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A question of fundamental importance concerning protein folding
in vivo is whether the kinetics of translation or the thermodynam-
ics of the ribosome nascent chain (RNC) complex is the major
determinant of cotranslational folding behavior. This is because
translation rates can reduce the probability of cotranslational fold-
ing below that associated with arrested ribosomes, whose behavior
is determined by the equilibrium thermodynamics of the RNC com-
plex. Here, we combine a chemical kinetic equation with genomic
and proteomic data to predict domain folding probabilities as a
function of nascent chain length for Escherichia coli cytosolic pro-
teins synthesized on both arrested and continuously translating
ribosomes. Our results indicate that, at in vivo translation rates,
about one-third of the Escherichia coli cytosolic proteins exhibit
cotranslational folding, with at least one domain in each of these
proteins folding into its stable native structure before the full-
length protein is released from the ribosome. The majority of these
cotranslational folding domains are influenced by translation ki-
netics which reduces their probability of cotranslational folding
and consequently increases the nascent chain length at which they
fold into their native structures. For about 20% of all cytosolic pro-
teins this delay in folding can exceed the length of the completely
synthesized protein, causing one or more of their domains to switch
from co- to posttranslational folding solely as a result of the in vivo
translation rates. These kinetic effects arise from the difference in
time scales of folding and amino-acid addition, and they represent
a source of metastability in Escherichia coli’s proteome.
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During translation, the ribosome coordinates a series of com-
plex processes, including the unidirectional translocation of

an mRNA molecule one codon at a time, the selection for each
codon of a complementary tRNA from the cytosol, and the ca-
talysis of the peptide bond. The result is the synthesis of the
corresponding nascent chain and its extrusion through a tunnel
embedded within the large ribosomal subunit. As individual do-
mains of a multidomain protein emerge from this exit tunnel, they
have the opportunity to form secondary and tertiary structures
and fold into their native or native-like structures while the rest
of the nascent chain is still being synthesized (Fig. 1A). Such
cotranslational folding has been shown to occur both in vivo and
in vitro (1–3), with large multidomain proteins being more likely
to exhibit cotranslational folding than small single domain
proteins (4).
The time-dependent, irreversible nature of translation means

that cotranslational folding occurs out of equilibrium. Conse-
quently, the interplay of time scales arising from different pro-
cesses involving the ribosome nascent chain (RNC) complex has
the potential to modulate the probability that cotranslational
folding occurs (5, 6). There are at least three time scales that can
have an impact on the cotranslational folding process at nascent
chain length i: (a) the mean time it takes to add an amino acid to
the growing nascent chain (denoted τA,i) (7), (b) the mean time

of domain unfolding (denoted τU,i), and (c) the mean time of
domain folding (denoted τF,i). The cotranslational folding of the
multidomain SufI protein, for example, was abolished when the
translation rate (1/τA,i) was increased by either replacing slow
translating codons located near domain boundaries with fast trans-
lating codons or adding excess amounts of aminoacyl-tRNA (8).
Moreover, a simulation study that examined the cotranslational
folding of protein G (Fig. 1A) found that uniformly speeding up
translation suppressed cotranslational folding and that placing
slow or fast translating codons at specific points along an mRNA
molecule could, respectively, increase or decrease the amount of
cotranslational folding that occurred (7). Thus, increasing the
translation rate can shift the cotranslational folding curve to-
ward longer nascent chain lengths (Fig. 1 B and C).
Although the cotranslational folding properties of an increasing

number of proteins are being characterized experimentally in vitro
(9, 10), very little is known about the importance of cotransla-
tional folding in vivo for entire proteomes of specific organisms.
Therefore, one fundamental question that arises concerns the
percentage of an organism’s proteome that folds cotransla-
tionally. A second fundamental question is to what extent pro-
teins that fold cotranslationally do so under a regime governed
by the kinetics of translation (which we refer to as kinetic effects)
or the thermodynamics of the RNC complex (which we refer to
as thermodynamic effects). This issue is important because
cotranslational folding populations, pathways, structures, and
mechanisms can differ significantly depending on whether kinetic
or thermodynamic effects predominate. If kinetic effects occur,
the cotranslational folding probability will be less than its
thermodynamically determined value at one or more nascent chain
lengths and the length at which stable domain folding is achieved
(defined as PF > 0.5) will be increased (Fig. 1B). Consequently,
kinetic effects will tend to delay cotranslational folding as a func-
tion of nascent chain length, resulting in an excess population of
metastable, ribosome-bound unfolded states.
We address these questions for the cytosolic proteome of

Escherichia coli. We focus on this organism because it is uni-
cellular, which avoids issues of proteome variation among dif-
ferent cell types. E. coli has also been extensively characterized in
terms of its genome and proteome, and the concentrations of
ribosome and tRNA molecules present at different growth rates
have been measured (11), allowing predictive models for τA,i to

Author contributions: P.C., R.I.M., M.V., C.M.D., and E.P.O. designed research; P.C.
and E.P.O. performed research; P.C. and E.P.O. contributed new reagents/analytic
tools; P.C., R.I.M., M.V., C.M.D., and E.P.O. analyzed data; and P.C., R.I.M., M.V., C.M.D.,
and E.P.O. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: eo264@cam.ac.uk.

See Author Summary on page 396 (volume 110, number 2).

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1213624110/-/DCSupplemental.

E132–E140 | PNAS | Published online December 19, 2012 www.pnas.org/cgi/doi/10.1073/pnas.1213624110

mailto:eo264@cam.ac.uk
http://www.pnas.org/content/110/2/E132/1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213624110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213624110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1213624110


be developed (12). We focus on the E. coli proteins that are
synthesized and remain in the cytosol because this strategy avoids
the need to consider additional processes, such as cotranslational
protein translocation through translocons (13), that would com-
plicate our approach to modeling and analysis.
Our unique systems approach to these questions combines a

kinetic model, which predicts the effect of individual codon trans-
lation rates on the cotranslational folding of protein domains (7),
with biophysical data on E. coli to predict the cotranslational
folding curves for protein domains in the E. coli cytosol (Fig.
1D). In this way, we have been able to calculate cotranslational
folding curves at the rate of translation found in E. coli (an out-
of-equilibrium process), as well as the curves that would arise
from an infinitely slow translation process (a quasiequilibrium
process; Fig. 1B). Our results indicate that a number of proteins
exhibit cotranslational folding in E. coli and that for many of
these proteins, translation kinetics, rather than the thermody-
namics of the RNC complex, govern their cotranslational folding
behavior. This important physical feature of cotranslational
folding has a number of significant implications for cellular bi-
ology, biotechnology, and synthetic biology, as we discuss below.

Methods
Creation of a Database Characterizing E. coli’s Cytosolic Proteome. The wealth
of quantitative data characterizing the K12 MG1655 strain of the Gram-
negative bacterium E. coli enables us to estimate the cotranslational folding
properties of its cytosolic proteome. The data we used in this study were
drawn from several sources, which we organized into a database (Dataset S1
and see the SI Appendix for dataset formatting information). Full details of
the construction of this database are provided in Supplemental Information.
Briefly, for the 4,319 unique coding sequences in the E. coli transcriptome,

we identified those that had an X-ray structure in the Research Collabo-
ratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) (14) with
a resolution of less than or equal to 3 Å or an NMR entry, and also had
domain definitions in the Structural Classification of Proteins (SCOP) (15) or
CATH (16) database. This procedure resulted in 802 proteins. For the 489
additional proteins that had an RCSB structure but no SCOP or CATH entry,
we used Domain Parser (DP) (17) to identify their domains; the latter algo-
rithm was able to identify domains in 264 of these proteins, and the
remaining proteins were not included in the database. A small percentage
of SCOP and CATH domains were reported to be made up of multiple seg-
ments. Given that the sequence separation between segments is quite large
(Fig. S1), we treated these discontiguous segments as separate domains,
provided they were at least 50 residues in length. We then used PSORTb
3.0.2 (18) to classify proteins on the basis of their subcellular localization;
PSORTb includes 4,148 entries that correspond to 4,129 Uniprot identifica-
tion numbers, of which 1,898 are cytoplasmic, 818 are of unknown locali-
zation, and 54 fall into a category of unknown/multiple compartments. To
maximize the coverage of our database, we assumed that proteins of un-
known localization were cytoplasmic. After removing redundant structures
that mapped onto the same protein domain, the database consisted of 758
unique proteins containing 1,236 domains, which covers 30% of the proteins
that are cytosolic in E. coli. For each domain entry in our database, we report
its corresponding range of residue numbers in the PDB file, its range of
codon numbers along the mRNA molecule, its mRNA sequence, its domain
structural classification (mostly α, mostly β, or mixed α/β), and its total
number of residues. Furthermore, for each protein, we report its corre-
sponding gene expression level in E. coli from several experimental sources.
These data were used to inform the kinetic model and the analysis that are
detailed below.

Although our database contains only the subset of E. coli cytosolic proteins
for which structural data are available, we find no systematic difference
between the length distribution of proteins in our database and that in the
full set of cytosolic proteins (Fig. S2), indicating that our database is repre-
sentative of the full cytosolic proteome, at least in terms of protein size.

Fig. 1. A systems approach for predicting the cotranslational folding behavior of E. coli’s cytosolic proteome. (A) 50S ribosomal subunit with ribosomal
protein and RNA molecules shown, respectively, in red and yellow. The protein G domain (blue) is shown emerging from the exit tunnel, and it is tethered to
the P-site tRNA by an unstructured poly-glycine linker (white). (B) Cotranslational folding curves (PF) for a protein G domain synthesized at finite translation
rates (red triangles, τA = 1.3 ms) and at an infinitely slow translation rate (black X symbols). Data were taken from the coarse-grained molecular dynamics
simulations reported by O’Brien et al. (7). The deviation between the PF(i ) curves is characterized by ΔLm, the separation in nascent chain lengths at which
the native state becomes stable, that is when PF(i ) > 0.5. The simulation results for τA = 60 ms are shown as blue circles; at this translation speed, ΔLm = 0.
(C ) ΔLm can be thought of as the additional number of residues (brown spheres) required for a domain to achieve its stable folded structure at finite
translation rates (Lower) compared with infinitely slow translation (Upper). Structures were taken from coarse-grained simulations of protein G reported by
O’Brien et al. (7). (D) Illustration of the work flow of our systems approach.
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Calculation of the Cotranslational Folding Curve for a Given Protein Domain.
Central to our analysis is the calculation of the cotranslational folding
probability of a protein domain as a function of its nascent chain length,
referred to as the cotranslational folding curve. We assume the domains in
our database are autonomous, cooperative folding units that exist in either a
folded or unfolded state with a negligible population of intermediates. For
a ribosome that exhibits exponential dwell times at each codon, the ensemble
averaged domain folding probability PF(i) as a function of nascent chain
length i is (7)

PFðiÞ ¼ ∑
i

j¼1

τ−1F;j
τ−1A;jþ1

∏i
k¼j

τ−1A;kþ1

τ−1A;kþ1 þ τ−1F;k þ τ−1U;k
; [1]

where τF,i, τU,i, and τA,i+1 are, respectively, the mean times of domain folding,
domain unfolding, and amino acid addition at nascent chain length i. In this
equation, PF(i) is the probability the domain is folded immediately before
adding the next amino acid (Fig. 1B). The equilibrium cotranslational folding
curve PE

F ðiÞ can be calculated by inserting into Eq. 1 τA,i = ∞ for all lengths
of i, which reduces it to

PE
F ðiÞ ¼

τ−1F;i
τ−1F;i þ τ−1U;i

: [2]

To calculate τA,i, the mean time of translation of the ith codon in the
mRNA sequence, we used the method of Viljoen and colleagues (12), which
estimates τA,i as a function of the codon identity, and the in vivo concen-
tration of cognate, near-cognate, and noncognate tRNA molecules (SI
Methods). This method accounts for competitive binding of cognate and
noncognate tRNA molecules for a codon and accurately predicts the average
translation rate of various proteins measured in vivo. We used the in vivo
concentrations of the ribosome and tRNA molecules measured at five

different E. coli exponential growth rates (11) to calculate τA,i for each co-
don at each growth rate (Tables S1 and S2).

To estimate τF,i and τU,i for a given domain, we fit an empirical scaling
relationship to the cotranslational folding and unfolding kinetics of protein
G from previously reported coarse-grained simulations (7) of this RNC complex
(Fig. 2A). The relationships have the functional forms

τF;i ¼ τF;bulk þ aτF;bulke
−iþlþ25 þ bτF;bulk=i

c ; [3]

τU;i ¼ dτF;bulk
.�

1þ e−iþlþ30
�
; [4]

where the fitting parameters a, b, c, and d have values of 404, 3205.5, 1.72,
and 0.953, respectively. In Eqs. 3 and 4, l is the codon number corresponding
to the C-terminal residue of the domain, i is the nascent chain length in
number of residues, and c is an exponent whose value is equal to 1.72. The
simulations on which the fit parameters were determined used an un-
structured poly-glycine linker to attach the protein G domain to the peptidyl
transferase center (PTC) (7). We do not expect there to be significant
changes in the behavior of these equations when different sequence com-
positions for the linkers are used.

To estimate τF,bulk and τU,bulk, the folding and unfolding times of the
domain when it is free in solution, in Eqs. 3 and 4, we used the De Sancho–
Muñoz (DM) model (19), which predicts these two time scales based on the
number of residues in the domain, its structural class, as well as the solution
temperature (SI Methods). The DM model was chosen over others (20) be-
cause it provides an estimate of τU,bulk, which many other models do not
provide, and it also accounts for the effect of temperature on these time
scales. The latter is important because we will analyze E. coli’s proteome
behavior near its optimal cellular growth temperature of 37 °C (21) and most
quantitative experimental measurements of bulk folding behavior have
been carried out near 25 °C (22). The l, τF,bulk, and τU,bulk values for each
domain are reported in Dataset S1.

Fig. 2. Cotranslational folding of cytosolic protein domains in E. coli. (A) Determination of a scaling relationship to model cotranslational domain folding/
unfolding kinetics. The mean folding (green) and unfolding (magenta) times of protein G as a function of nascent chain length calculated from coarse-
grained simulations (7) were fitted by Eqs. 3 and 4 (dashed lines). (B) Examples of cotranslational folding curves calculated for four different protein domains
in E. coli at in vivo (red, Eq. 1) and infinitely slow (blue, Eq. 2) translation rates. The domains correspond, respectively, to (ASNC_ECOLI, domain 1; Upper Left),
(3MG2_ECOLI, domain 1; Upper Right), (ILVC_ECOLI, domain 1; Lower Left), and (ENO, domain 1; Lower Right) in Dataset S1. (Upper Left) Note that the red
and blue lines are superimposed. (C) Structural characterization of domains that fold cotranslationally and posttranslationally in E. coli cells that are dividing
every 150 min at 37 °C. (Upper) Probability density function (PDF) vs. domain length. (Lower) Probability of different domain classifications in terms of mostly
α (α), mostly β (β), or mixed α/β secondary structure. (D) As in C, except the data are from protein domains that fold cotranslationally with ΔLm = 0 and those
that fold with ΔLm values greater than 41 residues. The noncontiguous distribution for the ΔLm > 41 distribution arises from the small number of domains
used in its construction (n = 41 data points).
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τF,bulk and τU,bulk are functions of a domain’s size and structural class in the
DM model (19). Therefore, in Eqs. 3 and 4, each domain will exhibit unique τF,i
and τU,i values. The qualitative behavior of these equations is such that as the
nascent chain increases in length, the folding time becomes smaller, ap-
proaching its bulk value at sufficiently long lengths. Specifically, when more
than 28 residues connect the C-terminal residue of a domain to the P-site tRNA
on an arrested ribosome, τF,i < τU,i and the folded state of the domain is ther-
modynamically more stable than the unfolded state; around 28 residues in
linker length, τF,i ≈ τU,i and the domain is at or near its midpoint of stability;
below 28 residues, τF,i� τUi and, consequently, the folded state of the domain is
highly unstable, with shorter nascent lengths leading to an exponential increase
in the stability of the unfolded state relative to that of the folded state (Fig. 2A).

This behavior is consistent with a wide range of experimental results. A
study of GFP found that it is capable of forming a stable native fold on the
ribosome when between 22 and 31 residues connect it to the peptidyl-tRNA
(23). A cross-linking study found that the midpoint of stability of an α-hairpin
tertiary structure was between 24 and 30 residues in linker length (24). A
single molecule pulling experiment found that the T4 lysozyme protein was
folded at a linker length of 41 residues (25); shorter linker lengths, however,
were not probed in that study. A similar upper bound was found in NMR (26)
and proteolysis experiments (27), as well as by simulation studies (28). Thus,
Eqs. 3 and 4 account for structural differences between domains that result
in varied kinetics and exhibit realistic ribosome behavior.

Results
About One-Third of the E. coli Cytosolic Proteome Exhibits Cotrans-
lational Folding That Primarily Involves Multidomain Proteins. We
treat each SCOP-, CATH-, and DP-defined domain in our database
as an autonomous cooperative folding unit that folds in a two-
state manner with a negligible intermediate state population. For
each cytosolic domain in Dataset S1, we calculated its cotransla-
tional folding curve as a function of nascent chain length at the
translation rates found in E. coli at 37 °C with a doubling time of
150 min (Fig. 2B). A protein exhibits cotranslational folding if at
least one of its domains folds into its native structure with a
probability of greater than 0.5 before synthesis of the full-length
protein is complete. Under these conditions, we find that about
37% of E. coli’s cytosolic proteome (283 unique proteins in our
database out of 758) exhibits cotranslational folding, whereas
the remaining proteins fold posttranslationally, with none of
the domains in these proteins folding during their synthesis.
Substantial differences are found by comparing the properties

of proteins that fold cotranslationally and those that fold post-
translationally. The overwhelming majority (91%) of cotrans-
lationally folding proteins are composed of multiple domains,
whereas among posttranslational folders, single and multidomain
proteins are almost equally represented (51% vs. 49%). In addi-
tion, the structural characteristics of those domains that cotrans-
lationally fold are different from those of posttranslational folding
domains. Cotranslationally folding domains are smaller in size
on average (106 vs. 177 residues; Fig. 2C) and are more likely to
be structurally classified as predominantly α-helical (51 ± 4% vs.
39 ± 2% for posttranslationally folding domains; Fig. 2C). On the
other hand, posttranslationally folding domains tend to consist of
a mixed α/β structure (50 ± 2% vs. 39 ± 3% for cotranslational
folders; Fig. 2C). Thus, the structural characteristics of a domain
are a factor in determining whether cotranslational folding occurs.
When the growth rate of E. coli increases, the rate of trans-

lation also increases for various proteins (29). To probe the effect
of growth rate on our results, we used biochemical measurements
of tRNA concentrations at 37 °C (11, 30) to calculate τA,i
at different E. coli doubling times (Tables S1 and S2) for use
in Eq. 1. We find that the percentage of the proteome exhibiting
cotranslational folding is insensitive to the change in growth rate,
staying near 37% at all doubling times (Fig. S3).

The Majority of Cotranslational Folding Events in the E. coli Cytosol
Exhibit Kinetic Effects That Can Substantially Delay Folding. Two
cotranslational folding curves of a domain can be calculated from
the chemical kinetic model described inMethods: the folding curve

at the translation rates found in E. coli (Eq. 1), where translation
kinetics have the potential to decrease the probability of co-
translational domain folding (Figs. 1B and 2B), and the folding
curve generated at an infinitely slow translation rate (Eq. 2), where
the thermodynamics of the RNC complex determine the cotrans-
lationally folded population. The difference in the midpoint na-
scent chain length between these two curves, ΔLm, provides a
measure of the deviation from quasiequilibrium behavior exhibi-
ted by cotranslational folding in E. coli and an estimate of the
number of nascent chain lengths at which kinetic effects are
exhibited. Another way to interpret ΔLm is that it represents the
additional number of residues necessary to allow a domain to
reach its native state due to the finite translation rates in E. coli
(Fig. 1C). When ΔLm = 0, the folding curves superimpose (or
are at least highly similar) and thermodynamic properties govern
the extent of cotranslational folding at each nascent chain length.
When ΔLm > 0, the curves deviate from one another and kinetic

Fig. 3. Extent to which kinetic effects are exhibited during in vivo co-
translational folding and its correlation with the separation in time scales.
(A) Probability distribution of ΔLm values for domains that exhibit cotrans-
lational folding in E. coli doubling every 150 min at 37 °C (n = 422). The
cumulative distribution function (CDF) is shown as a solid red line. The
arrows and numbers indicate (from left to right) the ΔLm values at which
the CDF equals 0.5, 0.8, 0.9, and 0.95, respectively. (B) ΔLm for cotransla-
tionally folding proteins as a function of the ratio of τF,m to τA,m at nascent
chain length m at which the midpoint of domain folding stability occurs at
an infinitely slow translation rate.
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effects determine the folded domain population at one or more
nascent chain lengths (Fig. 2B).
Of the 1,236 cytosolic domains in our database, 602 cotransla-

tionally fold at infinitely slow translation rates and the remaining
domains fold posttranslationally, as they have thermodynami-
cally stable folded structures in free solution (Dataset S1). The
reason the latter domains do not fold cotranslationally is that
they correspond to either single domain proteins with no un-
structured C terminus or to the C-terminal domain in multido-
main proteins, which means they must be released from the
ribosome to emerge fully from the exit tunnel and have the op-
portunity to fold. At the faster translation rates found in E. coli
at 37 °C, 180 of the domains that fold cotranslationally on
arrested ribosomes switch to posttranslational folding in vivo
(Dataset S2). The folding of these domains takes longer than the
synthesis of the complete protein, and their thermodynamically
stable folded state is never reached during translation (Fig. S4).
These 180 domains arise from 163 unique cytosolic proteins.
Therefore, for 22% of the cytosolic proteome (163 of 758 unique
proteins in our database), the finite rate of in vivo translation
switches one or more of their domains from co- to posttransla-
tional folding.
For the domains that switch from co- to posttranslational

folding, ΔLm is greater than the full length of the protein and an
exact ΔLm value cannot be calculated, but for the 422 domains
that do exhibit cotranslational folding at in vivo translation rates,
we plot the probability distribution of their ΔLm values (Fig. 3A).
The range of ΔLm values spans from 0 to 259 residues, and the
majority of cotranslationally folding domains exhibit delays of
ΔLm ≥ 3 residues. This finding indicates that for most cotrans-
lationally folding domains, kinetic effects are exhibited at three
or more nascent chain lengths. For a number of proteins, the
delay in cotranslational folding can be much larger: 20% of them
exhibit delays of ΔLm ≥ 17 residues, 10% exhibit delays of ΔLm ≥
42 residues, and 5% exhibit delays of greater than 67 residues
(Fig. 3A). Examples of cotranslational folding curves exhibiting
various ΔLm values are shown in Fig. 2B, and highly similar
results are found at faster E. coli growth rates (Fig. 4A). Thus,
the finite rate of synthesis in the E. coli cytosol can significantly
reduce the cotranslationally folded population at a given nascent
chain length and can substantially increase the nascent chain
length at which a domain folds, switching the domain from co- to
posttranslational folding in many cases.
Characterizing the structures of those domains whose cotrans-

lational folding curve is governed solely by thermodynamics (i.e.,
ΔLm = 0 residues) vs. those exhibiting very significant kinetic
effects (which we define as domains with ΔLm ≥ 42 residues), we
find the average lengths of the domains are, respectively, 69 and
155 residues (Fig. 2D). Domains that are classified as predomi-
nantly α-helical are significantly overrepresented in the thermo-
dynamically governed group (80 ± 6% vs. 33 ± 4% in the kinetically
governed group), whereas mixed α/β structure domains are more
common in domains that exhibit kinetic effects (50 ± 6% vs. 16 ±
3% in the thermodynamically governed group). These results
indicate that the cotranslational folding of large β-strand–rich
domains is more likely to be governed by translation kinetics
than that of small α-helical domains.
We then asked whether gene expression levels in E. coli alter

these results. To test this possibility, we weighted the data in Fig.
3A using gene expression levels estimated from mRNA copy
numbers (29). We used mRNA copy number data because they
provide substantially better coverage of the proteins in our da-
tabase than do protein abundance data. Although there is a weak
correspondence between gene expression and protein abundance
in single cells, there is a correlation (r = 0.77) between these
quantities on a population basis (31). We find the distribution of
ΔLm is largely unchanged when gene expression levels are
accounted for appropriately (Fig. 4B). Another possibility we

Fig. 4. Probability distribution of ΔLm values (histograms) and cumulative
distributions (solid lines) at two different E. coli growth rates listed in the
legend as the doubling time (A), weighted by the protein expression level
data denoted by BLT_WT in Dataset S1 (B), and for proteins that exhibit
cooperative and noncooperative domain folding (C). In C, the ΔLm values are
shown for probabilities corresponding to 0.8, 0.9, and 0.95 for the non-
cooperative dataset, whereas the cooperative dataset includes an additional
ΔLm value reported at a probability of 0.5.
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explored was that ΔLm correlates with the expression level, but
we observe no such correlation in our data (Fig. S5). These results
therefore demonstrate that the extent of kinetic and thermody-
namic effects is uncorrelated with gene expression levels.

Kinetic Effects Are Exhibited Even When Noncooperative Subdomain
Folding Occurs. In the analysis above, we assumed the SCOP,
CATH, and DP domain definitions represent autonomous, co-
operative folding units. Under this assumption, these domains are
only capable of forming a stable, folded tertiary structure once all
the residues comprising the domain have emerged from the exit
tunnel and are sterically permitted to come into contact, which can
include tertiary structure formation in the last 2 nm of the exit
tunnel (24, 32). Recent experimental results, however, call this
assumption into question because the CATH-defined NBD1 do-
main of human CFTR protein was found to exhibit stable sub-
domain folding during synthesis on the ribosome (33). Thus,
noncooperative folding can occur on the ribosome, with a stable
native tertiary structure forming before synthesis of the entire
domain is complete. This phenomenon has the potential to alter
the conclusions of this study because subdomains, being smaller,
will, on average, fold faster than full-size domains (34). This will
change the interplay of the time scales as expressed in Eqs. 1 and 2.
To estimate the robustness of our conclusion of widespread

kinetic effects against the potential for subdomain folding, we
divided each domain in Dataset S1 that was greater than 150 resi-
dues in length into two halves and defined the resulting subdomains
as autonomous folding units. This procedure represents an extreme
limit in which subdomain folding is widespread among proteins in
the cytosolic proteome. As a consequence, the estimated folding
and unfolding times on the ribosome are altered (Eqs. 3 and 4).
With this new set of domain definitions, we find that the distribution
of ΔLm is shifted slightly toward smaller values (Fig. 4C). The
overall trend, however, is highly similar to that in Fig. 3A, and our
conclusion that the majority of proteins in the cytosolic proteome
exhibit kinetic effects is unaltered by the occurrence of subdomain
folding during translation.

Separation of Folding and Amino Acid Addition Time Scales Determines
the Extent to Which Kinetic Effects Are Exhibited. A key thermody-
namic concept is that the ratio of time scales during an irreversible
process determines whether it is a quasiequilibrium process (in
which thermodynamics dominate) or a nonequilibrium process (in
which kinetics dominate; Fig. 1B). Therefore, we hypothesized
that the deviation of a given cotranslational folding curve in E. coli
from quasiequilibrium (the arrested ribosome case) should be a
function of the ratio of the mean folding time to the time of amino
acid addition at its midpoint nascent chain length on an arrested
ribosome. We plotted ΔLm as a function of this ratio and observe
a trend in which ΔLm increases with increasing τF;m

τA;m
(Fig. 3B).

When τF;m
τA;m

≈ 1, we observe ΔLm is close to 0, and at τF;m
τA;m

> 1, we
observe ΔLm � 0, with increased τF;m

τA;m
values correlating with

increased ΔLm values. Thus, the ratio of these two time scales
is a primary determinant of the extent to which kinetic effects
are exhibited during cotranslational folding.

Synonymous Codon Mutations Can Significantly Decrease Kinetic Effects
for a Small Percentage of Cotranslational Folding Domains. Synon-
ymous codon mutations alter the mRNA sequence but leave the
translated protein sequence unaltered. Synonymous codons can
also change the translation rate, which can itself directly affect
the extent of cotranslational folding (7, 8, 12). Thus, altering the
mRNA sequence such that the slowest translating synonymous
mutation is present at each codon has the potential to mini-
mize kinetic effects by decreasing the τF;i

τA;iþ1
ratio.

To examine the extent to which kinetic effects on cotransla-
tional folding can be reduced by synonymous codons, we replaced

each codon in each mRNA sequence in silico with its slowest
translating synonymous codon. We then recalculated the cotrans-
lational folding curves for each domain and calculated the change
in ΔLm (denoted ΔΔLm) between the WT and mutant mRNA
transcripts. The majority of domains exhibit a decrease in ΔLm of
no more than 2 residues due to the synonymous codon-induced
slowdown in translation (Fig. 5), but larger decreases are ob-
served for a minority of proteins, with 5% of the cytosolic domains
exhibiting a decrease in ΔΔLm of greater than 43 residues. Thus,
for the vast majority of cytosolic proteins, synonymous mutations
have little effect on the separation of folding curves between
quasiequilibrium and finite translation rates; for a minority,
however, synonymous mutations can significantly reduce the in-
fluence of translation rate on cotranslational folding, and thereby
increase the folded population at shorter nascent chain lengths.

Robustness of the Results Against Changes in Cotranslational Folding
Time Scale Estimates. The cotranslational folding time of T4-ly-
sozyme on an arrested ribosome has recently been measured at
two different nascent chain lengths using laser optical tweezers
(LOT) (25). It was found that at a linker length of 41 residues,
the value of τF, under a constant tension of 4 pN, is approxi-
mately two orders of magnitude larger than in bulk solution,
whereas at a linker length of 60 residues, τF is within one order
of magnitude of its bulk value. This trend toward the bulk
folding time at longer nascent chain lengths is consistent with
our model (Fig. 2A). However, at these experimental linker
lengths, τF,i is close to its bulk value in our model. We therefore
tested whether or not our conclusions are altered by introducing
the longer range effect observed in the LOT experiments by
reparameterizing the scaling relationship in Eq. 3 to reproduce
the trend seen in the experiments. In this model, τF,i is two
orders and one order of magnitude larger than its bulk folding
time at linker lengths of 41 and 61 residues, respectively (Fig.
S6A). Using this alternative scaling relationship, we recalculated
the cotranslational folding properties of the cytosolic proteins
in Dataset S1.

Fig. 5. Slow translating synonymous codon mutations and their affect on
the deviation of cotranslational folding from quasiequilibrium. The proba-
bility distribution of the change in ΔLm values for cotranslational folding
domains on converting each codon in the WT mRNA transcripts to its cor-
responding slowest translating synonymous codon is shown. Cotranslational
folders that have ΔLm = 0 for the WT mRNA are not included in this analysis
because their ΔΔLm could never be anything other than 0. The CDF is shown
in blue. The arrows and numbers indicate (from left to right) the ΔLm values
at which the CDF equals 0.05, 0.10, 0.20, and 0.5, respectively.
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We find our results are largely unaltered by this change in τF,i
behavior. In this model, 37% of the cytosolic proteome is pre-
dicted to fold cotranslationally at in vivo translation rates; in
addition, 22% of the cytosolic proteins contain at least one do-
main that switches from co- to posttranslational folding due to in
vivo translation rates. Kinetic effects are still observed in a ma-
jority of the proteome (Fig. S6B), and the cotranslational folding
of α-helical domains remains much more likely to be governed by
RNC thermodynamics (Fig. S6C). Thus, our conclusions are
robust to changes and uncertainties in the ribosome folding and
unfolding time scales.

Discussion
The systems approach presented in this paper (Fig. 1D) offers
several important insights into proteome-wide protein folding in
the cellular context. With it, we estimate that about one-third of
the cytosolic E. coli proteome exhibits cotranslational folding
(Fig. S3), and we observe that these domains tend to be small
and α-helical, whereas posttranslational folding domains tend to
be larger and contain a higher β-strand content (Fig. 2C). Fur-
ther, we find that in E. coli, a majority of cotranslationally
folding domains exhibit a deviation from their folding curve on an
arrested ribosome at one or more nascent chain lengths (Figs. 2B
and 3A). This deviation is a manifestation of the nonequilibrium
cotranslational folding process that these domains experience
during continuous translation. It demonstrates that in vivo
translation kinetics, rather than RNC thermodynamics, can de-
termine the folded population of protein domains at one or more
nascent chain lengths. As a consequence, the nascent chain
length at which these domains reach their stable folded state in
E. coli can be much greater than that expected under quasie-
quilibrium (i.e., arrested ribosome) conditions. At the nascent
chain lengths that intervene between the midpoints of the qua-
siequilibrium and nonequilibrium folding curves (Fig. 2B), the
folded state is thermodynamically stable but is not populated to
the extent that would be expected based on native state ther-
modynamic stability alone, leading to an excess population of the
unfolded state. Thus, the finite rates of translation in E. coli
reduce cotranslational folding, delay it as a function of nascent
chain length, and enrich the population of unfolded nascent
chains for a considerable fraction of the cytosolic proteome.
For example, for the domain analyzed in Fig. 2B (Lower Right),

the midpoint of stability is shifted by 256 residues as a result of the
finite translation rate in E. coli. At a nascent chain length of 250
residues, the folding probability of this domain is reduced from
≈1.0 on an arrested ribosome to 0.18 on a ribosome translating
at in vivo rates, and, conversely, its unfolded state probability is
increased from 0 to 0.82. Thus, the predominantly populated
unfolded state at this nascent chain length is, in fact, metastable.
Remarkably, we estimate that 22% of cytosolic proteins contain
domains that would cotranslationally fold if translation were slow
enough but do not do so in E. coli under exponential growth
conditions in rich medium (Fig. S4 and Dataset S2). The reason
is that the rate of translation in E. coli is fast enough to produce a
ΔLm value for these domains that is greater than that of the full-
length protein. Consequently, these domains switch from co- to
posttranslational folding, demonstrating that kinetic effects can
substantially delay cotranslational folding in vivo.
There are few in vivo experimental data to compare with our

predictions of the proteins that fold cotranslationally (Dataset
S2). One E. coli protein for which convincing evidence exists is
the five-domain β-galactosidase protein (3), where the concom-
itant appearance of the full-length protein and enzymatic activity
suggests cotranslational folding is occurring. Our model predicts
that this protein exhibits cotranslational folding at in vivo trans-
lation rates, with domains 2 and 4 folding before the full-length
protein is released from the ribosome and domains 1, 3, and 5
folding posttranslationally. This prediction is consistent with the

experimental conclusion that β-galactosidase folds cotransla-
tionally because the current experimental data do not eliminate
the possibility that some β-galactosidase domains may not fold
cotranslationally.
The separation in time scales of domain folding relative to

amino acid addition determines whether cotranslational folding
is a quasiequilibrium or a nonequilibrium process and, conse-
quently, whether thermodynamics or kinetics govern the cotrans-
lationally folded populations. This provides an explanation for
the correlation between ΔLm (a measure of the deviation from
quasiequilibrium) and the ratio of the τF-to-τA time scales (Fig. 3B).
At the molecular level, when τF;m

τA;m
≤ 1, the domain has sufficient

time to equilibrate and reach its global free energy minimum at
this nascent chain length. Thus, thermodynamic stability governs
the cotranslationally folded population of this domain, and the
process is quasiequilibrium in nature. When τF;m

τA;m
� 1, a domain

does not have sufficient time to equilibrate at each nascent chain
length because there is a smaller time window for the domain to
relax to its global free energy minimum. Under these conditions,
kinetic effects suppress the cotranslationally folded pop-
ulation below its thermodynamic value, leading to an enrich-
ment of metastable, ribosome-bound unfolded states. Thus, it
is the separation of these time scales that determines the ex-
tent to which thermodynamics or kinetics govern cotransla-
tional domain folding.
We have also found that large β-strand–rich domains are more

likely to exhibit kinetic effects than small α-helical domains (Fig.
2D). It has been established previously that domain size is an
important factor determining the magnitude of τF,bulk (34); that
is, larger proteins tend to take longer to fold because they have
a larger number of residues to incorporate into an ordered state.
An additional factor that influences τF,bulk is the topological
complexity of the native structure, because more complex struc-
tures with larger sequence separation between native contacts
tend to fold more slowly than domains enriched in local contacts
(20). Thus, small α-helical domains will typically have smaller τF;m

τA;m
ratios than large β-strand–rich domains, which means the latter
are more likely to exhibit kinetic effects during cotranslational
folding than the former. We note that we do not see any codon
bias for the different classes of domains, as indicated by a similar
average translation rate for the codons following the different
domain classes (Fig. S7). This suggests domain topology and
domain size, rather than codon bias, is the predominant factor
influencing the ratio τF;m

τA;m
.

These findings also suggest one reason why it is often difficult
to express eukaryotic proteins in E. coli (35). Eukaryotic proteins
tend to be larger on average than prokaryotic proteins (36); thus,
they will normally have larger τF,bulk values (19, 34). Further-
more, the translation rate in E. coli is up to sevenfold faster than
in eukaryotes [10–22 amino acids per second vs. 3–6 amino acids
per second (29)], indicating that τA,m is smaller in E. coli. Thus,
for a given eukaryotic protein, its τF;m

τA;m
ratio will be larger when it

is expressed in E. coli than in a eukaryotic cell. This larger sep-
aration of time scales suggests that eukaryotic proteins are more
likely to exhibit suppressed cotranslational folding in E. coli,
which can lead to an increase in the probability that they misfold,
aggregate, or are degraded, all of which will decrease their sol-
uble folding yield. These findings also suggest that slowing down
the translation rate in E. coli will increase successful heterolo-
gous expression, a prediction that is consistent with results from
experiments in which τA was modulated using streptomycin-
sensitive ribosomes (37).
Trigger factor (TF) and DnaK are two cotranslationally acting

E. coli chaperones that preferentially bind to the nascent chains
of larger proteins compared with smaller ones (38, 39). In E. coli
cells in which DnaK and TF were deleted, it was found that larger
proteins were much more likely to aggregate than smaller proteins
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(38–40). Pulse-chase radio labeling of nascent chains in E. coli
cells containing nonfunctional chaperone GroEL has demon-
strated that such aggregation involves only newly synthesized
proteins and not preexisting, folded proteins (41). Together,
these data indicate that the nascent chains of large proteins are
more likely to interact with DnaK and TF, and to be aggregation-
prone. Our results suggest this bias for larger proteins may arise
from the increased likelihood that larger domains will remain
unfolded on the ribosome and fold posttranslationally. Such
posttranslational folding increases the affinity of these chaper-
ones for the nascent chain (42) and affords them more time to
interact with the unfolded nascent chain.
A key challenge in systems biology studies is accurately esti-

mating the values for a large number of kinetic parameters. Here,
we estimated the various codon translation times using experi-
mental information on in vivo tRNA concentrations (Methods).
An alternative approach could be to use ribosome profiling
data (43), whose measured distribution of ribosome positions on
a transcript is a function of τA,i.
A common experimental procedure to obtain high-resolution

cotranslational folding data is to use arrested ribosomes (25, 44).
Our results suggest that the folding mechanism in this situation
can sometimes differ significantly from that during continuous
translation. Transition state ensemble (TSE) properties of the
folding domain are influenced by the relative thermodynamic
stability of the folded and unfolded states, with the TSE resembling
more closely whichever of these two states is less stable [i.e., the
Hammond effect (45)]. Because kinetic effects delay folding, and
hence cause the unfolded state to be less stable than the folded
state once folding does occur (Fig. 2B), it follows that the TSE
will shift toward the unfolded state in nascent chains undergoing
continuous translation compared with the TSE on an arrested
ribosome. Thus, care must be taken when extrapolating protein
folding results on arrested ribosomes to the situation on actively
translating ribosomes.
The widespread presence of kinetic effects in the cotransla-

tional folding of the proteome suggests that translation-related
time scales can be manipulated for synthetic biology, biotechnology,

and cellular engineering purposes to boost (or suppress) co-
translational folding of individual proteins. This possibility has
been demonstrated in experiments in vitro and in molecular
simulations in which insertion of slow-translating codons at
particular points along an mRNA molecule altered the folded
population (7, 8). Although synonymous mutations alone may
have a significant impact on the cotranslational folding curves
of some proteins, we have found that they do not significantly
reduce kinetic effects for the majority of the proteome (Fig. 5).
Therefore, to alter these individual τA,i values to an extent that
they affect more of the proteome, higher order processes will
need to be considered. These manipulations could include the
alteration of mRNA secondary structure (46), the variation in the
concentration of charged tRNA molecules in vivo (47), or the in-
troduction of anti–Shine–Dalgarno sequences (48, 49).
In addition to informing strategies for synthetic manipulation

of the protein-coding sequences, our results may have implications
for understanding sequence changes during evolution. Trans-
lational fidelity and its importance to protein structural stability
has been proposed as an explanation for the strong relationship
between mRNA expression levels and evolutionary rates (50, 51).
Mistranslation events, in which an incorrect amino acid is in-
corporated into the nascent chain, could affect the rates of protein
folding and unfolding, and thereby alter the likelihood of co- and
posttranslational folding events. The fitness consequences of this
could therefore link the cotranslational folding process to the
evolution of protein and mRNA sequences.
In conclusion, our approach offers a theoretical framework

that can be applied to analyze other cells and tissues in both
prokaryotes and eukaryotes, and it has the potential to be used to
redesign entire transcriptomes rationally.
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This database is a collection of sequence, expression, and PDB fidelity information for E. coli 
strain K12 MG1655 protein domains. 
 
Each entry of the database has two hierarchical levels. The top level is the protein level, denoted 
by ##Unibegin, which marks the beginning of an entry and refers to one entire protein (denoted by 
its Uniprot ID). 
 
The second level is the domain level, denoted by #Dombegin, which marks the beginning of 
information pertinent to a particular domain of the protein. Each protein has one or more domains. 
 
The protein level of the entry contains the following information: 
 
ND:   the number of domains in the protein. 
mRNA:  the mRNA sequence for the corresponding gene, obtained from GenBank. 
TAA:   the translated protein sequence for the mRNA. 
SCL:   the predicted subcellular localization, obtained from PSORTb. 
RPA_M:  the relative protein abundance obtained from the Marcotte dataset. 
RPA_F:  the relative protein abundance obtained from the Frischman dataset. 
RPA_X:  the relative protein abundance obtained from the Xie dataset. 
RNE_C:  the relative mRNA expression obtained from the Church dataset. 
RNE_XM:  the relative mean mRNA expression obtained from the Xie dataset. 
RNE_XL:  the relative lifetime mRNA expression obtained from the Xie dataset. 
SEC:  value can be 'yes' or 'no' obtained from SignalP. If 'yes' then the protein is predicted 

to be secreted via the Sec pathway. 
TAT:  value can be 'yes' or 'no' obtained from TatP (based on D-score). If 'yes' then the 

protein is predicted to be secreted via the Tat pathway. 
BLT_WT:  the relative mRNA expression in wild-type conditions obtained from the Blattner 

dataset. 
BLT-HS:  the relative mRNA expression in the heat shock condition obtained from the 

Blattner dataset. 
 
The domain level of the entry contains the following information on domains within the protein. 
Each domain is labelled Di, where i is the number of the domain in the protein. 
 
Di_PDBC:  PDB ID and chain, listed in the format ID-Chain. 
Di_DB:  database ('SCOP', 'CATH', or ‘DP’) from which the domain information was 

obtained. 
Di_DRC:  codon range for the domain, with position numbering based on the translated 

mRNA sequence. Format is Start/End. 
Di_DRO:  residue range of domain as originally reported in the database (SCOP or CATH) 

from which it was derived. Format is PDB chain ID:Start/End. 
Di_AA:  amino acid sequence of the domain, based on its codon range in the translated 

mRNA sequence. 
Di_NR:  the number of residues comprising the translated domain. 
Di_MR:  the number of missing residues in the PDB domain sequence with respect to the 

translated protein sequence. 
Di_MM:  the number of mismatched residues in the PDB domain sequence when BLASTED 

against the translated protein sequence.  
Di_IR:  the number of inserted residues in the PDB domain sequence with respect to the 

translated protein sequence. 



Di_MC:  value can be 'n' or '*'. If '*', then BLAST search was used to align segment yielded 
multiple alignments, of which the first was used for further analysis. 

Di_NO: the number of residues taking part in ordered structure (ie., residues comprising 
either α-helical or β-strand structures in the PDB domain).   

Di_NA: the number of residues taking part in α-helical structure. 
Di_NB: the number of residues taking part in β-strand structure.  
Di_FA:  the fraction of ordered residues that are taking part in α-helical structure. 
Di_FB:  the fraction of ordered residues that are taking part in β-strand structure. 
Di_CLASS: domain classification that can have values of ‘alpha’, ‘alpha-beta’ or ‘beta.’ 

Domains that have Di_FA values of greater than 0.70 are classified as 
predominately alpha-helical domains (‘alpha’); domains with Di_FB values of 
greater than 0.70 are classified as predominately β-strand domains (‘beta’); 
otherwise, the domains are ‘alpha-beta’. 

Di_KF: the bulk folding rate of the domain when free in solution computed from the De 
Sancho-Munoz model, in units of s-1. 

Di_KU: the bulk unfolding rate of the domain when free in solution computed from the De 
Sancho-Munoz model, in units of s-1. 

Di_DG: the bulk stability of the folded domain relative to the unfolded state at 310 K 
calculated as –RTln[ Di_KF / Di_KU ], in units of kcal/mol. 
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Construction of the Escherichia coli Database. The Escherichia coli
database that was constructed in this study is shown in Dataset S1.
Collecting Escherichia coli K12 MG1655 Protein Data Bank files. All
Protein Data Bank (PDB) files containing proteins from the
Escherichia coli species and whose structures were determined
using solution-state or solid-state NMR or X-ray diffraction, with
a resolution ≤3.0 Å, were downloaded from www.rcsb.org. This
yielded 11,036 PDB chains from 4,352 PDB files. For these
PDBs, we identified their corresponding Uniprot identification
numbers (IDs) when available from the RCSB. If there were
multiple Uniprot IDs associated with a given PDB, we assumed
these were fusion proteins and set them aside to be handled
separately. Only fusion proteins constituted exclusively of E. coli
proteins were considered, and these were divided into different
entries. If the Uniprot ID was not available directly from the
RCSB, we converted other available IDs (PDB, GenBank, or
Norine) to a Uniprot ID. If a PDB mapped to multiple Uniprot
IDs in which only one corresponded to E. coli, we used the
Uniprot ID corresponding to E. coli. If the PDB mapped to
multiple E. coli Uniprot IDs, we determined to which chain each
ID corresponded. For those PDBs for which we were not able to
obtain a Uniprot ID directly or by conversion using the summary
file for the PDB search, we attempted to extract IDs from the
PDB directly by checking the DBREF field in the PDB header.
We restricted this study to the E. coliK12 strain MG1655 (which

corresponds to Uniprot IDs ending in _ECOLI and from the
Uniprot Complete Proteome Set). Our database (Dataset S1) ini-
tially included a mix of K12 MG1655 proteins, non-K12 MG1655
E. coli proteins, and non-E. coli proteins. We deleted non-E. coli
proteins from our database. For non-K12 MG1655 proteins, we
used the BLASTp function of BLAST 2.2.25 (default settings) to
identify homologous K12 MG1655 proteins. We included in our
database (with the K12 MG1655 nomenclature) those non-K12
MG1655 proteins that had ≥98% sequence identity with a pro-
tein in K12 MG1655. If more than one K12 MG1655 protein was
thus identified, we selected the one with the greatest sequence
identity. After these conversions, we had 8,942 PDB chains (cor-
responding to 3,696 PDBs) remaining, representing 1,215 unique
Uniprot IDs.
In constructing our final database of domains (see below), we

determined that 15 Uniprot IDs in our database (CRCA_ECOLI,
GST_ECOLI, GUDH_ECOLI, OXAA_ECOLI, RP5M_ECOLI,
SUFI_ECOLI, TESC_ECOLI, THD1_ECOLI, YBDB_ECOLI,
YEBR_ECOLI, YHIQ_ECOLI, YJGF_ECOLI, YJJX_ECOLI,
FRUR_ECOLI, and MVIM_ECOLI) were deprecated. They
had been replaced in Uniprot by, respectively, PAGP_ECOLI,
GSTA_ECOLI, GUDD_ECOLI, YIDC_ECOLI, HPF_ECOLI,
FTSP_ECOLI, FADM_ECOLI, ILVA_ECOLI, ENTH_ECOLI,
MSRC_ECOLI, RSMJ_ECOLI, RIDA_ECOLI, NCPP_ECOLI,
CRA_ECOLI, and YCEM_ECOLI. The translated mRNA se-
quences in our database corresponded exactly to the sequences for
these updated Uniprot IDs, with the exception of RSMJ_ECOLI,
CRA_ECOLI, and YCEM_ECOLI. In these cases, the protein
sequence listed in Uniprot was identical for the old and updated
IDs, but this sequence differed from the translated mRNA of the
corresponding ID of Blattner and colleagues (1) at the first res-
idue (in all three cases, the first position was listed as methionine
in Uniprot but as valine when the mRNA sequence in the Gen-
Bank was translated in silico). Nevertheless, we replaced all 15
deprecated terms with their updated terms, using the GenBank-
translated sequences for further analysis.

Extracting sequences from PDB files. We replaced modified or non-
standard amino acids with their standard equivalents as available.
Two common modifications are methylated lysine and selenome-
thionine. In addition, we scanned the lines starting with MODRES
in each PDB for information on modified residues. When these
were different from previously encountered modifications, we
added them to our conversion dictionary for use on future PDBs
in our database. We ignored covalent linkers that do not re-
semble amino acids. We discarded chain information for very
short sequences that clearly did not correspond to an E. coli
protein.
Collecting DNA, mRNA, and translated protein information. E. coli cDNA
sequences were downloaded from GenBank. Each cDNA was
associated with a particular ID of Blattner and colleagues (1),
and we included in our set those cDNAs whose Blattner and
colleagues’ ID had a corresponding Uniprot ID. These were
transcribed to their corresponding mRNA sequences, which were
then translated into protein sequences, halting at stop codons. In
some cases, there was a frame problem in which the total length of
the cDNA, as well as its corresponding mRNA, was not divisible
by 3. In the 21 instances in which this occurred the Uniprot se-
quence was used for the translated sequence.
Identifying domains. We used the Structural Classification of Pro-
teins (SCOP) version 1.75 (2) and CATH version 2.0 (3) data-
bases to identify domains within our proteins of interest. Because
of the potential for double-counting domains if we combined the
two databases, we assembled an integrated list of domains using
a hierarchical approach. For each PDB file in our set, we first
identified the SCOP and CATH domains associated with it.
Within each PDB, if a given chain had associated domains in
CATH, we included these in the database. If it did not, we
checked whether that chain had domains in the SCOP database.
If so, we included these. For the 2,549 PDB chains for which
there were not SCOP or CATH entries, we used pDomains to
identify domains using the Domain Parser (DP) software. Be-
cause pDomains contain only a subset of PDBs, we were able to
identify domains for 1,195 of these PDB chains.
In some cases, DP domains did not map well onto the num-

berings in the PDB files themselves. We conducted a series of
transformations to correct for this. If the first residue in the DP
domain had a lower numbering than the first numbered residue in
the PDB chain, we shifted all the residues in the domain, such that
the first residue in the DP domain and the PDB chain matched.
We performed a similar calculation for the last residue of the
PDB domain. First, we considered single domain proteins. We
determined whether any segment of a given domain in DP had a
starting residue with a lower numerical position than the starting
residue in the PDB chain or an ending residue with a higher
numerical position than the ending residue in the PDB chain. We
adjusted the domain positions to account for the difference be-
tween the first domain position and the first chain position and
between the last domain position and the last chain position. For
multiple domain proteins, we conducted a similar procedure, but
one that shifted all domains on the basis of those that lay outside
the range of the PDB chain itself.
SCOP and CATH define domains based on evolutionary and

homology relationships. Therefore, the domains they define will
not always represent the autonomous folding units that are the
relevant definition of a domain in this study. For example, 90% of
the domains in our proteins of interest are composed of one
contiguous segment along the primary structure; 10% consist of
two or more segments that are noncontiguous along the primary

Ciryam et al. www.pnas.org/cgi/content/short/1213624110 1 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213624110/-/DCSupplemental/sd01.txt
http://www.rcsb.org
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213624110/-/DCSupplemental/sd01.txt
www.pnas.org/cgi/content/short/1213624110


structure. The segments in the latter domains are separated by
126 residues on average (Fig. S1). This large separation means
that it is reasonable to treat these two segments as autonomous
folding units on the ribosome because they will have the op-
portunity to fold sequentially on the ribosome without influence
from the other segment. Therefore, for the 10% of domains that
consisted of multiple segments, we treated each segment as a
separate domain in our database. Naturally occurring protein
segments of less than 50 residues in length rarely are capable of
folding autonomously (i.e., in isolation). Therefore, we removed
from our database any domain that was less than 50 residues in
length. This procedure resulted in the 1,236 cytosolic domains in
our database.
Assigning domain residue and codon numbering. To analyze cotrans-
lational folding, we needed to be able to compare codons on the
mRNA with residues in the protein sequences. However, PDB
sequences often include only fragments of the original protein or
leave off beginning and ending residues. Therefore, we aligned
codon and residue numbering using BLAST (4).
We used BLAST to analyze each segment of each domain in

our database in comparison to the full-length translated sequence
(as derived from the cDNA sequence). This enabled us to adjust
the codon number on the basis of missing, mismatched, and
inserted residues in the PDB sequence.
When a residue was missing from the PDB sequence of the

domain, we added one to the residue number of the downstream
residues (to reflect the offset). When a residue was inserted in
the PDB sequence that did not exist in the original sequence, we
skipped over numbering it and continued with numbering at the
first noninserted residue. Mismatched residues were numbered
normally.
In some cases, the BLAST analysis returned multiple alignments

of a segment against the full-length sequence. In these cases, we
only considered the first (highest bit score) alignment. In all cases,
BLAST yielded an alignment.
Quantifying the structural fidelity and uniqueness of a domain. As a
measure of the fidelity of the PDBs used in our analysis, we kept
track of the number of missing, inserted, andmismatched residues
for each domain. In the RCSB, multiple PDBs often refer to the
same protein. Therefore, there is a great potential for duplicate
domains in the final database. We sought to guard against this by
using the following method to identify duplicate domains.
For the set of domains corresponding to a given Uniprot ID, we

assumed domains were different if they possessed a different
number of segments. For those domains with the same number of
segments, we used the following test.
Consider two domains of protein A, denoted Am and An. Am

and An each have i segments. Let x be an arbitrary tolerance
threshold. Am,i is the ith segment of domain m of protein A. If
Am,i and An,i started more than x residues apart for one or more
values of i, we considered the two domains to be different. Al-
ternatively, if Am,i and An,i ended more than x residues apart for
one or more values of i, we considered the two domains to be
different.
Otherwise, we considered the domains to be the same, and we

used the following procedure to select the most accurate domain
structure to include in our database. First, if one of the domains
was derived from DP and the other was derived from SCOP or
CATH, we deleted the DP domain. If this did not delete one of
the domains, we compared the total number of missing residues.
If the total numbers of missing residues in the two domains were
different, we selected the domain with the fewest missing resi-
dues. If these values were the same, we compared the total number
of inserted residues. If the total numbers of inserted residues in
the two domains were different, we selected the domain with the
fewest inserted residues. If these values were the same, we
compared the total number of mismatched residues. If the total
numbers of mismatched residues in the two domains were dif-

ferent, we selected the domain with the fewest mismatched res-
idues. If these values were the same, we compared the total length
of the domains. If the total lengths of the domains were different,
we selected the domain with the greatest length. If these were the
same, we compared the type of experiment from which the PDB
data were obtained. If these were different, we selected the
domain obtained by X-ray diffraction. If these were the same, we
compared the resolution of the two structures. If these were
different, we selected the domain with the highest resolution. If
these were the same, we compared the deposition date of the
structures. If these were different, we selected the domain of the
structure most recently deposited. If these values were the same,
we arbitrarily selected the first domain in our list.
For sets of domains considered to be the same that included

more than two entries, we iterated this process, comparing pairs
of domains in order of their listing, selecting one of each pair as
we proceeded. We ended the procedure when only one domain
remained.
We tried a variety of tolerance values, using x= 30 for the final

database. Another possibility that we considered was that domains
overlapped with each other. In cases in which this occurred, we
used only domains from a single PDB chain, selecting this chain
using the criteria listed above.
Determination of subcellular localization using PSORTb.We used PSORTb
version 3.0 (5) with default settings for Gram-negative bacteria to
predict subcellular localizations for each protein in our database.
Determination of proteins in the Sec and Tat pathways using SignalP and
TatP. We used SignalP version 4.0 (6) with default settings for
Gram-negative bacteria to identify proteins predicted to be se-
creted via the Sec pathway. We used TatP version 1.0 (7) with
default settings to identify proteins predicted to be secreted via
the Tat pathway. There are several scores produced by TatP, but
the D-score is used by TatP for differentiation of secretory vs.
nonsecretory proteins. We used this score for our classification.
Appending mRNA and protein abundance data. We include in our
database literature data on mRNA expression and protein abun-
dance from a variety of sources, as described below. In all cases,
identifiers for data were first converted to Uniprot IDs. Further
analysis was restricted to those data for which there was an
unambiguous Uniprot ID (cases in which a single ID pointed to
multiple Uniprot IDs were eliminated). Each restricted dataset
was normalized by dividing its data points by the sum of the
values in the set.

Marcotte dataset.For the dataset of Marcotte and colleagues (8),
protein abundance data were reported using absolute protein
expression methodology, which provides an estimate of protein
abundance in molecules per cell. The original labels were IDs of
Blattner and colleagues (1).

Frishman dataset. For the dataset of Frishman et al. (9), protein
abundance data were reported as an estimate of the copy num-
ber per cell based on the emPAI score. The original labels were
Uniprot IDs.

Church dataset. For the dataset of Church and colleagues (10),
mRNA expression data were reported as an estimate of copy
number per cell based on microarray experiments. The original
labels were IDs of Blattner and colleagues (1).

Xie dataset.We include three entries from the dataset of Xie and
colleagues (11): mean RNA expression, lifetime RNA expression,
and protein abundance. RNA data were reported from RNA
sequencing, whereas protein data were based on fluorescence
measurements of fluorescently tagged proteins. The original la-
bels were IDs of Blattner and colleagues (1).

Blattner dataset. For the dataset of Blattner and colleagues (1),
mRNA expression data were reported for WT and heat shock
conditions as an estimate of copy number per cell based on
microarray experiments. The original labels were IDs of Blattner
and colleagues (1).
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Calculation of Codon Translation Times at Different E. coli Growth
Rates. We use the method of Viljoen and colleagues (12) to cal-
culate the mean time it takes to add an amino acid to the
growing nascent chain at nascent chain length i, τA,i , at 37 °C. In
this approach τA,i = 9.06 + 1.45[10.48C(i) + 0.5R(i)] in milli-
seconds, where 9.06 is the time it takes for the chemical step of
peptide bond formation and translocation of the A-site tRNA to
the P-site and the term in brackets accounts for the time it takes
for a cognate tRNA to bind to codon i [10.48C(i)] and the delay
due to kinetic competition of noncognate tRNA binding [0.5R
(i)]. Full details of this model can be found in the study by
Viljoen and colleagues (12). Briefly, the parameters C(i) and R
(i) are a function of the codon identity, the density of cognate
and noncognate tRNA molecules in the cell, the diffusion con-
stants of tRNA, and the solution temperature. The cognate and
noncognate tRNA identities were taken from table 1 in ref. 12.
The number of tRNA and release factor (RF) molecules in E.
coli were calculated using the cellular concentrations reported in
Table 5 of Ref. 13 multiplied by E. coli’s volume, V (Table S2)
(13). tRNA molecules are typically fully charged in E. coli cells
under nonstarvation conditions (14). Therefore, we assumed the
numbers in Table S2 correspond to the number of charged
tRNA molecules. The volume of E. coli in units of cubic mi-
crometers was calculated from the empirical relationship V =
0.4·2dph10−18, where dph is the number of E. coli doublings per
hour. The diffusion constants of the different tRNA molecules
were taken from table 1 in ref. 12; however, for RF1 and RF2,
we used a diffusion coefficient of 0.257·10−11 m2/s because we
believe this is more realistic than the value of 0.3947·10−11 m2/s
originally used. This is based on the fact that RF1 and RF2 are of
a similar size, shape, and mass as the tRNA molecules. This

change leads to the differences between the calculated τA,i values
in Table S1 and table 5 in ref. 12.

Calculation of Domain Folding and Unfolding Kinetics in Bulk Solution.
We used the de Sancho–Muñoz (DM) model (15) to estimate
τF,bulk and τU,bulk at 310 K. The DM model uses experimentally
informed enthalpy (table 3 in ref. 15), entropy (equations 1 and 2
in ref. 15), and heat capacity (equation 6 in ref. 15) per residue
estimates to predict the transition state barrier height on folding
and unfolding, denoted, respectively, as ΔU→F and ΔU→F. These
barrier values are then inserted into transition state theory to pre-
dict τF,bulk as being equal to k−10 eΔU→F=RT and τU,bulk as being equal
to k−10 eΔF→U=RT , where R is the universal gas constant and T is the
solution temperature. In our analysis, we used the eight pa-
rameter values as originally reported for the DM model. However,
we used a solution temperature of 310 K as opposed to the orig-
inal value of 298 K. Given that the DM model uses temper-
ature-dependent thermodynamic equations for the enthalpy,
entropy, and heat capacity, we believe this is a reasonable ap-
proximation.

Structural Classification of Domains. The DM model uses the
structural classification of a domain in its parameter selection.
Domains were classified in Dataset S1 based on their secondary
structural content using the program Stride (16). Stride’s algo-
rithm uses backbone dihedral angles as well as hydrogen bonding
patterns to identify helical and β-strand structures. A domain was
classified as either mostly α-helical or mostly β-strand if more
than 70% of the residues comprising the ordered secondary
structure were either α-helical or β-strand. A domain was con-
sidered mixed α/β if both the α-helical and β-strand content was
greater than 30% of the ordered structure.
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Fig. S1. Probability density function (PDF) distribution of the number of residues separating segments of the primary structure that comprises a single domain
according to SCOP and CATH. This distribution was calculated from only those SCOP and CATH domains that contained more than one segment in our dataset
of proteins of interest.

Fig. S2. Probability density function (PDF) of protein lengths of the cytoplasmic proteome in E. coli (brown) and the cytosolic proteins in our database (blue).

Fig. S3. Fraction of the cytosolic proteome that exhibits cotranslational folding as a function of E. coli’s growth rate at 37 °C. The line is to guide the eye and is
not based on any model.
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Fig. S4. Cotranslational folding curves of domain 2 from protein 6PDG at an infinitely slow translation (blue) and the finite translation rates in E. coli at 37 °C
and a doubling time of 150 min (red). Note that this domain exhibits cotranslational folding at extremely slow translation rates but not at the translation rates in
E. coli.

Fig. S5. Average ΔLm value as a function of gene expression level as reported in the BLT_WT field in Dataset S1. The average ΔLm value, and its standard error,
were calculated from the set of cotranslational folding proteins that fell within a given quintile of expression level.
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Fig. S6. Results using a different scaling relationship for τF,i (Eq. 3) that reproduces the trends observed in the laser optical tweezers (LOT) experiments of
Kaiser et al. (1). (A) Behavior of τF,i for protein G using Eq. 3 with parameter values for a, b, and c of 402.371, 5.21917 × 1022, and 10.4368, respectively. Note
that we use the experimentally determined τU,bulk here (2). (B) Cumulative distribution function of ΔLm using the original parameters (red) and the parameters
(blue) of Kaiser et al. (1). (C) Structural characterization of domains that fold cotranslationally with ΔLm = 0 and those that fold with ΔLm values greater than 41
residues in E. coli cells that are dividing every 150 min at 37 °C. (Upper) Probability density function (PDF) vs. domain length. (Lower) Probability of different
domain classifications in terms of mostly α (α), mostly β (β), or mixed α/β secondary structure.

1. Kaiser CM, Goldman DH, Chodera JD, Tinoco I, Jr., Bustamante C (2011) The ribosome modulates nascent protein folding. Science 334(6063):1723–1727.
2. De Sancho D, Doshi U, Muñoz V (2009) Protein folding rates and stability: How much is there beyond size? J Am Chem Soc 131(6):2074–2075.
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Fig. S7. Probability density distribution of the average translation rate of codons after the C terminus of a cotranslationally folding domain that is pre-
dominantly α-helical (black), β-strand (blue), or mixed α/β (red). The Mann–Whitney U test, corrected for multiple hypotheses using the Holm–Bonferroni
method, indicates the median translation rates of these distributions are the same within statistical error.
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Table S1. τA per codon (milliseconds) at different E. coli growth
rates at 37 °C

E. coli doubling time, min

Codon Label 150 86 60 37.5 24

UUU 1 100.7 96.8 89.5 100.9 99.0
UUC 2 161.7 152.0 138.5 164.2 156.4
UUG 3 36.3 37.3 36.9 37.6 42.1
UUA 4 111.0 127.3 117.4 163.1 168.0
UCU 5 35.8 31.9 33.0 32.9 34.3
UCC 6 194.7 194.7 187.6 191.2 184.5
UCG 7 88.4 70.5 77.6 79.1 81.5
UCA 8 75.5 60.8 66.7 63.1 65.8
UGU 9 51.4 55.3 56.3 53.4 59.5
UGC 10 86.2 92.2 93.8 90.6 97.0
UGG 11 125.3 140.2 126.5 133.2 117.3
UGA 12 28.2 25.2 28.9 38.4 39.9
UAU 13 33.8 36.6 37.6 33.0 38.1
UAC 14 57.9 62.1 65.4 55.6 63.4
UAG 15 114.6 98.2 106.7 143.7 184.9
UAA 16 24.9 22.7 25.3 33.5 35.0
CUU 17 214.7 192.1 179.7 207.1 178.5
CUC 18 162.7 151.2 141.7 157.0 136.1
CUG 19 27.8 28.1 27.4 26.9 28.9
CUA 20 232.5 212.6 227.2 227.8 254.5
CCU 21 110.9 104.2 111.8 103.5 116.3
CCC 22 58.4 59.0 61.1 53.3 61.9
CCG 23 108.7 126.2 101.5 142.8 156.0
CCA 24 173.4 179.6 171.5 177.4 194.2
CGU 25 21.1 23.1 21.8 19.9 20.4
CGC 26 28.1 31.2 30.1 27.2 28.3
CGG 27 339.2 269.5 529.6 453.3 483.5
CGA 28 27.2 30.1 29.7 25.3 26.1
CAU 29 233.2 223.3 204.2 218.4 190.3
CAC 30 163.5 166.9 153.6 153.7 138.0
CAG 31 188.5 182.3 179.1 149.5 134.8
CAA 32 128.2 124.6 103.9 149.2 125.0
GUU 33 18.5 19.1 20.1 17.9 18.3
GUC 34 177.3 172.0 156.8 170.3 175.2
GUG 35 30.5 32.5 37.0 30.0 30.8
GUA 36 60.4 65.2 77.1 61.6 66.4
GCU 37 27.0 26.0 24.1 24.8 23.9
GCC 38 355.3 360.4 363.3 336.0 362.3
GCG 39 31.7 30.4 28.1 29.3 27.7
GCA 40 69.7 64.4 56.6 64.7 61.9
GGU 41 27.2 26.8 26.3 28.5 25.7
GGC 42 41.4 40.6 39.8 44.1 40.9
GGG 43 61.9 63.5 63.9 56.5 65.6
GGA 44 289.0 291.3 289.7 278.7 321.1
GAU 45 58.3 57.7 59.4 57.3 53.5
GAC 46 95.9 96.3 100.7 92.5 86.8
GAG 47 29.9 30.6 30.3 28.8 28.0
GAA 48 51.6 52.6 52.0 50.7 48.4
AUU 49 74.4 76.2 75.8 69.4 66.4
AUC 50 105.9 106.4 104.7 95.2 88.8
AUG 51 210.9 202.2 198.9 186.2 213.8
AUA 52 105.2 106.2 104.6 95.3 90.7
ACU 53 36.5 36.5 37.0 35.3 32.7
ACC 54 121.4 118.5 119.4 129.2 134.6
ACG 55 102.7 102.1 107.9 98.6 92.2
ACA 56 136.2 133.7 139.7 114.8 96.9
AGU 57 57.9 61.5 63.5 68.4 71.3
AGC 58 100.2 107.2 112.5 124.4 137.0
AGG 59 407.9 345.1 369.4 309.7 416.0
AGA 60 145.1 181.6 171.4 178.2 189.7
AAU 61 74.8 79.6 76.1 68.6 66.6
AAC 62 127.2 133.6 127.7 116.6 114.6
AAG 63 83.8 83.3 85.0 93.1 94.7
AAA 64 57.5 54.3 54.1 59.8 59.1
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Table S2. Number of molecules per cell at different E. coli growth
rates at 37 °C

E. coli doubling time, min

tRNA Label 150 86 60 37.5 24

Ala1 1 3,257 4,590 7,110 12,793 28,574
Ala2 2 619 829 1,178 2,329 4,864
Arg2 3 4,767 5,689 7,858 17,357 34,843
Arg3 4 638 1,021 733 1,650 3,134
Arg4 5 870 919 1,335 2,380 4,796
Arg5 6 390 614 814 1,796 2,997
Asn 7 1,198 1,510 2,199 4,454 9,933
Asp1 8 2,402 3,181 4,258 8,791 21,066
Cys 9 1,592 1,909 2,644 5,140 9,633
Gln1 10 766 1,064 1,835 2,314 5,968
Gln2 11 883 1,205 1,754 3,702 8,543
Glu2 12 4,729 6,096 8,450 17,613 39,993
Gly1 13 1,072 1,404 1,957 3,998 7,549
Gly2 14 1,072 1,404 1,957 3,998 7,549
Gly3 15 4,373 5,951 8,470 14,487 34,011
His 16 642 856 1,330 2,446 5,968
Ile1 17 1,741 2,318 3,352 6,907 16,856
Ile2 18 1,741 2,318 3,352 6,907 16,856
Leu1 19 4,484 5,834 8,475 15,568 30,250
Leu2 20 944 1,357 2,043 3,446 8,080
Leu3 21 667 974 1,324 2,329 4,319
Leu4 22 1,919 2,477 3,524 7,054 12,672
Leu5 23 1,134 1,357 2,058 2,665 5,150
Lys 24 1,932 2,660 3,717 6,374 14,212
Metf1 25 1,214 1,886 3,039 4,622 13,926
Metf2 26 718 892 1,193 2,468 5,137
Metm 27 708 1,013 1,471 2,993 6,036
Phe 28 1,039 1,408 2,169 3,424 6,963
Pro1 29 902 954 1,775 2,008 3,638
Pro2 30 721 982 1,142 2,928 5,109
Pro3 31 581 739 1,122 1,862 3,488
Sec 32 219 336 485 766 1,417
Ser1 33 1,300 2,175 2,766 5,096 10,029
Ser2 34 346 406 591 1,000 1,975
Ser3 35 1,411 1,717 2,290 3,943 7,726
Ser5 36 766 1,017 1,451 2,687 5,491
Thr1 37 101 160 273 408 912
Thr2 38 543 782 1,067 1,949 4,251
Thr3 39 1,099 1,459 1,957 3,548 7,549
Thr4 40 918 1,240 1,643 3,643 9,388
Trp 41 947 1,087 1,694 3,030 6,840
Tyr1 42 772 943 1,365 3,366 5,709
Tyr2 43 1,265 1,510 1,896 3,811 6,867
Val1 44 3,852 4,723 5,598 13,867 27,784
Val2A 45 632 782 1,203 1,971 3,801
Val2B 46 635 935 1,335 2,636 6,022
RF1 47 1,200 1,800 2,300 3,250 4,900
RF2 48 6,000 9,345 10,590 12,760 24,900
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