable lag phase (Fig. 3E), suggesting a presence of fast or het-
erogeneous nucleation which may be induced by bubbles from
stirring during the apical domain fibrillation. The ThT fluorescence
signal increase was slowed down dramatically after 5 h of incuba-
tion, and finally reached a plateau after overnight incubation. The
fast nucleation process involved in the apical domain fibrillation
was further corroborated by TEM observations. As shown in
Fig. S5, during the early stage of incubation with agitation (<4 h),
we did not observe any apical domain fibrils in comparison with
the overnight incubated sample (17 h).

3.4. Janus-faced properties of the apical domain minichaperone

As the GroEL apical domain harbours the substrate protein
binding sites [31,32], it is not surprising that the isolated apical do-
main still possesses the chaperone activity [36,37]. We hypothesise
that apical domain may retain some structural integrity even in the



Fig. 3. Fibrillation of apical domain under acidic conditions. ThT fluorescence spectra of 0.3 mg/ml apical domain (A) and GroEL (F) at time 0 (dotted line) and incubated
without agitation (red line) or incubated with agitation after 12 h (solid black line) at 37 �C. Incubation buffer: HCl, pH 2.5. (B) TEM observation of apical domain and GroEL.
Representative microscopic pictures are shown (inset: magnified portion of images). (C) Far-UV CD spectra of 0.3 mg/ml apical domain: native state (d), incubated (HCl, pH
2.5) after 1 h (4) and 12 h (s) under an agitated condition at 37 �C. (D) Magnified 500-MHz 1D-1H NMR spectra of apical domain at 37 �C. Red: pH 7.0; Black: pH 2.5. (E) The
ThT fluorescence signal of 0.3 mg/ml apical domain under an agitated condition in HCl buffer changes with time at 37 �C.

Fig. 4. Inhibitory effects of apical domain under acidic conditions. (A) Seed-dependent fibril growth of b2m by incubating 0.3 mg/ml apical domain (s) or human aBa (4)
with 0.3 mg/ml b2m at pH 2.5 without stirring. 0.3 mg/ml b2m (h) was used as a control. Samples were seeded with 5 ll sonicated b2m fibrils and subsequently monitored by
ThT assay. (B) Examination of cross-seeding of 0.3 mg/ml apical domain in the same buffer as A with (s) or without (d) b2m fibrils.
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fibrillation buffer, and hence exhibit some molecular chaperone
activity. To address this question in the context of the present amy-
loidogenic study, we used an established b2m seed-dependent fi-
bril growth experiment to explore the chaperoning capability of
apical domain.
As shown in 4A, we initiated the fibril growth of b2m by mixing
b2m and preformed b2m seeds with or without chaperone frag-
ments, apical domain and a-crystallin domain from human aB-
crystallin (human aBa), in HCl at pH 2.5, and monitored the b2m
fibril growth by ThT assay. When chaperone fragments were ab-



J. Chen et al. / FEBS Letters 586 (2012) 1120–1127 1125
sent, we observed a typical fibril growth process of b2m (Fig. 4A).
Interestingly, in the solution of the equi-stoichoimetric apical do-
main and b2m, we did not observe any significant ThT signal in-
crease during the early 4-h incubation compared with the b2m
control (open circles vs squares) demonstrating the inhibitory ef-
fect of apical domain on the b2m fibril growth. In contrast to apical
domain, human aBa, the highly conserved domain of sHsps [38]
which was identified to retain some chaperone activity under
physiological conditions [23], did not show any pronounced inhib-
itory effect on the fibril growth of b2m (open triangles vs squares).
The inhibitory effect of apical domain on the b2m fibril growth con-
tinued to some extent at 5-h incubation in HCl (with apical domain
included, fluorescence intensity at 485 nm was 20% compared with
the control). After 5-h incubation, we again observed a pronounced
increase in ThT fluorescence, indicative of the fibril growth in HCl.
Since apical domain readily fibrillates by itself at acidic pH, this
may ultimately lead to its loss of the inhibitory activity.

Since sometimes cross-seeding occurs between two amyloido-
genic proteins [39], which may complicate the interpretation of
the inhibitory effect of apical domain, we also monitored and com-
pared the fibrillation process of apical domain with and without
b2m fibrils. The fibrillation processes that we observed were virtu-
ally identical (Fig. 4B) indicating the absence of crossing-seeding in
apical domain fibrillation. Moreover, the apical domain fibrils give
rise to much lower ThT fluorescence signal intensities than b2m
(Fig. 4A control vs Fig. 4B), and hence we conclude that the inhibi-
tion of apical domain on the b2m fibrillation contributes to the low
ThT fluorescence signal intensity during the early stage of
incubation.

The chaperoning capability of apical domain is getting more
evident under the milder physiological conditions (Fig. 5A). When
incubated without agitation, there are no observable amyloid
Fig. 5. Inhibitory effects of apical domain in the physiological buffer. (A) Seed-dependen
b2m at pH 7.0. 0.3 mg/ml b2m (h) was used as a control. (B–D) Amyloidogenic properties
under the same incubation conditions in (A).
properties of apical domain at neutral pH by ThT assay (Fig. 2A)
and electron microscopy (Fig. 2B). Therefore, a concentration-
dependent inhibitory effect of apical domain on the fibril growth
of b2m was observed (Fig. 5B–D). Particularly, in the presence of
equal amount of apical domain, b2m seed-dependent fibril growth
could be fully inhibited (Fig. 5D). Intriguingly, in the presence of
GroEL, we also did not find any fibril formation of b2m, but well-
distributed oligomers likely from GroEL (Fig. S2B) were observed
(Fig. 5E).

4. Discussion

In this study, we found that the isolated GroEL apical domain,
which harbours the substrate protein binding sites, possesses dual
properties. In addition to its propensity to form amyloid-like fibrils,
the apical domain still retains a partial chaperone activity capable
of inhibiting the fibril growth of b2m. Interestingly, GroEL was also
observed to form fibrils in the physiological buffer (Fig. S2). These
seemingly paradoxical properties of such an essential chaperone
system could be considered from several different points of view.

Firstly, by the combination of theoretical predictions and bio-
chemical assays, we have identified that the amyloid-prone seg-
ment of GroEL lies in its apical domain region representing the
general feature of amylome theory [1,5]. In the cell, GroEL is con-
stitutively expressed in a complex protein network. Therefore the
amyloid propensity of apical domain for the intact GroEL may be
suppressed to a great extent due to the structural constraints im-
posed on the apical domain region by intra- or inter-molecular
interactions [40]. However, as we have shown here, when apical
domain is present as an isolated form, its fibrillation tendency be-
comes detectable under the physiological conditions (Fig. 2), and
even more under acidic conditions (Fig. 3).
t fibrils growth of b2m by incubating 0.3 mg/ml apical domain (s) with 0.3 mg/ml
of 0.3 mg/ml b2m or mixed with apical domain at different weight ratio or (E) GroEL



Fig. 6. Comparison of the aggregation propensity profiles obtained with Zyggregator [28] for the E. coli GroEL sequence studied in this work (red), and for the consensus
sequence (black with grey bar). The consensus sequence is obtained from an analysis of 1003 homologous GroEL sequences. The shaded area corresponds to the helix I region,
which plays a key role in the capture of misfolded proteins [31].
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Since the sequence conservation of the apical domain is gener-
ally low [41], a question arises as to whether the amyloidogenecity
of this domain that we described holds for the ubiquitously distrib-
uted chaperonin family. Therefore, we further performed aggrega-
tion-propensity analyses on 1003 homologous GroEL sequences.
Interestingly, from the consensus of the aggregation propensity
profiles, the apical domain (Fig. 6), including helix I (Fig. S6), was
also identified as one of the most aggregation-prone regions, sug-
gesting a common sequence motif for aggregation within this
chaperone family.

Lastly, as SDS is reminiscent of biological membranes in some of
their characteristics, the identified amyloidogenicity of the apical
domain and GroEL may suggest some physiological implications
such as gain-of-function [42] in the cell. This view is supported
by a recent report showing that a chaperonin from Sulfolobus shiba-
tae, a hyperthermophilic archaeon living in acidic hot springs,
could form filaments in physiological buffers and resemble some
cytostructures [43]. Experiments to explore the fibrillation or
aggregation mechanism of GroEL in a physiological context of cel-
lular environment will further advance our understanding of the
functional role endowed by this essential chaperonin system.

Taken together, we hypothesis that the Janus-faced property of
apical domain originates from the aggregation propensity of its
amino-acid sequence as well as of its three-dimensional structure.
The highly aggregation-prone hydrophobic residues of the apical
domain, which are structurally buried in the native form [31–33],
are exposed in the presence of SDS or under acidic conditions
and stirring promotes the inter-molecular hydrophobic interaction
so that apical domain starts to fibrillate. Meanwhile, the chaperone
activity of apical domain may be not fully diminished at submicel-
lar SDS concentration or during the early stage of acidic conditions.
Therefore apical domain still retains the chaperoning capability to
inhibit the fibril growth of b2m to some extent.

The detailed mechanism by which apical domain inhibits b2m
fibrillation has not been resolved in this study. We have found
no detectable protein-protein interactions between apical domain
and b2m (data not shown), and hence apical domain may bind to
the aggregated or nucleating species of b2m in solution [44]. An-
other possibility is that apical domain may bind SDS efficiently in
solution so that the effective SDS concentration is reduced insuffi-
ciently to induce the fibrillation of b2m. Furthermore, another
chaperone fragment used here, the a-crystallin domain from hu-
man aB-crystallin shows a loss of chaperone activity under acidic
conditions in contrast to the full-length aB-crystallin, which is still
capable to inhibit the insulin fibril growth at an acidic pH 2.5 [45].
These results suggest that the GroEL apical domain may serve as a
minichaperone system with some potential application to develop
therapeutic agents towards human b2m-related deposition
diseases.
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