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Increasing evidence indicates that oligomeric protein assemblies may represent the molecular species responsible for
cytotoxicity in a range of neurological disorders including Alzheimer and Parkinson diseases. We use all-atom
computer simulations to reveal that the process of oligomerization can be divided into two steps. The first is
characterised by a hydrophobic coalescence resulting in the formation of molten oligomers in which hydrophobic
residues are sequestered away from the solvent. In the second step, the oligomers undergo a process of reorganisation
driven by interchain hydrogen bonding interactions that induce the formation of b sheet rich assemblies in which
hydrophobic groups can become exposed. Our results show that the process of aggregation into either ordered or
amorphous species is largely determined by a competition between the hydrophobicity of the amino acid sequence
and the tendency of polypeptide chains to form arrays of hydrogen bonds. We discuss how the increase in solvent-
exposed hydrophobic surface resulting from such a competition offers an explanation for recent observations
concerning the cytotoxicity of oligomeric species formed prior to mature amyloid fibrils.
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Introduction

The phenomenon of protein aggregation is associated with
a variety of human disorders [1–3], which include Alzheimer
and Parkinson diseases, type II diabetes, and the spongiform
encephalopathies, that are rapidly becoming a major chal-
lenge in terms of their social and economic impact on society.
In addition, there is increasing evidence that the formation of
ordered aggregates, known as amyloid fibrils, is not just an
unusual characteristic of the 20 or so proteins associated with
disease, but rather is just one of the possible conformations
that any polypeptide chain can adopt under appropriate
conditions [4–6]. Questions of great scientific and medical
interest in this context include the molecular basis of amyloid
formation and the nature of the toxic species that appear to
be associated with amyloid formation in vivo and to result in
pathogenic cell death in at least some of these diseases [6].

Experimental studies have shown for a range of peptides
and proteins that amyloid fibril formation is preceded by the
appearance of organised molecular assemblies usually termed
protofibrils [7–11]. In addition, detailed biophysical studies
are beginning to identify the formation of smaller oligomeric
species at yet earlier stages of the aggregation process [12,13].
These oligomers appear initially to be relatively disordered,
but then to convert into species containing extensive b sheet
structure [10] that are often capable of stimulating fibril
formation [14]. Interest in these low molecular weight
oligomers has increased since these species have been
detected in the brains of patients suffering from Alzheimer
disease [15,16]. Although the identification of the species
giving rise to neurodegeneration is one of the most
controversial topics in current studies of misfolding diseases,

evidence is accumulating concerning the ability of the low
molecular weight oligomers of the Ab peptide specifically to
disrupt cognitive function [17–21].
Even if highly complex processes are associated with

oligomer toxicity, a view is gaining support according to
which the ability to form toxic oligomeric species represents
an intrinsic property of polypeptide chains at some stage of
their oligomerization process [22–26]. In addition, a link has
been made recently between the toxicity and the hydro-
phobicity of polypeptide chains [27–29]. Despite this growing
interest in the role of peptide and protein oligomers in
disease, the molecular mechanism by which they are formed
remains to be fully elucidated. According to the ‘‘nucleated
conformational conversion’’ (NCC) model for aggregate
formation [14], a group of monomers initially present in
solution coalesces to form ‘‘molten’’ oligomers, which
subsequently undergo a reorganisation process and even-
tually give rise to more highly organised oligomers and fibrils
rich in b sheet structure.
Although the nucleated conformational conversion mech-

anism has been supported by many experimental and
theoretical observations [11,14,30–34], a detailed description
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of this process at the molecular level remains in large part
elusive because it is challenging to describe the early stages
of aggregation of polypeptide chains by experiment, pri-
marily because of the difficulties in detecting and character-
ising the small, structurally heterogeneous, and transient
species that are involved.

The mechanism by which structured oligomers might grow
upon addition of unstructured monomers has, however, been
explored in a variety of computer simulations [34,35]. One
particular type of mechanism, usually called dock and lock,
was initially proposed by Esler et al. [36] to explain the
experimental observation of the growth of Ab fibrils.
According to this idea, the attachment of a monomer to a
preformed ordered oligomer or fibril is followed by a much
slower and rate-limiting lock phase. Recent simulations [35]
suggest that in this latter step the preformed oligomer
undergoes a series of conformational fluctuations in order to
accommodate the new peptide molecule.

In this paper we investigate the early stages of the
oligomerization process for two fragments (Ab16–22 and
Ab25–35) of theAbpeptide, a key pathogenic agent inAlzheimer
disease [21] by using all-atom computer simulations (see
Methods) able to describe the essence of peptide aggregation
reactions at the molecular level [33–35, 37–48].

Our results suggest that amyloid fibril formation is a
generic property of protein aggregation [4–6] as a conse-
quence of the fact that the ability of the main chain to form
hydrogen bonds is common to all polypeptide chains and that
the competition between hydrophobicity and hydrogen
bonding is a major determinant of the aggregation process.
They also suggest that the mechanism of aggregation that
leads to the structural reorganisation involved in the growth
of ordered oligomeric species could be a key determinant of
their toxic properties.

Results

Simulations and Their Analysis
To study in detail the formation of large oligomers, we

carried out two series of 100 independent all-atom simu-

lations using the ProFASi (Protein Folding and Aggregation
Simulator) program [49–53] (see Methods) for systems of 20
peptides for each of the two fragments, Ab16–22 (KLVFFAE)
and Ab25–35 (GSNKGAIIGLM).
Under the conditions that we used here, the peptides were

observed to interact strongly with each other and to form
oligomers (Figure 1), which are described as an assembly of Nc

strongly interacting peptides. Peptides are considered to be
interacting when the sum of their interchain hydrogen bonds
and hydrophobic interactions is greater than a cutoff value of
1.5 in model units, which corresponds approximately to the
formation of two hydrogen bonds. According to this
definition, oligomers may be found in many different
conformations ranging from disorganised molten assemblies
to well-ordered arrays of molecules rich in b sheet structure.
To follow their assembly process in more detail, we further

distinguish between ordered b sheet rich regions and
disordered amorphous ones by introducing a local-order
parameter b that is calculated at the individual residue level
and then averaged over the entire ensemble of 20 peptides
(see Methods). If all residues of all peptides are in a b sheet
configuration, b¼ 1, and if no residues of any molecule are in
such structure, b¼ 0. To probe the early stages of the process
associated with the formation and growth of low molecular
weight oligomers, we also measure the time evolution of
properties of single oligomers, rather than of the ensemble of
all peptides. For this reason, we define a local-order
parameter bo, which is averaged only over the peptides that
are contained in one specific oligomer.
To focus on the assembly and structural formation of these

oligomers that are likely to involve substantial transitions as
the size of oligomers increases, we analysed a range of
temperatures and concentrations to identify the appropriate
conditions (see Methods). On the basis of these studies,
we chose to study the aggregation of both Ab16–22 and Ab25–35
inside a cubic box with periodic boundary conditions of
(60 Å)3 and a temperature of 295 K.

Time Evolution of the Populations of Oligomers
Under the conditions used in this study, the aggregation

process of the Ab16–22 peptide proceeds without crossing
major free energy barriers, so that the lag phase, which is
often observed in experimental studies of amyloid formation
[6], is suppressed and oligomers start forming immediately
without the need for a nucleation event. Thus, from an initial
configuration of monomers, we observe the rapid formation
of oligomers. These oligomers are themselves transient
species and undergo a process of internal reorganisation
that can take them through a succession of increasingly
ordered states. To analyze the trajectories in a non-
equilibrium regime, we divide them into a series of time
windows (Figures 2 and 3). We plot the populations P of
oligomers of given sizes (Nc ¼ 5, 11, and 14 for Ab16–22 in
Figure 2, and Nc ¼ 5, 8, and 10 for Ab25–35 in Figure 3) as a
function of their degree of local order, bo.
We observe clear time dependencies both of the oligomer

populations and of their degrees of order. For small oligomers
(Nc ¼ 5), the data show a decrease in the populations of the
disordered species with time. In larger ones, the time
evolution is more complicated and so we describe the
behavior of the two peptides, Ab16–22 and Ab25–35, separately.
For Ab16–22, the population of large oligomers (Nc¼14, Figure
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Author Summary

Several peptides and proteins have been shown to convert from
their soluble forms into highly ordered fibrillar aggregates, known as
amyloid fibrils. It has also been realised that the formation of
amyloid fibrils is often preceded by the appearance of small but
highly organised oligomeric assemblies. Interest in these low
molecular weight oligomers has increased considerably since these
molecular species have been detected in the brains of patients
suffering from Alzheimer disease. Evidence is accumulating con-
cerning the ability of the low molecular weight oligomers formed by
the Ab peptide to specifically disrupt cognitive function. To increase
our understanding of this phenomenon, we describe in this paper
the early stages of the oligomerization process of two fragments
(Ab16–22 and Ab25–35) of the Ab peptide, by exploiting the possibility
provided by computer simulations to describe aggregation reac-
tions at the molecular level. Our results suggest that the ability of
many diverse peptides and proteins to form amyloid fibrils, as well
as the inherent toxicity of many oligomeric assemblies, are a
consequence of the tendency of the backbone of polypeptide
chains to form hydrogen bonds, and of the outcome of the
competition between hydrophobic and hydrogen bonding forces.

Structural Reorganisation of Oligomeric Species



2) does not vary significantly with time but the peak of the bo
distribution shifts toward a higher degree of order. This
peptide can therefore be seen to form large disordered
oligomers very quickly, which then reorganize and form

species with a high content of b sheet structure. Such a
mechanism has been described by Serio et al. [14] in order to
interpret experimental results for a yeast prion, and exper-
imental evidence that this type of behavior may be general has

Figure 2. Time Dependence of the Population of Ab16–22 Oligomers

The population P(Nc) was calculated as the sum over all the oligomers of a given size (Nc¼ 5 (red), 11 (green), and 14 (blue)) in a specific time window
and in all the 100 independent simulations. We show P as a function of the b sheet content as defined by the local-order parameter bo. Each window
corresponds to a different time point along the simulation. At early stages (left), configurations are highly disordered; at intermediate stages (centre),
ordered structures start to appear; at late stages (right), the structures are rather well ordered.
doi:10.1371/journal.pcbi.0030173.g002

Figure 1. Representative Conformations in a Monte Carlo Simulation

Representative steps in a Monte Carlo simulation of Ab16–22 showing the coalescence of individual peptide molecules into aggregates.
doi:10.1371/journal.pcbi.0030173.g001
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been reported by Plakoutsi et al. [30], Bader et al. [11] and
Petty and Decatur [31]. In the simulations of the Ab25–35

peptide, however, a different scenario emerges as the number
of large, predominantly ordered, oligomers (Nc¼10, Figure 3)
increases with time. These differences between the time-
dependent evolution of large oligomers of Ab16–22 and Ab25–35

indicate an underlying diversity in the fundamental mecha-
nisms of self-assembly, which is analyzed in greater detail in
the next section.

Since the analysis of the different populations reveals that
oligomers of different sizes undergo a process of reorganisa-
tion on different time scales, and hence achieve different
degrees of structural order at similar times, it becomes
evident that a simple ensemble average, as shown in Figure
S1, is not an optimal method of describing the process of
aggregation. It is not possible from an ensemble average over
the 100 independent simulations to follow the nature of the
structural transitions of the oligomers from an analysis of the
total hydrogen bond energy, hydrophobic interactions, and b
sheet content as a function of time. We observed, however,
that the average b sheet content increases over time
throughout our simulations, and we, therefore, monitor the

average hydrogen bonding and hydrophobic energy for each
value of the degree of order b (Figures 4 and 5).

Coalescence and Reorganisation of Ab16–22

The pathway followed by the Ab16–22 peptides during the
process of oligomerization can be divided into two steps. In
the first, the monomers present at the beginning of the
simulation coalesce rapidly into molten oligomers as a result
of strong interactions between hydrophobic residues. The
evidence for such a coalescence and its hydrophobic nature
is shown in Figure 2, where a population of large oligomers
(Nc ¼ 14) is present very early in the simulations, and in
Figure 4B, where the initial disordered structures can be seen
to be stabilised by strong hydrophobic interactions, as in
these early structures the majority of the hydrophobic
residues (gray spheres) are buried within the coalesced
configurations to form oligomers with very few hydrogen
bonding interactions (Figure 4A).
These oligomers are substantially disordered as the largely

nondirectional hydrophobic interactions form rapidly while
the hydrogen bonding interactions have a strong distance and
angular dependence and therefore form more slowly. In the

Figure 3. Time Dependence of the Population of Ab25–35 Oligomers

The population P(Nc) was calculated as the sum over all the oligomers of a given size (Nc¼5 (red), 8 (green), and 10 (blue)) in a specific time window and in
all the 100 independent simulations. We show P as a function of the b sheet content as defined by the local-order parameter bo. Each window corresponds
to a different time point along the simulation. At early stages (left), only small ordered oligomers are present, while at intermediate stages (centre),
the size of ordered oligomers grows, and at late stages (right), the ordered oligomers are quite large.
doi:10.1371/journal.pcbi.0030173.g003
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second step of the assembly process, these collapsed
oligomers undergo a process of reorganisation (Figure 2) as
revealed by a time-dependent shift toward higher values of
the order parameter. This ordering process is driven by the
formation of directional interchain hydrogen bonds between
the peptides (Figure 4A), which transform the molten
oligomers produced by the initial hydrophobic collapse, in
which no significant secondary structure is present, into
oligomers rich in b sheet structure. As a consequence of this
process, many of the hydrophobic residues that are initially
buried inside the oligomer become exposed to the solvent
(Figure 4B), with a consequent decrease in the contribution of
the hydrophobic interactions to the stability of the oligomers.

In Figure 6D we show how the population of oligomers and of
b sheet structures depends on the sizes of the oligomers and
the extent of b sheet structure within them, under the
conditions of temperature and concentration used through-
out this study. As a consequence of the initial hydrophobic
collapse and the subsequent conformational conversion, the
two distributions appear very different. This type of
reorganisation has been characterised experimentally by
Petty and Decatur [31] using isotope-edited infrared spectro-
scopy and described theoretically as a ‘‘reptation’’ process by
Santini et al. [47] using an activation–relaxation computa-
tional technique (ART) and by Nguyen et al. [35] with the
dock and lock mechanism.

Figure 5. One-Step Ordering of Ab25–35 Oligomers

Competition between hydrophobicity and hydrogen bonding in the ordering process of the oligomers formed by the Ab25–35 peptide. As in Figure 4, we
report the average interchain hydrogen-bond energy per chain (A), and the average interchain hydrophobic energy with respect to the order parameter b (B).
Two representative oligomer configurations are shown corresponding to b¼0 and b¼0.58. As opposed to the case of the Ab16–22 peptide shown in Figure 4,
however, there is no evidence of structural reorganization within the oligomers, and therefore even small oligomers are ordered, provided that the overall
degree of order in the ensemble, b, is very small due to the large fraction of unstructured monomers present in the system.
doi:10.1371/journal.pcbi.0030173.g005

Figure 4. Coalescence and Reorganisation of Ab16–22

Competition between hydrophobicity and hydrogen bonding in the formation of ordered oligomers formed by the Ab16–22 peptide. (A) Average
interchain hydrogen-bond energy per chain and (B) average interchain hydrophobic energy with respect to the order parameter b. Two representative
oligomer configurations are shown corresponding to b¼0 and b¼0.36; comparison of these structures illustrates the process of internal reorganisation
that leads to increases in both the number of hydrogen bonds and in the exposure of hydrophobic groups (gray spheres).
doi:10.1371/journal.pcbi.0030173.g004
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Direct Ordering of Ab25–35 Oligomers
Ab25–35 is significantly less hydrophobic than Ab16–22. As a

consequence of this fact, there is no significant hydrophobic
coalescence of molecules leading to the formation of
disordered oligomers. Instead, the incorporation of a
molecule into an ordered b sheet takes place in a single step,
driven by the formation of the interchain hydrogen bonds
(Figure 5), such that the oligomers of Ab25–35 grow in a highly
ordered fashion. Particularly clear evidence for this type of
growth is provided by the data reported in Figure 3, where,
even in the first time window, small Ab25–35 oligomers (Nc¼ 5)
are seen to have a relatively high degree of order and to be
highly populated, while the number of larger oligomers (Nc¼
10) increase significantly more slowly. This behavior is

strikingly different from that of Ab16–22 shown in Figure 2,
where a substantial population of large oligomers is formed
early but the latter become ordered more slowly than do the
large oligomers of the Ab25–35 peptide.
This distinction is also seen from the differences in the

nature of the populations of oligomers and b sheets in the
simulations of the two peptides. For Ab25–35, as shown in
Figure 6E, the two population distributions are almost
identical, indicating clearly that the oligomers do indeed
grow in an ordered fashion. A further consequence of the
differences in the aggregation processes of the two peptides
can be seen in Figure 7, where the populations of oligomers
are described as a function of the b sheets present within
them. The hydrophobic coalescence observed in the for-

Figure 6. Populations of Oligomers and b Sheets

Populations of oligomers (blue) and b sheets (red) as a function of the oligomer and b sheet size for different concentrations and temperatures Ab16–22,
box size B ¼ 130 and temperature T ¼ 295 K (A).
(B) Ab16–22, box size B ¼ 130 and temperature T ¼ 335 K.
(C) Ab16–22, box size B¼ 130 and temperature T ¼ 370 K.
(D) Ab16–22, box size B ¼ 60 and temperature T ¼ 295 K.
(E) Ab25–35, box size B ¼ 60 and temperature T ¼ 295 K.
(F) Ab16–22, box size B ¼ 60 and temperature T ¼ 330 K.
doi:10.1371/journal.pcbi.0030173.g006
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mation of oligomers of the Ab16–22 fragment produces
complex structures containing several small segments of b
sheet, while the more hydrogen bond driven oligomerization
of the Ab25–35 fragment results in simple oligomers with a
small number of extended b sheet structures.

In addition, the data shown in the last time window in
Figure 3 reveal that the distribution of large Ab25–35 oligomers
reaches a maximum at high values of the order parameter bo,
while the number of smaller oligomers is effectively the same
for a large range of bo values. In other words, the degree of
order of a b sheet increases with its size, a finding that is
consistent with the extremely high degree of long-range order

found in amyloid fibrils [6,35]. In agreement with our findings,
recent studies [54] of a variety of truncated peptides of Ab40/

42, the fragment 25–35 of the Ab peptide was found to form b
sheet rich structures more readily than the fragment 17–21.
The latter peptide was found, however, to generate much
greater toxicity in cellular aggregates than the corresponding
fragment 25–35.

Exposure of Hydrophobic Residues in the Oligomer
Species
A series of recent studies has suggested that the toxicity of

amyloid aggregates depends on their size [22,25,26], with the
maximum toxicity corresponding to those species with
amyloid characteristics that have the highest surface-to-
volume ratio. In addition, there is increasing evidence of a
relationship between the hydrophobicity of the polypeptide
chains and the toxicity of the oligomers that they form [27–
29]. These results are consistent with the idea that toxicity
could result from aberrant interactions with cellular compo-
nents such as membranes, proteasomes, or molecular
chaperones [22,55,56]. Such interactions are likely to be
caused by the extended solvent-exposed hydrophobic surfa-
ces exhibited by these oligomers, as probed, for example,
by ANS binding experiments [57,58].
Recent experiments [54] have suggested that residues 17–21

play a key role in the toxicity of the Ab40 and Ab42 peptides.
We therefore studied the time evolutionof the solvent-exposed
hydrophobic surface of Ab16–22 during the formation of b rich
oligomeric assemblies. We exploited the all-atom representa-
tion of the Ab16–22 peptides in our simulations to calculate the
total number of solvent-exposed hydrophobic residues in the
entire ensemble and also the average number per molecule in
oligomers of specific sizes (i.e., STOT and S, respectively, see

Figure 8. Surface-to-Volume Dependence for the Exposure of Hydrophobic Residues in Oligomeric Species

Average hydrophobic energy per peptide for oligomers containing six peptide molecules (i.e., Nc ¼ 6, green line) and 11 peptide molecules (i.e.,
Nc ¼ 11 blue line) as a function of the b sheet content within the oligomer. As examples, two selected oligomeric configurations, both with the
same degree of order, bo ¼ 0.38, are shown on the right. Large oligomers have a lower surface-to-volume ratio, and this results in a smaller
number of exposed hydrophobic residues per peptide molecule.
doi:10.1371/journal.pcbi.0030173.g008

Figure 7. Populations of Oligomers as a Function of the Total Number of

b Sheets Contained within the Oligomers

The hydrophobic interactions that drive the coalescence and hence the
formation of Ab16–22 oligomers (left), results in aggregates with complex
structures containing many small b sheets. On the other hand, the hydrogen
bond interactions that drive the oligomerization of the Ab25–35 fragments
(right) result in simpler structures with a small number of b sheets.
doi:10.1371/journal.pcbi.0030173.g007
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Methods). Our results show that the nature of the solvent-
exposed surface is primarily determined by two competing
processes. First, the initially formed collapsed oligomers
undergo a conformational transition into b sheet rich
structures and expose an increasing number of hydrophobic
residues (Figure 4B). Second, the oligomers grow into larger
species and their surface-to-volume ratio decreases. The net
effect is illustrated in Figure 8, where, as an example, we show
two oligomeric configurations with the same relative b sheet
content (bo); smaller oligomers have weaker total hydrophobic
interactions and therefore have a larger fraction of exposed
hydrophobic residues. These two processes, along with the
initial hydrophobic collapse, contribute to Sn(s) in Equation 4.

To describe the process over the whole ensemble of
oligomers (STOT(s)), however, we need to consider also the
distribution of aggregates of different sizes (Equation 3). The
result is that the overall number of exposed hydrophobic
residues (Figure 9) initially grows due to the increased
exposure resulting from the reorganisation of the initially
formed oligomers and later decreases due to the combined
effect of the decreasing surface-to-volume ratio as the
oligomers grow in size and the consequent reduction in the
total number of oligomers. Remarkably, this behaviour is at
least qualitatively very similar to that of the toxicity reported
by Bucciantini et al. [22,26], suggesting that the extent to
which hydrophobic residues are exposed could well be a
crucial factor in determining the toxic properties of

oligomers during the formation of amyloid fibrils and
plaques.

Discussion

The analysis of the conversion of monomeric Ab16–22 and
Ab25–35 peptides into oligomers, observed using computer
simulations, suggests that this process occurs by a generic
‘‘two-step’’mechanism and that it is highly dependent on their
degree of hydrophobicity. The more hydrophobic Ab16–22
peptides initially coalesce into disordered oligomers that
subsequently undergo a process of conformational conversion
that leads to the formation of highly ordered species. By
contrast, the hydrophobicity of the Ab25–35 peptides is not
sufficient to drive an initial coalescence step, and the peptides
instead form ordered aggregates effectively in a single step
driven by the formation of hydrogen bonds (Figure 10). This
process can be considered to be a special case of the two-step
mechanism in which its first step is effectively suppressed.
These results suggest that interchain hydrophobic inter-

actions and the specific sequence of a polypeptide chain are
likely to play a major role in promoting the formation of
oligomeric species. Indeed, experiments suggest that concen-
tration, temperature, and hydrophobicity all influence the
rate of collapse of a given polypeptide chain into different
types of aggregates [11]. If the rate of collapse is fast
compared with that of conformational conversion, aggrega-
tion will take place by a process of coalescence and
reorganisation. By contrast, if hydrophobic forces are less
important in driving the association of peptide molecules,
ordered oligomers essentially assemble directly.
The two-step process that describes amyloid formation is

therefore modulated by the competition between hydrogen
bonding and hydrophobicity. While the initial coalescence
step is driven primarily by the rapid formation of relatively
nonspecific hydrophobic interactions, the conformational
conversion that results in the formation of ordered b sheet
structures is predominantly a consequence of the slow
formation of highly directional interchain hydrogen bonds.
The fact that this process of conformational conversion
has been found both experimentally and theoretically in a
range of other studies of a variety of models systems
[11,14,30,31,33,35] suggests that this process could indeed be
a generic one. Importantly, a mechanism of this type is
consistent with the hypothesis that the ability to form fibrils is
a common property of polypeptide chains and that the
resulting structures have similar structural characteristics
regardless of the peptides or proteins involved [4–6].
Experimental evidence for the importance of the competi-
tion between hydrogen bonding and hydrophobic interac-
tions in the aggregation process has been found in studies in
which changes in the solution conditions that result in a
change in the hydrogen bonding interactions led either to
fibrillar or nonfibrillar aggregates with similar b sheet
content but with distinct morphological features [59].
The results that we have presented in this article provide a

detailed description of a process in which the formation of
intermolecular hydrogen bonds is at the origin of the
generation of b sheets within oligomeric species [31]. By
extension, the sequence-independent nature of the hydrogen
bonding interactions in oligomers observed in the present
study can also rationalize the observation of the inherent

Figure 9. Time Dependence of the Total Exposed Hydrophobic Area in

the Oligomeric Ensemble

Time dependence of the solvent-exposed hydrophobic surface area (S)
for the Ab16–22 fragment (see Methods). Two competing processes
contribute to the evolution of the species. At early times, S increases due
to the reorganisation process of the initially formed oligomers driven by
the formation of hydrogen bonds. By contrast, S decreases as the typical
size of the oligomers grows and the surface-to-volume ratio becomes
smaller and the consequent decrease in the number of oligomers
present in the system. In the inset we show an expansion of the early
time points representing the effect of the initial hydrophobic coales-
cence of the monomers into disordered oligomers.
doi:10.1371/journal.pcbi.0030173.g009
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toxicity of species formed prior to the mature fibrils. This
latter observation has been demonstrated for both disease-
and nondisease-related peptides and proteins [22,24,26].

We have also found in the present study that the
conformational conversion that results in ordered oligomers
also leads to an increase in the number of hydrophobic
residues that are exposed to the solvent. This process,
however, is offset by the decrease in the surface-to-volume
ratio of oligomers as their size increases with time. A
combination of these two effects gives rise to the prediction
that there will be a maximum in the dependence of toxicity, a
phenomenon likely to be related to exposed hydrophobic
residues, on aggregate size, and hence on the time over which
aggregation occurs. Such a maximum has been observed in
experimental studies of the effects of aggregates on the
viability of cells in culture and indeed within the brains of
higher organisms [22,26]. Our results suggest that the
competition between hydrogen bonding and hydrophobic

interactions is the crucial factor that modulates the subtle
balance between the generic ability and relative propensities
of polypeptide molecules to form ordered structures and the
potential toxicity of the resulting species to living systems.

Methods

Model. Simulations were carried out with ProFASi [53], which
implements an implicit water all-atom model [49–52] for protein
foldingandaggregation studies.Themodel assumesfixedbond lengths,
bond angles, and peptide torsional angles, so that each amino acid has
only the Ramachandran torsional angles and the side chains torsional
angles as its degrees of freedom. The interaction potential

E ¼ Eloc þ Eev þ Ehb þ Ehp ð1Þ

is composed of four terms. The Eloc term is local and represents an
electrostatic interaction between adjacent peptides along the chain
and the Eev term is a 1/r12 repulsion between pairs of atoms. The
hydrogen bonding contributions to the energy are calculated by a
term, Ehb, in which the distance dependence is modeled through a
Lennard-Jones potential between pairs of NH and CO groups within a

Figure 10. Schematic Diagram of the Two-Step Mechanism of Amyloid Formation

Schematic diagram of the mechanistic pathway resulting in the formation of ordered oligomers, described in this study, showing an effective one-step
process involving the assembly of monomers directly into b sheet rich oligomers (top) and a more general two-step process, where the monomers
coalesce to form molten oligomers before undergoing a process of conformational conversion (bottom). The boxes show representative structures from
simulations of Ab16–22 (lower and left panels) and Ab25–35 (top and right panels).
doi:10.1371/journal.pcbi.0030173.g010
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given cutoff of 4.5 Å, and the angular dependence is expressed as a
function of the NH���O and H���OC angles [52]. The hydrophobicity
term Ehp is defined by a contact potential between hydrophobic side
chains, the latter being proportional to the fraction of atoms in
contact in the two amino acids [52]. The parameters of the potential
were chosen by optimizing the agreement with the melting temper-
ature of the Trp-cage miniprotein; the resulting force field has been
shown to reproduce accurately the folded states and the melting
temperatures of a range of polypeptide chains of both a and b
structures, including Betanova, GB1p, LLM, and Fs, with excellent
agreement with both CD and NMR data [52]. In addition, properties
such as the content of a-helix and the relative population of folded
species was also found to be in excellent agreement with experimental
data [52]. ProFASi has also already been applied to study the
aggregation of a series of short peptides, including the Ab16–22
fragment considered here [50]. Those simulations generated a series
of conformations of the assemblies of the Ab16–22 peptide containing
in register the antiparallel structures, a behaviour previously observed
experimentally [60]. The Monte Carlo simulations that we describe in
this work were performed at constant temperature in a periodic box
of 60 Å using only local updates [61] and rigid body translations and
rotations. In Figure 6 we compare the oligomer population and the
b sheet population for several such cases. We tested simulations in a
cubic box of (130 Å)3 at 295, 335, and 370 K and in a cubic box of
(60 Å)3 at 295 and 330 K. In some cases (Figure 6A and 6C), we do not
observe a complete collapse of all the peptides, and in other cases
(Figure 6B) the population of oligomers is essentially the same as the

b sheet contour. In some systems, see Figure 6F, the oligomer
population is artificially skewed toward very large oligomers as a
consequence of the finite size of the system. On the basis of these
studies, we chose to study the aggregation of both Ab16–22 (Figure 6D)
and Ab25–35 (Figure 6E) inside a cubic box with periodic boundary
conditions of (60 Å)3 and at a temperature of 295 K. We then analysed
ensembles of trajectories to identify the major kinetic events during
the aggregation process. This type of analysis is based on the
observation that if kinetic events are separated by a large number
of local moves and are observed in an ensemble of trajectories, they
represent significant shifts in population distribution and reflect
properties of the free energy landscape such as the depth of local
minima and the height of the barriers between them [62].

The local-order parameter. To be able to describe the ordering
process at the level of individual residues, we introduce the concept
of ‘‘local order’’ using the parameter bij for i-th residue in the j-th
peptide. To identify the local order (bij) of each residue, we follow the
procedure of the local-structure vector, ql(i,j), used by ten Wolde et al.
and Auer et al. [63,64], where l is the index of the spherical harmonics
used to determine the symmetry of local structure near atom i. We
calculate this vector only for the Ca atoms in each residue. A clear
distinction between ordered and disordered residues can conven-
iently be made by using l¼ 4, since every residue in a b sheet has an
approximate fourfold symmetry. The vector q4(i,j), therefore, reveals
the geometrical structure in the vicinity of residue i in peptide j.

A high correlation between these vectors calculated over two
nearby atoms i and i9 (less than 5.5 Å apart) implies that they have
similar local environments [63]. If we find at least three other residues
with similar local environments in the vicinity of residue i, we define
the residue to be ordered and set bij¼ 1, otherwise we define it to be
disordered and bij ¼ 0. In Figure 11 we calculate the average of the
residue-specific local order (bij) over the whole ensemble of peptides
(b) and over the peptides contained in a single specific oligomer (bo).

Measurement of the hydrophobic surface of the oligomers. By
analyzing the results of our simulations, we concluded that the
assembly of peptides is described by a Poisson process in which the
elementary event consists in the attachment of an oligomer of, on
average, 2.2 peptide molecules:

PnðsÞ ¼
ðksÞn�1

ðn� 1Þ! e
�ks ð2Þ

The time (s) is scaled as s ¼ ta, where a is evaluated from the
stretched exponential form of the autocorrelation function of the
oligomers. The time dependence of the solvent accessible hydro-
phobic surface area is calculated as:

STOTðsÞ ¼ Npep

X

n¼1
PnðsÞSnðsÞ ð3Þ

where Npep is the number of peptides in a system and Pn(s) is the
distribution of the oligomers as in Equation 2. The solvent-exposed
hydrophobic surface area per oligomer is expressed as:

SnðsÞ ¼ ½A1e�k1s þ A2ð1� e�k2sÞ� �NcðnÞ1=3 ð4Þ

The first term of Sn(s) represents the coalescence step that typically
is driven by the burial of hydrophobic side chains. The second term is
the ordering process by which hydrophobic side chains can become
exposed. As Nc is proportional to the volume of the oligomer, the
term �NcðnÞ1=3 represents their surface-to-volume ratio.

The molecular simulations that we have performed enable the
parameters A1, A2, k1 , k, and k2 to be estimated, thus providing
a general expression for Sn and Pn for oligomers of any size.
We estimated k2¼0.0134, from the ordering of b content in time, and
k¼0.5byfitting theprobabilitydistributionof theoligomers.Values for
the other three parameters A1¼3.2, A2¼9.3, k1¼0.207 were obtained
from the hydrophobic energy per peptide of oligomers in time.

We use this equation to plot the hydrophobic surface area in
Figure 9 for a system of Npep¼5,000 peptide molecules. The peak time
s ¼ 140 corresponds to 4 3 1013 Monte Carlo steps.

Supporting Information

Figure S1. Time Dependence of the Hydrogen Bond and Hydro-
phobic Energy and of the b Sheet Content

Hydrogen Bond (A), Hydrophobicity (B), and b Sheet Content as a
function of time. These quantities are different from the ones shown
in Figures 4 and 5. These quantities are calculated as an ensemble

Figure 11. Example of Calculation of the Residue-Specific Local Order

An example of an ordered oligomer with Nc¼ 10 for 20 Ab25–35 peptides
after 109 Monte Carlo steps. The spheres on each peptide chain stand for
Ca atoms. The bi,j values of each peptide chain are given as
G(01111110000), Q(00111111110), R(01111111111), S(01111111110),
K(00111111111), O(00111111111), J(01111111000), T(01111110000),
P(01111111000), and B(00000000100). The two different ways of
averaging the b sheet parameter (b and bo) are calculated as b ¼ 111/
220 where 111 is the total number of ordered residues in the ensemble of
20 peptides and 220 is the total number of residues (20311), and bo¼72/
110 where 72 is the number of ordered residues in the oligomer shown
above and 110 the total number of residues within this particular
oligomer (10 3 11).
doi:10.1371/journal.pcbi.0030173.g011
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average over the 100 independent simulations, while in Figures 4 and
5 the averages are calculated over the ensemble of configurations
with the same degree of b sheet content (b). The striking difference
between the two behaviours is due to the different time scales of the
process of conformational conversion for oligomers of different sizes
as shown in Figures 4 and 5.
Found at doi:10.1371/journal.pcbi.0030173.sg001 (958 KB TIF).
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