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It is well-established that widespread transcriptional changes accom-
pany the onset and progression of Alzheimer’s disease. Because of
the multifactorial nature of this neurodegenerative disorder and
its complex relationship with aging, however, it remains unclear
whether such changes are the result of nonspecific dysregulation
and multisystem failure or instead are part of a coordinated
response to cellular dysfunction. To address this problem in a sys-
tematic manner, we performed ameta-analysis of about 1,600micro-
arrays from human central nervous system tissues to identify
transcriptional changes upon aging and as a result of Alzheimer’s
disease. Our strategy to discover a transcriptional signature of
Alzheimer’s disease revealed a set of down-regulated genes that
encode proteins metastable to aggregation. Using this approach,
we identified a small number of biochemical pathways, notably
oxidative phosphorylation, enriched in proteins vulnerable to ag-
gregation in control brains and encoded by genes down-regulated
in Alzheimer’s disease. These results suggest that the down-regu-
lation of a metastable subproteome may help mitigate aberrant
protein aggregation when protein homeostasis becomes com-
promised in Alzheimer’s disease.

neurodegenerative diseases | amyloid formation | protein misfolding |
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Alzheimer’s disease (AD) is a neurodegenerative condition
responsible for the majority of reported cases of dementia,

affecting over 44 million people worldwide (1–6). Although the
exact nature of this disease has not been defined fully, its onset
and progression have been associated with a multitude of factors,
including mitochondrial dysfunction, disruption of the endo-
plasmic reticulum and membrane trafficking, disturbances in
protein folding and clearance, and the activation of the in-
flammatory response (1–6). More generally, however, it is clear
that AD belongs to a class of protein conformational disorders
whose characteristic feature is that specific peptides and proteins
misfold and aggregate to form amyloid assemblies (1, 3, 6). The
presence of such aberrant aggregate species generates a cascade
of pathological events, leading to the loss of the ability of protein
homeostasis mechanisms to preserve normal biological function
and to avoid the formation of toxic species (1, 3, 6).
The appearance of protein aggregates in living systems is in-

creasingly recognized as being common, as growing evidence in-
dicates that proteins are only marginally stable against aggregation
in their native states (1, 7) and that the molecular processes that
prevent protein aggregation decline with aging (8–12). Thus, pro-
tein aggregation is emerging as a widespread biological phenom-
enon, in which hundreds of different proteins can aggregate in
aging, stress, or disease (9, 13–23). To understand why some
proteins aggregate whereas others remain soluble, we recently
observed that many proteins in the proteome are insufficiently
soluble relative to their expression levels (24). Such proteins are
metastable to aggregation as their concentrations exceed their sol-
ubilities, that is, they are supersaturated (24–27). Upon formation of

aggregate seeds by nucleation events, a supersaturated protein will
form insoluble deposits until the concentration of its soluble frac-
tion is reduced to match its solubility (24–28). We found that the
proteins that coaggregate with inclusion bodies, those that aggre-
gate in aging, and those in the major biochemical pathways asso-
ciated with neurodegenerative diseases tend to be supersaturated
(24). The observation that these metastable proteins appear to be a
common feature in aging, stress, and disease prompts the question
of whether or not their supersaturation levels are altered in AD.
These levels are particularly crucial, as supersaturation represents a
major driving force for aggregation (25). It is thus interesting to ask
whether the down-regulation of supersaturated proteins may limit
their aggregation in response to compromised protein homeostasis.
In the present study, we examined the experimental informa-

tion acquired in the last decade about transcriptional changes in
AD (29–43). We aimed specifically to determine the relationship
between protein supersaturation and the transcriptional changes
that occur during normal aging and in AD. We found that dis-
tinct but partially overlapping transcriptional changes take place
in aging and AD. Moreover, down-regulated genes generally
correspond to metastable proteins at risk for aggregation, as they
are supersaturated and encoded by highly expressed genes. Ac-
cordingly, the biochemical pathways down-regulated in AD are
nearly identical to those previously identified as highly enriched
in supersaturated proteins (24). These changes are also accom-
panied by a transcriptional down-regulation of certain compo-
nents of the protein homeostasis network. The down-regulation
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of genes corresponding to supersaturated proteins may thus rep-
resent a specific mechanism to limit widespread aggregation by
regulating cellular concentrations in a compromised protein-folding
environment.

Results
Analysis of the Transcriptional Changes in Aging and AD. A long-
standing question is whether AD represents an acceleration of
the normal aging process or a qualitatively distinct phenomenon.
Determining changes in gene expression can offer important
insights into this problem. The complications associated with
obtaining human tissue samples, however, constrain the extent to
which confounding variables such as age, gender, and tissue type
can be controlled in a transcriptional analysis of AD. In the
present work, the control samples (mean 70.8 ± 16.4 y) are
younger than the disease samples (mean 81.1 ± 9.5 y), necessi-
tating the use of techniques to account for these disparities (SI
Materials and Methods and Table S1).
For the human genes examined in our analysis, we constructed

a linear model of expression differences across a range of factors
(SI Materials and Methods). We thus obtained the overall median
magnitude and statistical significance of expression changes by
combining these individual values across different studies. In this
analysis, microarray probes were mapped onto UniProt IDs to
determine the corresponding protein (SI Materials and Methods).
Using this procedure, we determined the transcriptional changes
associated with 19,254 genes. An important aspect of this ap-
proach is that the effects on gene expression of different factors
are considered as additive. Because the occurrence of AD in-
creases with age, Alzheimer’s subjects exhibit specific disease-
related transcriptional changes in addition to those associated
with natural aging. We considered a gene to be differentially
expressed if it undergoes a change in expression of at least 10%
with a Benjamini–Hochberg–corrected P value ≤0.01. We then
tested over 18,000 other combinations of thresholds and found
our results to be robust to changes in these thresholds (Figs. S1
and S2). In the model used here the aging component is a linear
variable, and therefore estimating the magnitude of change re-
quires specifying a range of ages. Because the assumption of
linearity is expected to hold best near the average age, we used
the change in expression for an age range of approximately two
SDs, namely 25 y.

Proteins That Aggregate in AD Correspond to Transcriptionally Down-
Regulated Genes. We next asked how the transcriptional changes
identified in aging and AD might be associated with protein
aggregation. First, we considered the set of disease-related am-
yloid proteins, that is, those annotated as “amyloid” in UniProt,
which include those associated with neurodegenerative diseases
(24). On average, we could not detect an overall connection
between amyloid proteins and proteins corresponding to differ-
entially expressed genes (Fig. 1 A and B). We also note, however,
that this analysis does not imply that individual genes in the
amyloid class may not have important roles in AD. As an ex-
ample, the down-regulation of the APP gene (in our analysis by
9.5%, with P =0.011) has been reported in neurons containing
neurofibrillary tangles (44).
We identified, however, a clear signal for another set of pro-

teins associated with AD, namely those that coaggregate with
amyloid plaques (13) and neurofibrillary tangles (14) in human
autopsy samples as identified by mass spectrometry. Among the
proteins that coaggregate with plaques (35%, P = 4.7·10−3) and
tangles (41%, P = 1.7·10−13), a disproportionate number corre-
spond to down-regulated genes in AD (Fig. 1A) in addition to
those that are down-regulated during natural aging (Fig. 1C).
Proteins corresponding to genes down-regulated in aging are
overrepresented among tangle coaggregators (10%, P = 2.5·10−3)
but not plaque coaggregators (4%, P = 1.0) (Fig. 1C). By contrast,
only an insignificant number of genes encoding proteins aggre-
gating in plaques and tangles were observed to be up-regulated in
AD (Fig. 1B) or aging (Fig. 1D).

Metastable Proteins Correspond to Transcriptionally Down-Regulated
Genes in Aging and AD.We next investigated whether the fact that
so many proteins that coaggregate with plaques and tangles
correspond to genes down-regulated in AD could be a conse-
quence of their metastability to aggregation. We previously ob-
served that these metastable proteins tend to be supersaturated,
having concentrations exceeding their solubility limits (24). Here
we calculated the metastability of proteins to aggregation in terms
of supersaturation scores (σu), which represent the risk of proteins
aggregating from their unfolded states (24). We assessed proteins
corresponding to genes down-regulated in AD to be about 8.8-fold
(8.8×, P < 2.2·10−16) more metastable than those for which the
expression levels of the corresponding genes do not change sig-
nificantly in disease (Fig. 2A). Similarly, we found proteins encoded
by genes down-regulated in aging to be more metastable (7.4×, P <
2.2·10−16) than those whose expression does not change (Fig. 2B).
We also found that proteins corresponding to genes up-regu-

lated in AD (1.3×, P = 9.7·10−13) (Fig. 2A) and in aging (1.5×,
P < 8.8·10−7) (Fig. 2B) are modestly, but significantly, more
metastable than those with unchanged expression in AD. These
up-regulated genes are almost exclusively associated with an in-
flammatory response (Dataset S1). For example, of those genes
that encode metastable proteins, the most highly up-regulated gene
(123% increase in expression) in AD is alpha-1 antichymotrypsin,
which inhibits serine proteases, particularly those active in in-
flammation (45).
Despite the fact that only 16% of down-regulated genes are

common to aging and AD (Fig. 2D), in both cases the transcrip-
tional response appears to be associated with metastability to ag-
gregation (Fig. 2 A–C). Indeed, we observed a significant overlap
(P < 2.2·10−16) between the most metastable proteins (≥95th
percentile), proteins corresponding to genes down-regulated in
AD, and proteins corresponding to genes down-regulated in
aging, as well as between any two of these categories (Fig. 2D).
The proteins that are supersaturated proteins and encoded by
genes down-regulated in AD make up a metastable subproteome
specific to AD (Dataset S1), which is here referred to as the
“metastable subproteome.” By contrast, the most transcrip-
tionally up-regulated genes in AD and in aging overlap signif-
icantly with each other, but neither group is significantly enriched
in genes encoding metastable proteins (Fig. 2E). As a control, we
divided the down-regulated and up-regulated genes into low,
medium, and high levels and calculated the supersaturation scores
at each of these levels (Fig. 3). Our results indicated a trend to-
ward increasing levels of supersaturation with increasing levels of
down-regulation in AD (Fig. 3A). This correlation is weaker in
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Fig. 1. Proteins that aggregate in AD correspond to transcriptionally down-
regulated genes. (A and B) Fraction of proteins corresponding to transcrip-
tionally down-regulated (A) or up-regulated (B) genes in AD in the whole
proteome (Prt; down-regulated fraction 1,907/19,254; up-regulated fraction
1,509/19,254) and for amyloid deposits (A; 1/23; 2/23), plaques (P; 9/26; 3/26),
and tangles (T; 36/88; 9/88). (C and D) Fraction of proteins corresponding to
transcriptionally down-regulated (C) or up-regulated (D) genes in aging in
the whole proteome (432/17,833; 534/17,833), and for amyloid deposits
(1/23; 0/23), plaques (1/26; 0/26), and tangles (9/88; 3/88). The statistical sig-
nificance of the difference with the proteome (first column) was assessed
with a Fisher’s exact test with Holm–Bonferroni corrections (**P < 0.001,
****P < 0.0001).
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aging (Fig. 3C), and weaker still among up-regulated genes (Fig. 3
B and D). The negative correlation between protein supersatu-
ration and gene down-regulation also persists at the individual
level for AD, but much less so for aging (Fig. S3).
Elevated supersaturation scores of differentially expressed

genes may result from an easier detection of the differences in
highly expressed genes than in genes of low expression. To
control for this possibility, however, we excluded low-expression
genes from our analysis, finding the median supersaturation of
proteins corresponding to differentially expressed genes to be
elevated even after this procedure (Fig. S4). We also tested the
robustness of our results against changes in the details of our
analysis. We found that our results on the metastability of the
proteins corresponding to differentially expressed genes are
stable across a wide range of thresholds for defining the groups
of up-regulated and down-regulated genes (Figs. S1 and S2), and
also against the introduction of Gaussian noise into the super-
saturation score (Figs. S5 and S6).

Specific Protein Homeostasis Components Correspond to Genes Down-
Regulated in AD. As we have discussed above, widespread down-
regulation of genes corresponding to metastable proteins may
represent a general mechanism to maintain protein homeostasis
upon aging and AD. An additional transcriptional response,
however, may also involve specific components of the protein
homeostasis network (8). Following a recent study that showed
an enrichment in genes down-regulated in aging in this network
(8), we examined whether or not particular subnetworks in the

overall protein homeostasis network correspond to genes particularly
down-regulated in aging and AD (Fig. 2F). We found a significant
number of protein homeostasis network genes in the “trafficking”
subnetwork to be down-regulated in AD (14%, P = 1.1·10−2).
We then investigated whether or not the cell is endowed with

transcriptional mechanisms to regulate the solubility burden in
register with the protein homeostasis capacity. If so, there may
be transcriptional regulators that coordinate such a response by
modulating protein homeostasis. To determine in particular
whether specific transcription factors and histone modifiers are
up-regulated or down-regulated in AD and aging, we generated a
map of transcriptional regulators and their targets using Ency-
clopedia of DNA Elements (ENCODE) regulator binding site
data (46). Here we considered a gene to be regulated by a par-
ticular transcription factor or histone modifier if the regulator
has a binding site at least half of which is within 1,000 bp of the
start codon of the gene itself. We identified 23 transcription
factors and histone modifiers associated with a significant num-
ber of genes down-regulated in AD (Dataset S2), including
EGR1 (47), NRF1 (48), and REST (49). By contrast, we found
only one regulator associated with a significant number of genes
down-regulated in aging, the histone modifier EZH2 (Dataset
S3). In addition, four regulators were found to be associated with
a significant number of genes up-regulated in AD, and none was
found to be associated with a significant number of genes up-
regulated in aging (Datasets S2 and S3).

Biochemical Pathways Enriched in Metastable Proteins Are Also Enriched
in Proteins Corresponding to Genes Down-Regulated in AD. To
determine the functional implications of the transcriptional regu-
lation of metastable proteins in AD, we conducted an unbiased
search of the entire set of 284 pathways in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (50), a repository of
biochemical pathways and protein networks. We found a close
correspondence between the pathways down-regulated in AD
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and pathways that we previously found to be supersaturated
based on independent data (24, 25) (Fig. 4 and Table S2).
Remarkably, most of these KEGG pathways fall along a band in
which increasing metastability levels correspond to increasing
down-regulation (Fig. 4, purple circles). The overlap between
metastable and down-regulated pathways is highly significant (P =
8.7·10−11). Among the simultaneously metastable and down-regu-
lated KEGG pathways, we found oxidative phosphorylation (OP),
Parkinson’s disease (PD), Huntington’s disease (HD), Alzheimer’s
disease, nonalcoholic fatty liver disease (NAFLD), cardiac muscle
contraction (CMC), nicotine addiction (NA), GABAergic synapse
(GABA), and pathogenic Escherichia coli infection (PEcI). These
results reveals pathological (AD, PD, HD, and NAFLD) and
functional (OP, CMC, and PEcI) networks and pathways enriched
in physiological complexes, as well as pathways involved in neu-
ronal signaling (NA and GABA). In particular, our analysis iden-
tified certain proteins in the oxidative phosphorylation pathway as
being particularly metastable, including all of the components of
the mitochondrial ATP synthase complex for which we have data,
consistent with the reported involvement of this complex in AD (51).
In addition, 43% of the genes in our analysis that encode for mito-
chondrial ATP synthase complex are transcriptionally repressed. The
most repressed is the alpha subunit of the F1 catalytic core (whose
expression is reduced by 26% in AD), which has been observed to
accumulate in degenerating neurons in AD and to be associated with
neurofibrillary tangles (52). We also verified that, although oxidative
phosphorylation is central to the pathways down-regulated in AD,
the signal for metastability in AD and aging is robust against the
exclusion of proteins in this pathway from our analysis (Fig. S7).
In this comprehensive analysis of KEGG pathways, we also

found other pathways that are significantly enriched in either
metastable proteins (Fig. 4, red circles) or in proteins corresponding
to down-regulated genes (Fig. 4, blue circles), but not both (Table
S2). However, the large majority of these pathways have signifi-
cance values that are lower than the average jointly metastable and
down-regulated pathway (Fig. 4, purple circles), the exceptions
being the “ribosome,” which is highly metastable but not down-
regulated, and the “synaptic vesicle cycle,” “proteasome,”
and “retrograde endocannabinoid signaling,” which are down-
regulated but not metastable. A similar analysis for up-regulated
pathways in AD did not provide particularly significant results,
although one may expect genes associated with the immune

response to be up-regulated, as, for example, complement C1q
subcomponent subunit C and plasma protease C1 inhibitor in the
“complement and coagulation cascade” pathway.
Thus, the observation that in AD there is a highly specific down-

regulation of metastable biochemical pathways and networks suggests
the presence of a robust transcriptional response to protein aggre-
gation in AD.

Widespread Down-Regulation of the Metastable Subproteome Is Not
a General Feature of Disease. Because the genes corresponding to
the metastable subproteome are, on average, highly expressed,
we considered the possibility that their widespread down-regu-
lation could be a general feature of cellular dysfunction in dis-
ease. If this were the case, any process that disrupts normal
cellular function could impair transcription, preferentially af-
fecting those genes that are highly expressed. To investigate this
possibility, we performed a meta-analysis of expression changes
in another cognitive disorder, clinical depression. We considered
470 microarrays, including 239 from control patients and 231
from those with clinical depression (Table S1). As with our
analysis of AD, we restricted our analysis to brain samples from
cases in which the gender and age (for which we controlled) were
known and Gene Expression Omnibus (GEO) database series
that included at least 10 total cases. Among the 19,190 genes
for which we evaluated changes in expression, we found 7 genes
down-regulated and 11 genes up-regulated in clinical de-
pression at the thresholds of 10% change in expression and P ≤
0.01 (Dataset S4). Overall, we did not observe the same wide-
spread transcriptional repression of the metastable subproteome
found in AD, and we found no KEGG pathways significantly
enriched in proteins corresponding to those genes differentially
expressed in AD.
We then considered the possibility that we had only identified

a small number of genes as being differentially expressed in
clinical depression because of low statistical power. Although our
meta-analysis of clinical depression included only 22% as many
arrays as that of AD, this is unlikely to explain the fact that only
0.6% as many genes are differentially regulated in clinical de-
pression. In addition, our separate analysis for aging provided a
control to assess the statistical power of the clinical depression
dataset relative to that for AD. At the thresholds of 10% change
in expression and P ≤ 0.01, we found 196 genes down-regulated
and 122 genes up-regulated in aging in the clinical depression
dataset. This is 23% as many genes as we found differentially
regulated in aging based on the AD dataset, consistent with the
smaller number of microarrays in the clinical depression analysis.
As a further control, we reanalyzed these data after relaxing the
significance threshold for differential expression to P ≤ 0.05. At
this threshold, we found 24 genes down-regulated and 17 genes
up-regulated in clinical depression and 569 genes down-regu-
lated and 291 genes up-regulated in aging (Dataset S4). At the
relaxed threshold, the KEGG pathway for “olfactory trans-
duction” was enriched in proteins corresponding both to genes
down-regulated (P = 4.5·10−3) and genes up-regulated (P = 4.9·10−2)
in clinical depression (Dataset S4). Only “mineral absorption” was
enriched in proteins corresponding to genes up-regulated in aging in
the clinical depression dataset (Table S2). We also assessed the
overall relationship between metastability and transcriptional regu-
lation, and found little correlation between the two.

Discussion
A major area of investigation into the molecular origins of AD
concerns the chemical and physical instability of the proteins as-
sociated with the disease, and the mechanisms by which the cell
responds to such a situation. A number of studies have reported
biophysical features, environmental conditions, and molecular
partners that promote or repress the initial aggregation of specific
proteins (1, 3, 7, 13–15). More recently, it has been recognized that
the regulation of many other proteins is disrupted as a consequence
of these initial aggregation events (8, 16–25). In a complementary
approach, the origins of AD have been studied by analyzing
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the transcriptional response associated with its onset and pro-
gression (29–43). These studies have revealed that this tran-
scriptional response involves genes corresponding to proteins
that can cause the disease and those associated with the cellular
processes engaged in combating it (29–43).
In the present study, we have brought together these two ap-

proaches, finding that the transcriptional changes that occur in AD
can be rationalized, at least in part, on the basis of the presence of
an AD-specific metastable subproteome at risk for aggregation
(Fig. 2). This metastable subproteome is defined as the overlap
between the proteins that are most supersaturated and that corre-
spond to highly expressed genes, and those encoded by genes most
transcriptionally down-regulated in AD (Fig. 2D). These proteins
are intrinsically at risk for aggregation and, as we found here, tend
to be the target of the transcriptional response in aging and
AD. These results are consistent with previous observations
that the expression of oxidative phosphorylation genes is sup-
pressed in AD (53, 54), but suggest in addition that such sup-
pression may be part of a broader response to the disease.
Having previously shown that the proteins associated with AD

tend to be metastable to aggregation because they are supersatu-
rated (24, 25), we have now reported a response to this intrinsic
metastability of the proteome in the face of disruptions to protein
homeostasis through the transcriptional down-regulation of their
respective genes. The close correspondence of the biochemical
pathways associated with metastability and those down-regulated in
AD (Fig. 4) supports this conclusion, as do the tendency for proteins
that coaggregate in plaques and tangles to correspond to down-
regulated genes (Fig. 1) and the high overall metastability level of
proteins encoded by down-regulated genes (Fig. 2). We found these
results to be stable against a range of potentially confounding factors,
including the choice of thresholds for differential expression (Figs.
S1 and S2), noise in the supersaturation score (Figs. S5 and S6), and
the large contribution of oxidative phosphorylation (Fig. S7).
Analysis of the transcriptional response to the collapse of

protein homeostasis in terms of a metastable subproteome at risk
for aggregation has also enabled us to address another central
question about the progression of AD, namely the way in which
changes occurring in this disease are related to the natural
process of aging. These results indicate that aging and AD are
very different at the transcriptional level, as over three-quarters
of the transcriptional changes that occur in AD do not occur in
aging (Fig. 2 D and E). In addition, many cellular processes
down-regulated in AD are not significantly down-regulated in
aging (Fig. S2). Although the differences between regulation in
aging and AD are profound, there are important commonalities,
as shown by the significant overlap in the specific transcriptional
changes that occur in AD and in aging (Fig. 3). AD therefore
appears to involve an acceleration in the decline of protein ho-
meostasis associated with aging, and also an extension of its scope
and significance. Overall, such an acceleration makes the meta-
stable subproteome that we have identified in this work more
susceptible to aggregation. This conclusion offers an explanation of
why a transcriptional down-regulation of genes corresponding to
metastable proteins is observed in both aging and AD.
We also observe that these phenomena are unlikely to be a

general feature of cellular dysfunction. Our results indicate that a
different transcriptional response is present in the case of clinical
depression (Table S2 and Dataset S4), consistent also with results
for epilepsy derived considering the differentially expressed genes
in hippocampal samples from five patients with mesial temporal
lobe epilepsy with hippocampal sclerosis (55). In that study, 518
genes were found to be differentially expressed between the sub-
jects. Functional enrichment using the Database for Annotation,
Visualization and Integrated Discovery (DAVID, https://david.

ncifcrf.gov/) showed enrichment for KEGG pathways associated
with neuroactive ligand receptor interaction, drug metabolism,
and cytokine interaction, among others. The KEGG pathways of
oxidative phosphorylation and of Alzheimer’s, Parkinson’s, and
Huntington’s diseases were not, however, seen in epilepsy.
The findings that we have reported here, therefore, suggest

that the widespread down-regulation of genes corresponding to
metastable proteins at risk for aggregation may represent an
important aspect of the strategy for cellular regulation in the face
of disruptions in protein homeostasis. More generally, un-
derstanding the physicochemical implications of transcriptional
regulation in aging, AD, and other protein-misfolding disorders
has important implications both for a fundamental biological un-
derstanding of the origins of the disease and for clinical practice.
Because the maintenance of protein homeostasis is an essential
function in the cell, determining how the overall proteome com-
position is managed and modulated is a central question in biology.
At the same time, understanding endogenous strategies for han-
dling supersaturated, metastable, and potentially misfolding pro-
teins may provide an avenue for improved therapies. If widespread
aggregation is associated with AD, then determining how to reg-
ulate this phenomenon is of great value and practical importance.

Conclusions
We have shown that AD is associated with the transcriptional
regulation of a metastable subproteome at risk for aggregation.
The presence of these poorly soluble proteins in the cellular en-
vironment is inherently dangerous, in particular because these
proteins tend to cluster into specific biochemical pathways, and
only limited molecular chaperones and other protective resources
are available at any given time to prevent their misfolding and
aggregation. In conjunction with emerging insights into the mo-
lecular chaperone functions and the regulation of protein trans-
lation and degradation, our results indicate that the study of
protein metastability may clarify how failures in maintaining pro-
teins in their normal functional states could result in protein ag-
gregation and in multifactorial disorders such as AD.
Despite the great complexity of aging processes and neuro-

degenerative disorders, protein solubility may underlie many
aspects of their resultant cellular dysfunction. In this work, we
have adopted this idea to investigate how the levels of poorly
soluble proteins are regulated, finding that the overall tran-
scriptional response to AD is associated with a global down-
regulation of the expression of the genes encoding proteins that
are metastable to aggregation. We anticipate that interventions
that target the metastable subproteome at risk for aggregation
that we have identified in this work may provide novel oppor-
tunities for the early diagnosis and treatment of AD.

Materials and Methods
The method of array normalization, construction of the linear model, and
determination of significance and magnitude values are described in SI
Materials and Methods. The calculation of basal expression levels for su-
persaturation scores and the sensitivity analysis are also described in SI
Materials and Methods. The multiple hypothesis correction, KEGG analysis,
and transcription factor analysis are described in SI Materials and Methods.
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Array Normalization. We performed array normalization using the
limma, affy, gcrma, and text itxps packages for the statistical pro-
gramming language R (https://www.r-project.org). Affymetrix gene
arrays read using the ReadAffy function in affy were normalized
using the GC Robust Multiarray Average (GCRMA) using the
gcrma function, which uses estimates of cross-hybridization based
on the GC content of mismatch (MM) probes. It is a modification
of the robust multiarray average (RMA) algorithm using the rma
function in xps, which was used here to normalize Affymetrix exon
arrays. GCRMA cannot be used on these arrays because they do
not have the MM probes needed to estimate cross-hybridization.
We read Illumina arrays using the read.ilmn function in LIMMA
and background-corrected with the neqc function in LIMMA.
Preprocessed arrays, if they have accompanying significance values,
were filtered to remove those with a significance score <0.95
(where significance scores were available), and expression values
were scaled to log10. We treated each two-color array that we
encountered in the clinical depression dataset as two separate ar-
rays, analyzing them using the backgroundCorrect, normal-
izeWithinArrays, and normalizeBetweenArrays (by the Aquantile
method) functions. One other significant difference between our
analysis of two-color arrays and one-color arrays is that when
performing backgroundCorrect, we used the “minimum” method
for two-color arrays whereas we used the normexp method for one-
color arrays. The reason for the use of the minimum method here
is to eliminate negative values, which are not compatible with the
normalization we perform to correct for the fact that each channel
in a given two-color array is on a single chip exposed to the same
sample. For the clinical depression meta-analysis, we grouped
certain series together, as indicated in Dataset S1.

Construction of the Linear Model. We fitted a linear model to the
expression of each gene that included the cofactors of tissue type,
gender, age, and disease status in all cases, and subject ID and
technical replication when these were relevant. If there was
technical replication, we used the function duplicateCorrelation
in limma to account for this replication. From LIMMA, we then
used the function lmFit to generate the fit, and the function
eBayes to generate statistical significance values.

Determination of Significance and Magnitude Values. We obtained
adjusted P values (i.e., q values) using the Benjamini–Hochberg
method (56). In addition, we obtained the coefficients for the
disease status and age cofactors to estimate the magnitude of the
contribution of these parameters to gene expression. We con-
verted Probe IDs to human-reviewed UniProt IDs, based on a
mapping of those probes that unambiguously mapped to a single
UniProt ID. If multiple probes mapped to a single UniProt ID,
we used the median parameter P value and coefficient. Because
aging is a continuous variable, the magnitude of the expression
change attributable to aging is the product of the aging cofactor
coefficient and some age range. In this study, we used an age
range of 25 y for two reasons. First, this equals approximately
two SDs of the age distribution, which is a reasonable range over
which to assume linearity. Second, this value reflects an age
range from about 63 y to about 88 y, a period over which the
prevalence of AD increases dramatically.
For the clinical depression meta-analysis, the ages of the

control samples were mean 50.3 ± 12.8 y and those of the disease
samples were mean 49.4 ± 15.6 y. We used an age range of 25 y
for these samples, as well, for consistency, and because this was

also approximately two SDs of the age distribution in the clinical
depression meta-analysis. As described below, varying the mag-
nitude threshold significance of aging has the same effect as
changing the age range used for our analysis, and the results are
robust against such changes.

Combination of Significance and Magnitude. There are several
methods to combine significances across a series of studies. Here
the question was whether or not the change in expression of a
gene corresponding to a given protein is statistically significant. In
general, we had 10 P values because we analyzed 10 microarray
studies separately, although in some cases there were fewer than
10 P values because some genes are represented in some arrays
but not others. The goal was to estimate the probability of ob-
taining a set of cofactor coefficients in each of the studies that
are at least as extreme as those observed, assuming the null
hypothesis that there is no change in gene expression is valid.
One way to address this issue is to combine P values from various
studies. Perhaps the most popular method to combine P values is
Fisher’s method, which in essence yields a significant result if at
least one of the studies can reject the null hypothesis (57). By
contrast, Pearson’s method can be interpreted as assessing a
result as insignificant if at least one of the studies fails to reject
the null hypothesis (58). Stouffer et al.’s method is attractive
because it is somewhat less sensitive to extreme values (59). In
this method, P values are first converted to Z scores, which are
standard normal variables. These Z scores can be combined to
give a composite Z score, based on the property that the sum of k
standard normal variables has mean 0 and variance p(k). This
sum can then be converted unambiguously back into a P value. A
common variant of this method was proposed by Liptak and
involves weighting each individual Z score by the sample size of
the study, an approach that has been shown to be superior by
simulation. In the current analysis, we used Liptak’s method
(50). This method requires that the P values be one-tailed and,
although the P values obtained from the LIMMA functions
lmFit and eBayes are two-tailed, they can be converted into one-
tailed P values. To obtain a combined magnitude, we used the
median of magnitudes per cofactor per gene.

Calculation of Basal Expression Levels for Supersaturation Scores.We
estimated metastability using our previously defined supersatu-
ration scores, and estimated basal mRNA expression in control
subjects. Because of normalization differences, it is challenging to
obtain values for basal expressions by combining data from dif-
ferent studies, and so we selected a single study to obtain these
levels. For AD, the study GSE44772 (Table S1) included the most
control samples (299) but used the Rosetta/Merck Human 44k
1.1 microarray (42), in which expression values reported for each
array are relative to the expression of a pooled background ar-
ray, thus making between-gene comparisons impossible. The
study GSE1297 (Table S1) used the Affymetrix Human Genome
U133 array (30), which reports raw array expression values that
we are then able to renormalize. This Affymetrix array is also the
most commonly used array in the GEO database among those
arrays represented in this analysis. The study GSE1297 also has a
relatively large number of control samples (74), although this
number is smaller than that available in the study GSE44772.
However, given that the Affymetrix platform is more common,
better-characterized, and amenable to renormalization within
this analysis, we estimated basal expression levels from the
control expression values in GSE1297. These values are the log2
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average of all of the samples, as obtained from the LIMMA
function lmFit. For clinical depression, the GSE54562/GSE54563/
GSE54564 set of series included the most control samples (56; ref.
60), but GSE53987 had the advantage of deriving all 55 of its
samples from the same series. It also used a similar platform to
that for basal expression AD, Affymetrix Human Genome U133
Plus 2.0 Array (61).
We also note that the use of proteome-level mass spectrometry

(9), when applied to brain tissues, could provide a quantitative
way to measure supersaturation levels directly as the ratio be-
tween the actual soluble and total amounts of individual proteins
observed in vivo.

Multiple Hypothesis Correction. In addition to the multiple hy-
pothesis correction described above, the following families of
tests were corrected using the Holm–Bonferroni method (62):
(i) overlap of aging and disease down-regulation with most su-
persaturated proteins; (ii) overlap of aging and disease up-reg-
ulation with most supersaturated proteins; (iii) enrichment of
disease-related up-regulated and down-regulated proteins in
disease-related amyloid proteins, plaque coaggregators, tangle
coaggregators, the most supersaturated proteins [included in this
family and family (i) above], and the proteostasis network;
(iv) enrichment of age-related up-regulated and down-regulated
proteins in disease-related amyloid proteins, plaque coaggre-
gators, tangle coaggregators, the most supersaturated proteins,
and the proteostasis network; (v) supersaturation scores of pro-
teins up-regulated and down-regulated in disease; (vi) supersatu-
ration scores of proteins up-regulated and down-regulated in
aging; (vii) supersaturation scores of proteins up-regulated and
down-regulated in disease divided into low, medium, and high
categories; (viii) supersaturation scores of proteins up-regulated
and down-regulated in aging divided into low, medium, and high
categories; (ix) disease-related down-regulation of subcategories
of the protein homeostasis network; and (x) overlap of KEGG
pathways for up-regulation and down-regulation in aging and
disease. KEGG pathway enrichment was corrected using the
Holm–Bonferroni method (62), considering aging up-regulation,
aging down-regulation, disease up-regulation, and disease down-
regulation each as a separate family. Transcription factor target
enrichment was corrected using the Benjamini–Hochberg method,
considering aging up-regulation, aging down-regulation, disease
up-regulation, and disease down-regulation each as a separate
family. Analyses that excluded oxidative phosphorylation genes
were considered as separate families. Analyses of clinical de-
pression and AD were included in separate families.

KEGGAnalysis.KEGG analysis was performed by first assembling a
database of the components of each KEGG pathway (50) from
publicly available data. The KEGG gene identifiers were then
converted to UniProt IDs to make it possible to compare them
with the rest of our data. Enrichment was calculated using a
one-sided Fisher’s exact test (57) and corrected using the
Holm–Bonferroni method (62). Results for the most metastable
proteins made use of previously published supersaturation scores,
but two aspects of the current analysis of that data differed. First,
the revised method of deriving KEGG pathways resulted in the

analysis of 85 KEGG pathways not analyzed in the previous study.
Second, the revised method used a one-sided Fisher’s exact test
instead of the modified Expression Analysis Systematic Explorer
(EASE, https://david.ncifcrf.gov/ease/ease.jsp) score to calculate
significance. This resulted in some differences in the pathways
identified as being enriched in metastable proteins.

Overlap Analysis. The significance of the overlaps between aging,
AD, and metastability were calculated using a one-sided Fisher’s
exact test, corrected using the Holm–Bonferroni method. For
the significance of the triple intersection, the P value was esti-
mated as being less than or equal to the minimum P value of any
double overlap.

Transcription Factor Analysis.We used transcription factor binding
site data from the ENCODE database (46) to identify tran-
scription factors whose targets are enriched in the genes that we
identified as being differentially expressed in aging and AD.
ENCODE provides the genome address for binding sites for each
transcription factor (46). We defined a gene as being regulated by
a transcription factor if its binding site was less than 1,000 nt
upstream of its start codon. Using this method, we generated a
map of transcription factors and their targets. We converted the
identifiers for the target genes to human-reviewed UniProt ac-
cession numbers and did the same for the UniProt IDs in our
expression analysis. We then used a one-sided Fisher’s exact test
to determine the significance of enrichment, correcting this P
value using the Benjamini–Hochberg method (56).

Threshold Sensitivity Analysis. To test the sensitivity of our results
for aging and AD to variations in the threshold for differential
expression, we varied the expression change threshold between
0.5% and 50% and the significance threshold between P = 10−20

and P = 1, for a total of 18,100 combinations of thresholds. At
these thresholds, we determined which genes were up-regulated,
down-regulated, or unchanged in expression. For those threshold
levels at which there were at least five genes in each category, we
then recalculated the median fold difference in supersaturation
between the proteins encoded by up-regulated/down-regulated
genes and those encoded by genes unchanged in expression, as
well as the corresponding statistical significance. Because the
aging results scale linearly with the age range selected, changing
the magnitude threshold for aging has the same effect as varying
the width of the age range used to calculate expression changes
in aging.

Sensitivity to Gaussian Noise in the Supersaturation Score. In a
method similar to that which we previously described (24), we in-
troduced random error into the supersaturation scores we calculated
drawn from 34 increasingly wide Gaussian distributions with SD
ranging from 1.1× error to 100× error. At each level, we performed
100 independent trials. At each level, we calculated the median fold
difference in supersaturation and the corresponding significance,
and then performed a one-sided Wilcoxon/Mann–Whitney test on
these sets of median fold differences and P values to assess whether
they were significantly greater than 1 or less than 0.05, respectively.
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Fig. S1. Differences in metastability between transcriptionally regulated proteins in aging are robust against changes in differential expression thresholds. A
range of values for thresholds of minimum percentage change (0.5–50%) and P value (10−20 to 1) was used to determine which genes are increased, decreased,
or unchanged in expression upon aging. A total of 18,100 combinations were considered. Supersaturation scores were then calculated for the proteins cor-
responding to differentially expressed genes. The corresponding protein supersaturation was assessed in terms of (A and C) P value and (B and D) median fold
difference. This analysis was performed for down-regulated (A and B) and up-regulated (C and D) genes.
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Fig. S2. Differences in metastability between transcriptionally regulated proteins in AD are robust against changes in differential expression thresholds. A
range of values for thresholds of minimum percentage change (0.5–50%) and P value (10−20 to 1) was used to determine which genes are increased, decreased,
or unchanged in expression in AD. A total of 18,100 combinations were considered. Supersaturation scores were then calculated for the proteins corresponding
to differentially expressed genes. The corresponding protein supersaturation was assessed in terms of (A and C) P value and (B and D) median fold difference.
This analysis was performed for down-regulated (A and B) and up-regulated (C and D) genes.
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Fig. S3. Metastability levels are correlated with average expression levels for genes down-regulated in AD. (Left) Plot of protein supersaturation scores
against the fold change in expression for the corresponding genes in AD (AD, Upper Left), aging based on the AD studies [Age (AD), Upper Right], clinical
depression (CD, Lower Left), and aging based on the clinical depression studies [Age (CD), Lower Right]. (Right) Pearson’s correlation coefficient (r2) for the
categories plotted (Left).
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Fig. S4. Metastability of proteins encoded by differentially expressed genes is elevated in AD and aging for a range of expression values. Supersaturation of
proteins associated with downregulated (A and B) and upregulated (C and D) genes in AD (circles) and aging (triangles) was determined after restricting the
genes of interest to those above a range of expression levels plotted by expression percentile rank. (A and B) Fold Δ and (C and D) P value are plotted. Orange
points represent values for down-regulated genes; blue points represent values for up-regulated genes. The median fold difference in supersaturation is
indicated by Fold Δ. P values are calculated using the one-sided Wilcoxon/Mann–Whitney test with Holm–Bonferroni correction.
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Fig. S5. Differences in metastability between transcriptionally regulated proteins in AD are robust against Gaussian noise in the supersaturation score. Test of
the robustness of the significance of the (A and C) median fold difference and (B and D) P value of supersaturation for proteins transcriptionally (A and B)
down-regulated or (C and D) up-regulated in AD. Gaussian noise was introduced 100 independent times into the proteome scores at levels ranging from 1.1×
to 100× (where 1× signifies no noise). Tests were performed at each noise level to determine whether the 100 median fold differences obtained were sig-
nificantly greater than 1 and the 100 P values obtained were significantly below 0.05. For down-regulated genes, supersaturation (A) median fold difference is
robust up to 100× and (B) P value is robust up to 7×. For up-regulated genes, supersaturation (C) median fold difference is robust up to 100× and (D) P value is
robust up to 2.25×. Error bars indicate interquartile ranges; green points indicate P ≤ 0.05 by the one-sided Wilcoxon/Mann–Whitney test.

Ciryam et al. www.pnas.org/cgi/content/short/1516604113 6 of 10

www.pnas.org/cgi/content/short/1516604113


Fig. S6. Differences in metastability between transcriptionally regulated proteins in aging are robust against Gaussian noise in the supersaturation score. Test
of the robustness of the significance of the (A and C) median fold difference and (B and D) P value of supersaturation for proteins transcriptionally (A and B)
down-regulated or (C and D) up-regulated in aging (AD dataset). Gaussian noise was introduced 100 independent times into the proteome scores at levels
ranging from 1.1× to 100× (where 1× signifies no noise). Tests were performed at each noise level to determine whether the 100 median fold differences
obtained were significantly greater than 1 and the 100 P values obtained were significantly below 0.05. For down-regulated genes, supersaturation (A) median
fold difference is robust up to 3.75× and (B) P value is robust up to 2.25×. For up-regulated genes, supersaturation (C) median fold difference is robust up to
100× and (D) P value is robust up to 1.1×. Error bars indicate interquartile ranges; green points indicate P ≤ 0.05 by the one-sided Wilcoxon/Mann–Whitney test.
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Fig. S7. Elevated metastability of proteins encoded by differentially expressed genes in AD and aging is not dependent on oxidative phosphorylation pro-
teins. Supersaturation of proteins associated with differentially expressed genes in (A) AD, (B) aging, and (C) the overlap between the two, but with those
proteins found in the KEGG pathway for oxidative phosphorylation excluded. The median fold difference in supersaturation is indicated by Fold Δ. NC indicates
genes that do not change significantly in expression. ****P ≤ 0.0001, one-sided Wilcoxon/Mann–Whitney test with Holm–Bonferroni correction. Whiskers
range from the lowest to highest value data points within 150% of the interquartile ranges.
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Table S1. List of the studies used for the microarray meta-analyses carried out in this work for Alzheimer’s disease
and clinical depression

Series Platform Refs. Control samples Disease samples Disease set

GSE1297 GPL96 (30) 74 87 AD
GSE5281 GPL96 (32, 33) 9 22 AD
GSE15222 GPL2700 (34) 187 174 AD
GSE26927 GPL6255 (38) 7 11 AD
GSE29378 GPL6947 (41) 32 31 AD
GSE29652 GPL570 (36) 6 12 AD
GSE36980 GPL6244 (40) 47 32 AD
GSE37263 GPL5175 (35) 8 8 AD
GSE44772 GPL4272 (42) 299 388 AD
GSE12654 GPL8300 (63) 15 11 CD
GSE53987 GPL570 (61) 55 50 CD
GSE54562, GSE54563, GSE54564 GPL6947 (60) 56 56 CD
GSE54565, GSE54566 GPL570 (60) 29 30 CD
GSE54567, GSE54568, GSE54571, GSE54572 GPL570 (60) 54 54 CD
GSE24095 GPL10907 (64) 30 30 CD

In rows that include multiple series, we pooled different series and treated them as one for analysis.
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Table S2. KEGG pathways in which transcriptionally regulated genes are overrepresented in Alzheimer’s disease, clinical depression,
or aging

KEGG pathway AD Age[AD] CD (P ≤ 0.01) Age[CD] (P ≤ 0.01) CD (P ≤ 0.05) Age[CD] (P ≤ 0.05)

Down-regulated
Staphylococcus aureus infection N.S. N.S. N.S. N.S. N.S. N.S.
Complement and coagulation cascades N.S. N.S. N.S. N.S. N.S. N.S.
Toxoplasmosis N.S. N.S. N.S. N.S. N.S. N.S.
Mineral absorption N.S. N.S. N.S. N.S. N.S. N.S.
Legionellosis N.S. N.S. N.S. N.S. N.S. N.S.
Proteoglycans in cancer N.S. N.S. N.S. N.S. N.S. N.S.
Malaria N.S. N.S. N.S. N.S. N.S. N.S.
Pertussis N.S. N.S. N.S. N.S. N.S. N.S.
Allograft rejection N.S. N.S. N.S. N.S. N.S. N.S.
Alzheimer’s disease 1.39E-13 N.S. N.S. N.S. N.S. 9.07E-06
Antigen processing and presentation N.S. N.S. N.S. N.S. N.S. N.S.
Asthma N.S. N.S. N.S. N.S. N.S. N.S.
Axon guidance N.S. 1.14E-02 N.S. N.S. N.S. N.S.
Cardiac muscle contraction 2.16E-07 N.S. N.S. N.S. N.S. N.S.
Citrate cycle (TCA cycle) 1.84E-03 N.S. N.S. N.S. N.S. N.S.
Cysteine and methionine metabolism 3.59E-02 N.S. N.S. N.S. N.S. N.S.
GABAergic synapse 3.99E-05 N.S. N.S. N.S. N.S. N.S.
Huntington’s disease 6.00E-15 N.S. N.S. N.S. N.S. 1.65E-03
Leishmaniasis N.S. N.S. N.S. N.S. N.S. N.S.
Morphine addiction 3.26E-02 N.S. N.S. N.S. N.S. N.S.
NOD-like receptor signaling pathway N.S. N.S. N.S. N.S. N.S. N.S.
Nicotine addiction 5.71E-04 N.S. N.S. N.S. N.S. N.S.
Nonalcoholic fatty liver disease 4.77E-10 N.S. N.S. N.S. N.S. 1.59E-02
Olfactory transduction N.S. N.S. N.S. N.S. 4.52E-03 N.S.
Oxidative phosphorylation 9.67E-20 N.S. N.S. N.S. N.S. 3.35E-07
Parkinson’s disease 2.12E-19 N.S. N.S. N.S. N.S. 1.36E-06
Pathogenic Escherichia coli infection 1.50E-02 N.S. N.S. N.S. N.S. N.S.
Phagosome N.S. N.S. N.S. N.S. N.S. N.S.
Proteasome 4.86E-04 N.S. N.S. N.S. N.S. 1.57E-02
Pyrimidine metabolism N.S. N.S. N.S. N.S. N.S. 1.19E-01
Retrograde endocannabinoid signaling 7.59E-05 N.S. N.S. N.S. N.S. N.S.
Ribosome N.S. N.S. N.S. N.S. N.S. 2.10E-01
Synaptic vesicle cycle 2.59E-08 N.S. N.S. N.S. N.S. N.S.
Systemic lupus erythematosus N.S. N.S. N.S. N.S. N.S. N.S.
Vibrio cholerae infection 4.33E-02 N.S. N.S. N.S. N.S. N.S.

Up-regulated
S. aureus infection 2.12E-06 4.69E-11 N.S. N.S. N.S. N.S.
Complement and coagulation cascades 1.91E-04 3.75E-07 N.S. N.S. N.S. N.S.
Toxoplasmosis 7.92E-04 6.00E-03 N.S. N.S. N.S. N.S.
Mineral absorption 2.67E-03 N.S. N.S. 2.40E-03 N.S. 4.94E-03
Legionellosis 7.73E-03 1.79E-02 N.S. N.S. N.S. N.S.
Proteoglycans in cancer 2.74E-02 N.S. N.S. N.S. N.S. N.S.
Malaria 3.04E-02 N.S. N.S. N.S. N.S. N.S.
Pertussis 4.07E-02 4.39E-04 N.S. N.S. N.S. N.S.
Allograft rejection N.S. 2.74E-02 N.S. N.S. N.S. N.S.
Alzheimer’s disease N.S. N.S. N.S. N.S. N.S. N.S.
Antigen processing and presentation N.S. 2.86E-03 N.S. N.S. N.S. N.S.
Asthma N.S. 4.54E-02 N.S. N.S. N.S. N.S.
Axon guidance N.S. N.S. N.S. N.S. N.S. N.S.
Cardiac muscle contraction N.S. N.S. N.S. N.S. N.S. N.S.
Citrate cycle (TCA cycle) N.S. N.S. N.S. N.S. N.S. N.S.
Cysteine and methionine metabolism N.S. N.S. N.S. N.S. N.S. N.S.
GABAergic synapse N.S. N.S. N.S. N.S. N.S. N.S.
Huntington’s disease N.S. N.S. N.S. N.S. N.S. N.S.
Leishmaniasis N.S. 2.61E-04 N.S. N.S. N.S. N.S.
NOD-like receptor signaling pathway N.S. 2.46E-02 N.S. N.S. N.S. N.S.
Nicotine addiction N.S. N.S. N.S. N.S. N.S. N.S.
Nonalcoholic fatty liver disease N.S. N.S. N.S. N.S. N.S. N.S.
Olfactory transduction N.S. N.S. N.S. N.S. 4.91E-02 N.S.
Oxidative phosphorylation N.S. N.S. N.S. N.S. N.S. N.S.
Parkinson’s disease N.S. N.S. N.S. N.S. N.S. N.S.
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Table S2. Cont.

KEGG pathway AD Age[AD] CD (P ≤ 0.01) Age[CD] (P ≤ 0.01) CD (P ≤ 0.05) Age[CD] (P ≤ 0.05)

Pathogenic E. coli infection N.S. N.S. N.S. N.S. N.S. N.S.
Phagosome N.S. 1.31E-02 N.S. N.S. N.S. N.S.
Proteasome N.S. N.S. N.S. N.S. N.S. N.S.
Pyrimidine metabolism N.S. N.S. N.S. N.S. N.S. N.S.
Retrograde endocannabinoid signaling N.S. N.S. N.S. N.S. N.S. N.S.
Ribosome N.S. N.S. N.S. N.S. N.S. N.S.
Synaptic vesicle cycle N.S. N.S. N.S. N.S. N.S. N.S.
Systemic lupus erythematosus N.S. 2.47E-05 N.S. N.S. N.S. N.S.
V. cholerae infection N.S. N.S. N.S. N.S. N.S. N.S.

In the case of aging, the pathways identified based on analyses of the Alzheimer’s disease (Age[AD]) dataset and the depression (Age[CD]) dataset are listed
separately. For the depression and aging–depression sets, pathways enriched with expression significance cutoffs of P ≤ 0.01 and P ≤ 0.05 are both shown.
Values shown are Holm–Bonferroni–corrected one-sided Fisher’s exact test P values, where the Holm–Bonferroni correction was applied to each dataset
separately. Only P values ≤0.05 are listed. N.S., not significant; NOD, nucleotide oligomerization domain.
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