
THE JOURNAL OF CHEMICAL PHYSICS 135, 065105 (2011)

Nucleated polymerization with secondary pathways. I. Time evolution
of the principal moments

Samuel I. A. Cohen,1 Michele Vendruscolo,1 Mark E. Welland,2 Christopher M. Dobson,1

Eugene M. Terentjev,3 and Tuomas P. J. Knowles1,a)

1Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
2Nanoscience Centre, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0FF, United Kingdom
3Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Received 10 October 2010; accepted 16 June 2011; published online 12 August 2011)

Self-assembly processes resulting in linear structures are often observed in molecular biology, and
include the formation of functional filaments such as actin and tubulin, as well as generally dys-
functional ones such as amyloid aggregates. Although the basic kinetic equations describing these
phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to
derive solutions to these equations except for special cases. The availability of general analytical
solutions provides a route for determining the rates of molecular level processes from the analysis
of macroscopic experimental measurements of the growth kinetics, in addition to the phenomeno-
logical parameters, such as lag times and maximal growth rates that are already obtainable from
standard fitting procedures. We describe here an analytical approach based on fixed-point analysis,
which provides self-consistent solutions for the growth of filamentous structures that can, in addi-
tion to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms
for generating new free ends acting as growth sites. Our results generalise the analytical expression
for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of
fragmenting filaments. We determine the corresponding growth laws in closed form and derive from
first principles a number of relationships which have been empirically established for the kinetics of
the self-assembly of amyloid fibrils. © 2011 American Institute of Physics. [doi:10.1063/1.3608916]

I. MOTIVATION AND HISTORICAL REMARKS

The characteristic aspects of filamentous growth pro-
cesses, which involve assembly of elementary units to the
ends of growing structures, have been investigated extensively
over the past 50 years, with the physical concepts of nucle-
ation and growth dating back a century further.1–7 Contribut-
ing to this interest in the theory of filamentous growth phe-
nomena is the realisation that such models have applications
in polymer chemistry8, 9 as well as close connections to bi-
ological phenomena such as the growth of biofilaments10–14

including actin and tubulin, proteins involved in cytoskeletal
structures, and the aberrant polymerisation of proteins associ-
ated with disease states such as sickle cell anemia,15 amyloid
disorders,16–24 and the prion conditions.25–29

Early investigations of filamentous growth10, 11, 30 fo-
cused on homogeneous nucleation followed by linear poly-
merization. For irreversible growth in the absence of
secondary nucleation pathways, in 1962 Oosawa presented
solutions to the kinetic equations which were very successful
in describing a variety of characteristics of the polymerisa-
tion of actin and tubulin. In this framework of classical nucle-
ated polymerisation, the mass concentration of polymer can
be written as a simple closed form expression:10, 11, 31–33

M(t) = m(0)
[
1 − sech2/nc

(√
nc/2 λt

)]
, (1)

a)Author to whom correspondence should be addressed. Electronic mail:
tpjk2@cam.ac.uk.

where λ = √
2knk+m(0)nc with kn the nucleation rate con-

stant, k+ the elongation rate constant, nc the critical nucleus
size, and m(0) is the initial concentration of elementary units
capable of polymerisation, hereafter referred to as monomers.
This functional form describes a sigmoidal curve which is de-
fined by the microscopic rate constants kn and k+. The aim
of the present paper is to generalise Eq. (1) to include frag-
menting of filaments and monomer-dependent secondary nu-
cleation pathways.

A sigmoidal rate profile is characteristic of a wide class
of in vitro protein assembly phenomena, including the growth
of actin and tubulin,10–14, 34 and also amyloid fibrils formed
by a variety of different proteins;16–18, 35 it reflects the greater
ease of aggregation of a monomer onto the ends of existing
aggregate structures compared to de novo formation of a new
aggregate from monomers alone through primary nucleation.
The overall reaction rate, therefore, accelerates as significant
numbers of aggregate structures are present in solution. Con-
versely, when much of the monomer population is incorpo-
rated into the aggregates, the reaction rate slows down due to
the decrease in the availability of free monomers, and the sig-
moidal profile reaches its plateau phase characteristic of the
end-point of the reaction.

Detailed studies of the polymerization of sickle
hemoglobin carried out in the pioneering work by Eaton,
Ferrone and coworkers in the 1970s and 1980s15, 36, 39, 40

revealed strikingly that the mass concentration of these
polymers in solution increased more rapidly than the
quadratic time dependence predicted by the Oosawa theory,
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Eq. (1), M(t) ∼ t2 for t → 0. These observations motivated
the formal extension of this model to include secondary
nucleation pathways36, 39, 40 which can contribute to the
increase in the number of polymers in addition to that pro-
duced by the straightforward homogeneous nucleation. In par-
ticular this seminal work established the role of monomer-
dependent secondary nucleation in the polymerization of
sickle hemoglobin. More recently, this process has also
been found to be active in amyloid growth.102 Furthermore,
monomer-independent secondary nucleation in the form of
filament fragmentation was identified in the polymerization of
actin37, 38 and has emerged as a key factor in the propagation
of yeast45–48 and mammalian prions26, 49–53 and the growth
of amyloid fibrils.35, 45, 46, 54, 55 Except for special cases, how-
ever, general analytical treatments analogous to Eq. (1) of
the classical nucleated growth problem in the presence of
fragmentation or secondary nucleation have been challeng-
ing to achieve. Much progress has instead been made with
numerical solutions37, 44, 56, 57 or perturbative treatments that
are highly accurate for early times in the reaction profile.36, 58

Here we derive analytical results for the full polymerisa-
tion timecourse analogous to Eq. (1) for the case when sec-
ondary nucleation pathways, in particular filament breakage,
are present. Building on our earlier work,59 we present a de-
tailed analysis of this growth problem over a three part se-
ries. In the first part, the general framework for obtaining
self-consistent solutions to the growth problem is derived. In
the second part, we discuss the accuracy of these solutions
and present higher order expressions which yield scaling be-
haviour in close agreement with exact numerical results. In
the final part we analyse the equilibrium behaviour of fila-
mentous systems in the limit of long time scales.

II. MASTER EQUATION AND PRINCIPAL MOMENTS

The general strategy for deriving analytical results to the
growth problem that generalises the Oosawa theory to include
secondary pathways follows that of the original treatment.10

The microscopic processes, as shown in Fig. 1, are described

through a master equation; the principal moments, which are
related to experimental observables, are obtained by summa-
tion of both sides of the master equation, resulting in a dif-
ferential equation system for the evolution of the moments.
These moment equations are non-linear and are not readily
integrable; to address this challenge, in Sec. III we obtain
self-consistent solutions through the use of linearized solu-
tions in an iterative fixed-point scheme.

The basic nucleation-elongation-fragmentation kinetics
of an ensemble of polymers is governed by the master
equation10, 51, 54, 56, 60–63 for the time evolution of the concen-
trations f (t, j ) of chains of length j :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f (t, j )

∂t
=2m(t)k+f (t, j − 1) − 2m(t)k+f (t, j )

+ 2kofff (t, j + 1) − 2kofff (t, j )

− k−(j − 1)f (t, j ) + 2k−
∞∑

i=j+1
f (t, i)

+ k2m(t)n2

∞∑
i=nc

if (t, i)δj,n2 + knm(t)ncδj,nc

dm(t)

dt
= − d

dt

⎡
⎣ ∞∑

j=nc

j · f (t, j )

⎤
⎦ ,

(2)

where the time evolution of the free monomer concentra-
tion, m(t), results from accounting for the monomer con-
sumed through growth. The part of the equation pertaining
to elongation (Fig. 1(b)), ∂

elong
t f (t, j ) = 2m(t)k+f (t, j − 1)

− 2m(t)k+f (t, j ) is that of Oosawa10, 11 except for the fac-
tor of 2 which denotes growth from both ends.64, 107–110 The
following two terms describe the possibility of depolymerisa-
tion from either end (Fig. 1(c)) to yield a polymer consist-
ing of one less monomer.10, 11 The breakage related term37

∂
frag
t f (t, j ) = 2k−

∑∞
i=j+1 f (t, i) is responsible for the cre-

ation of smaller fragments when a longer filament breaks
(Fig. 1(d)). Since in this formulation breakage operates also
for the bonds connecting the terminal monomers to the fibrils,
it contributes to the effective depolymerisation rate which is
given by koff + k−. We note that in our treatment we neglect
the association of filament fragments (the inverse process of

Fragmentation

Fibril

Soluble
form

ElongationPrimary
nucleation

Monomer-
dependent
secondary
nucleation

(e)(d)(c)(b)(a)

Dissociation

FIG. 1. Schema illustrating the microscopic processes of polymerisation with secondary pathways treated in this paper. Primary nucleation (a) leads to the
creation of a polymer of length nc from soluble monomer. Filaments grow linearly (b) from both ends in a reversible manner with monomers also able to
dissociate from the ends (c). The secondary pathways (d) and (e) lead to the creation of new fibril ends from pre-existing polymers; fragmentation (d) is
discussed in the first part of this paper, and monomer-dependent secondary nucleation (e) is discussed in the second part.
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FIG. 2. Growth kinetics in the early time limit with different initial seed concentrations (from left to right): M(0) = 6.25 × 10−7, M(0) = 1.25 × 10−7 M,
M(0) = 2.5 × 10−8 M, M(0) = 5 × 10−9. The other parameters are: koff = 0, P (0) = M(0)/5000, k+ = 5 × 104 M−1 s−1, koff = 0, k− = 10−9 s−1 kn = 0,
mtot = 5 × 10−5 M. (a) shows the zeroth moment, P (t), of the distribution f (t, j ) given by Eq. (22) and (b) shows the first moment, M(t), from Eq. (23). The
dashed lines in (b) show the initial rate dM/dt |t=0 = 2k+mtotP |t=0.

breakage) in front of the other contributions; this process is
important for simple polymers such as poly(methylstyrene)
and for micelles,65–67 and has been proposed for the self-
assembly of glutamate dehydrogenase.68 For many protein
polymers, including amyloid fibrils, detailed structural con-
straints are likely to prevent fusion of filaments unless they
align both spatially and in terms of their respective ori-
entations. It is observed experimentally that fragmentation
dominates over association, thereby leading to a net increase
in filament ends captured by a filament breakage rate.45, 46

Lateral association of filaments, however, has been shown to
occur,69, 70 and can result in a lower effective fragmentation
rate. The second breakage related term −k−(j − 1)f (t, j )
accounts for a decrease in the concentration of filaments of
length j through the breakage of one of the j − 1 inter-
nal bonds.51, 54, 56, 60–63 The condition f (t, j ) = 0 is imposed
for all j < nc, where nc ≥ 2 is the critical nucleus size for
the filament growth; that is, all chains shorter than nc are
unstable.73, 111 The concentration of monomers in the system
is m(t), and the last term in Eq. (2) represents the spontaneous
formation of a growth nucleus of size j = nc. The presence
of a surface from pre-existing filaments can modify the nu-
cleation barrier to forming aggregates from soluble monomer
and lead to the type of secondary nucleation process identified
by Eaton and Ferrone;39 this process is taken into account in
the penultimate term in Eq. (2). The rate of this monomer-
dependent secondary nucleation process15, 39, 41, 58 is taken to
be proportional to the total polymer mass concentration, and
is governed by a rate constant k2. For generality, the critical
nucleus size for this process (Fig. 1(e)), n2, can be different to
that of the primary nucleation process (Fig. 1(a)).

Analytical approaches to tackle Eq. (2) can be directed
towards the master equation itself, an approach that is dis-
cussed in Ref. 71 (Sec. VII), or the analysis of the prin-
cipal moments of the distribution f (t, j ). The first two
moments, the filament number P (t) and mass M(t) concentra-
tions, constitute the most important experimentally accessible
observables in such a filamentous system.10, 14, 39, 58, 72 Higher

order moments contain information on the shape of the fil-
ament length distribution. We focus on the polymer number
and mass concentrations in Sec. II A and outline a strategy
to access information on the higher moments in Sec. II B. In
order to recover the full length distribution exactly, all higher
moments are required. We show, however, in this paper and
the second part of this series71 that already the analysis of the
first three moments provides a good approximation to the full
distribution.

A. Closed equation system for polymer number
and mass concentrations

The kinetic equations for the first two moments, the num-
ber and mass concentrations

P (t) =
∑

j

f (t, j ) M(t) =
∑

j

j · f (t, j ) (3)

can be found by taking the sum over j on both sides
of Eq. (2).10, 14 For P (t) this results in10, 14, 39, 51, 62, 74

dP

dt
= k−[M(t) − (2nc − 1)P (t)]

+ k2m(t)n2M(t) + knm(t)nc , (4)

where the contribution ∼kofff (t, nc) to the growth kinetics
due to the destruction of fibrils through depolymerisation, koff,
has been neglected36 in front of the creation of new seeds
through primary and secondary nucleation.

The equation governing the dynamics of M(t) can be
found similarly and reads:10, 14, 39, 51, 62, 74

dM

dt
= 2[m(t)k+ − koff − k−nc(nc − 1)/2]P (t)

+ n2k2m(t)n2M(t) + ncknm(t)nc . (5)

We note that the last two terms in Eq. (5) are typically not sig-
nificant in front of the depletion of monomers through their
incorporation into aggregates as a result of filament elonga-
tion.
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In summary, much of the dynamics of the system can be
described in terms of the two principal moments, as the cou-
pled non-linear differential equations (4) and (5). These equa-
tions make intuitive sense, e.g., the number of polymers at a
given time, P (t) in Eq. (4), can increase if out of M − P total
bonds, the chains break at a location corresponding to more
than (nc − 1) bonds from each end, thus accounting for the
[M − (2nc − 1)P ] factor. Similarly, the factor nc(nc − 1)/2
in the second moment equation (5) accounts for the fact that
j monomers are created if a fibril fractures at an end closer
than the critical nucleus size nc, and therefore the total rate of
monomers liberated through this mechanism from the ends of
fibrils is 2k−

∑nc−1
j=1 jP .

Many similar moment equations with analogous forms
have been put forward in the context of different growth
processes.10, 39, 45, 54, 56, 58, 60–63, 75 The history of moment equa-
tions analogous to Eq. (5), which represents the starting point
of our analysis in this section, can be traced back at least to
the textbook by Oosawa10 in 1975, where a similar descrip-
tion appears as Eqs. (45), (46), and (58). The sigmoidal so-
lution to the growth kinetics can be derived readily when k−
and k2 are set to zero.10 For the general case, which includes
secondary nucleation, however, these equations are not read-
ily integrable, but we show in the following sections that self-
consistent solutions to this kinetic problem can be constructed
in closed form.

B. Equation systems for higher moments

The equations for the time evolution of the higher mo-
ments can be obtained using a similar approach to that used
for the first two moments P (t) and M(t). For these higher
moments, however, each equation is coupled to that of a yet
higher moment. A closed equation system for all moments ≤n

can be obtained by neglecting the contribution from the cen-
tral moment μn+1 = ∑∞

j=nc
[j − M(t)/P (t)]n+1f (t, j )/P (t)

to the coupled system. This procedure is illustrated here for
the second, Q(t), and third, R(t), moments:

Q(t) =
∑

j

j 2 · f (t, j ) R(t) =
∑

j

j 3 · f (t, j ). (6)

We note that whilst the zeroth and first moments provide in-
formation on the mean fibril length, μ = MP −1, these higher
moments are related to higher central moments, the vari-
ance, σ 2 = QP −1 − M2P −2, and the skewness, γ1 = (RP −1

− 3MQP −2 + 2M3P −3)/σ 3, of the fibril length distribution.
We sketch out here the case for a fragmenting filament

system where the contribution from the depolymerisation rate
is negligible in front of that from the elongation rate. The time
evolution of the second moment Q(t) can be obtained from
the master equation as:

dQ

dt
=

∞∑
j=nc

2m(t)k+j 2[f (t, j − 1) − f (t, j )]

−
∞∑

j=nc

k−j 2(j − 1)f (t, j ) + 2k−
∞∑

j=nc

j 2
∞∑

i=j+1

f (t, i)

+
∞∑

j=nc

j 2knm
ncδj,nc

. (7)

Denoting the four sums as A1 . . . A4 we note that
the presence of the delta function in the fourth sum
results in A4 = n2

cknm(t)nc . The first sum simplifies
to

∑
j j 2[f (t, j − 1) − f (t, j )] = ∑

j (2j + 1)f (t, j ), and
therefore A1 = 2m(t)k+[2M(t) + P (t)]. Exchanging the
order of summation in A3 yields

A4 = 2k−
∞∑

j=nc

j 2
∞∑

i=j+1

f (t, i) = 2k−
∞∑

i=nc+1

f (t, i)
i−1∑
j=nc

j 2

= k−
3

∞∑
i=nc+1

f (t, i)(i−nc)
(
1−3i+2i2−3nc+2inc+2n2

c

)
.

(8)

So that finally after reshuffling indices:

dQ

dt
= 2m(t)k+[2M(t) + P (t)]

+1

3
k−
[
M(t)+P (t)

(
3n2

c−2n3
c−nc

)−R(t)
]+n2

cknm(t)nc .

(9)

This equation is not closed since it depends on the third mo-
ment R(t), the time evolution of which in turn depends on
a higher moment still. In order to obtain a closed equation
system, we neglect the contribution to Q(t) originating from
the skewness of the filament length distribution. To this effect,
we use γ1 = (RP −1 − 3MQP−2 + 2M3P −3)/σ 3 = 0 to sub-
stitute for the third moment in terms of the lower moments:

R(t) ≈ 3
M(t)Q(t)

P (t)
− 2

M(t)3

P (t)2
(10)

Using this expression in Eq. (9) yields

dQ

dt
= 2m(t)k+[2M(t) + P (t)]

+1

3
k−

[
M(t) + P (t)

(
3n2

c − 2n3
c − nc

)

− 3
M(t)Q(t)

P (t)
+ 2

M(t)3

P (t)2

]
+ n2

cknm(t)nc (11)

which, together with Eqs. (4) and (5), forms a closed system
of equations.

III. SELF-CONSISTENT SOLUTIONS FOR FRANGIBLE
FILAMENTS

We focus in the first part of this paper on systems
where the dominant secondary process is filament fragmen-
tation (Fig. 1(d)); monomer-dependent secondary nucleation
(Fig. 1(e)) is considered in Sec. IX. The underlying idea for
solving Eqs. (4) and (5) comes from the use of fixed-point it-
erations. This approach allows self-consistent solutions with
increasing accuracy to be derived in an iterative process. In or-
der to transform the differential equation system into a fixed-
point problem, we integrate both sides of Eqs. (4) and (5) with
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k2 = 0 to yield(
P (t)

M(t)

)
=
⎛
⎝k−

∫ t

0 e−(2nc−1)k−(t−τ )M(τ )dτ +P (0)e−(2nc−1)k−t

M(∞)
(

1 −
(

1 − M(0)
M(∞)

)
e−2k+

∫ t

0 P (τ )dτ
)

⎞
⎠,

(12)

where M(∞) = [2k+mtot − 2koff − nc(nc − 1)k−]/(2k+) and
we have neglected terms O(kn) describing primary nucle-
ation. For M(t) this approximation is accurate for all times,
whereas for P (t) it becomes increasingly accurate as the rel-
ative importance of primary nucleation to fragmentation in
producing new fibrils decreases as the monomer is depleted.
We use this operator to extend the validity of solutions which
are exact in the early time limit, and in particular contain ex-
plicitly the contribution from primary nucleation proportional
to kn.

Let A denote the operator on the right-hand side of
Eq. (12), such that Eq. (12) reads 	x(t) = A[	x(t)] for 	x(t)
= [P (t),M(t)]. By construction, the fixed points 	x∗ of A:

A[	x∗(t)] = 	x∗(t) (13)

are precisely the solutions to Eq. (12) for given initial con-
ditions. According to the contraction mapping principle76, 77

Eq. (13) can be solved iteratively:

	x∗(t) = lim
N→∞

AN [	x0(t)] (14)

for a starting value 	x0(t) sufficiently close to 	x∗(t). The iter-
ation therefore requires a good choice of starting value 	x0(t);
here the early stage solution to Eq. (4) is used. Even for small
N in Eq. (14), the use of starting values 	x0(t) that are exact
for early times, in combination with the operator A that fixes
exactly the late time behaviour, ensures that the result will in-
terpolate between these exact limits and that the characteristic
sigmoidal growth kinetics will be recovered. In particular, this
approach restores, even in a single iteration, mass conserva-
tion to the linearized solutions.

IV. SOLUTIONS TO THE LINEARIZED PROBLEM

A. Number and mass concentration

As the starting value in the fixed-point scheme Eq. (13),
we will use the well-known linear solutions39, 58, 62, 63, 74 that
emerge when the concentration of monomer is taken to be
constant in time. This situation emerges either when the
protein concentration is kept constant through the action of
other mechanisms such as protein synthesis, or in the early
time limit when m(t) = mtot − M(t) ≈ mtot − M(0) = m(0).
In order to make explicit the approximations that will subse-
quently be taken, we write out these solutions in full below.
In this limit, Eq. (4) becomes a linear differential equation
system:

dP0(t)

dt
= k−[M0(t) − (2nc − 1)P0(t)] + knm(0)nc (15)

dM0(t)

dt
= 2[m(0)k+ − koff − k−nc(nc − 1)/2]P0(t)

+ ncknm(0)nc (16)

with the solution

P0(t) = C1e
κ1t + C2e

κ2t − η2

ξ2
, (17)

where the constants are combinations of the rate con-
stants: ξ1 = 2nc − 1, η1 = knm(0)nc , ξ2 = 2m(0)k+ − 2koff

− k−nc(nc − 1), and η2 = ncknm(0)nc . The kinetic constants
κ1,2 are the roots of a quadratic equation:

κ1,2 = 1

2

(
−k−ξ1 ±

√
k2−ξ 2

1 + 4k−ξ2

)
(18)

and the first moment M0(t) can then be solved to yield

M0(t) = C1ξ2

κ1
eκ1t + C2ξ2

κ2
eκ2t − η1

k−
− ξ1η2

ξ2
. (19)

The coefficients C1,2 are defined by the initial conditions
M(0) and P (0):

C1,2 = 1

1− κ2,1

κ1,2

(
η2

ξ2
−η1κ2,1

k−ξ2
−ξ1η2κ2,1

ξ 2
2

+P (0) − M(0)
κ2,1

ξ2

)

(20)

For most cases of practical interest m(0)k+ � k−; this
condition guarantees the existence of a polymer population.
The depolymerisation rate koff is in general also very small
compared to k+m(0)36, 58 although it can become comparable
to this later quantity without fully compromising the existence
of growing fibrils. Therefore we set ξ2 ≈ 2[m(0)k+ − koff]
and obtain

κ = ±κ1,2 ≈ ±√
2[m(0)k+ − koff]k−, (21)

P0(t) = C1e
κt + C2e

−κt − ncknm(0)nc

2[m(0)k+ − koff]
, (22)

M0(t) = 2[m(0)k+ − koff]C1

κ
eκt − 2[m(0)k+ − koff]C2

κ
e−κt

−knm(0)nc

k−
, (23)

with the constants C1 and C2 becoming

C1,2 = P (0)

2
± κM(0)

4[m(0)k+ − koff]

+ ncknm(0)nc

4[m(0)k+ − koff]
± κknm(0)nc

4[m(0)k+ − koff]k−

≈ 1

2

(
P (0)± κM(0)

2[m(0)k+−koff]
± κknm(0)nc

2[m(0)k+−koff]k−

)
(24)

whereby the approximation in Eq. (24) originates from
κ � k−, which is equivalent to m(0)k+ � k−. The solu-
tions to the linearized problem for the first two moments,
Eqs. (22) and (23), are shown in Fig. 2.

We note that in general the first term in the definition of
C1,2 is larger than the second one; indeed, equality is only
reached when the condition P (0)κ = M(0)k− is satisfied.
This condition cannot be met for stable seed structures since
M(0)k− gives the increase in the number of polymers simply
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through the fragmentation of the seed structures and P (0)κ
is the initial slope of the exponential increase P ∼ P (0)eκt in
the number of polymers from the growth process. Hence, if
the condition P (0)κ � M(0)k− holds, the seed structures are
not stable on the time scale of the growth process.

B. Higher order moments

We can also derive solutions to the linearised problem
that describes the time evolution of the higher moments,
Eq. (6). For simplicity, we consider here the case of a system
which is initially in purely monomeric form, Q(0) = M(0)
= P (0) = 0. The linearised solutions for M(t) and P (t),
Eqs. (22) and (23), then read:

P0(t) = κC+
2k+

(eκt − e−κt ) = κC+
k+

sinh(κt), (25)

M0(t) = mtotC+(eκt + e−κt − 2) = 2mtotC+[cosh(κt) − 1].

(26)

After substitution of the linearised solutions for M(t) and
P (t) into Eq. (11) it is possible to solve for the second moment
using the Ansatz:

Q0(t) =
∞∑

i=−∞

(ai + bit)eiκt

(1 + eκt )2
(27)

with constants ai and bi . Substitution of the Ansatz into
Eq. (11) yields the exact solution, which is given in full in
the Appendix. The exact result may be simplified by keeping
only leading order terms under the inequality k+mtot � k−,
implying also κ � k−59, to give

Q0(t) ≈ 64C+k+m2
tot

3κ
cosech(κt)sinh

(κt

2

)4
. (28)

Comparison with Eqs. (25) and (26) further reveals that there
is a simple connection between the three first moments in the
linear regime:

Q0(t) = 4

3

M0(t)2

P0(t)
. (29)

This result is valid for times t � (k+mtot)−1, corresponding
to all but extremely early times in the polymerisation reac-
tion, which occurs over a time-scale κ−1 � (k+mtot)−1. The
accuracy of the result Eq. (28) compared to the full numerical
result which accounts for the third central moment is shown
in Fig. 3.

V. SOLUTION TO THE NON-LINEAR
MOMENT EQUATIONS

The full time course of the polymerisation reaction can
now be solved iteratively from Eq. (14) by applying the oper-
ator A to the early time solution in Eqs. (22) and (23):(

PN (t)

MN (t)

)
= AN

[(
P0(t)

M0(t)

)]
(30)
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FIG. 3. Time evolution of the second moment Q(t) of the length distribu-
tion in the early time limit for differing primary nucleation rates (from left
to right): kn = 2 × 10−3 M−1 s−1, kn = 2 × 10−4 M−1 s−1, kn = 2 × 10−5

M−1 s−1. The other parameters are: k+ = 5 × 104 M−1 s−1, koff = 0, k−
= 2 × 10−8 s−1, mtot = 5 × 10−6 M, nc = 2, M(0) = P (0) = 0. The dashed
lines show the analytical result Eq. (28) derived by neglecting the third central
moment. The solid lines show the numerical result from the master equation,
Eq. (2), which accounts for all central moments.

The first order expression N = 1 for M(t) follows then from
substituting Eq. (22) into (12):

M(t) = M(∞)

[
1 −

(
1 − M(0)

M(∞)

)
exp

(
−2k+

∫ t

0
C1e

κτ

+C2e
−κτ− ncknm(0)nc

2[m(0)k+−koff]
dτ

)]
. (31)

For most cases of practical interest, M(0) � M(∞) allowing
the approximation 1 − M(0)/M(∞) ≈ exp(−M(0)/M(∞)).
On integration, Eq. (31) then yields

M(t) = M(∞)

[
1 − exp

(
− C+eκt + C−e−κt

+ k+ncknm(0)nc

m(0)k+ − koff
t + D

)]
. (32)

Generally the breakage rate is small in the sense that for
the duration of the experiment, t < k−1

− (i.e. most individual
bonds in the system do not fracture over the time course of
the reaction) and therefore Eq. (32) can be simplified to

M(t) = M(∞)[1 − exp
(−C+eκt + C−e−κt + D

)
] (33)

with C± = C1,22k+/κ and D = λ2/κ2 − M(0)/M(∞)
+ k+M(0)/[m(0)k+ − koff]. Using the approximation in
Eq. (34) corresponding to the case k− � κ , similarly to
Eq. (24), yields finally

C± = k+P (0)

κ
± M(0)k+

2[m(0)k+ − koff]
± λ2

2κ2
, (34)

where λ = √
2knk+m(0)nc is the effective rate constant de-

rived by Oosawa10, 11 for nucleated polymerisation without
secondary pathways, Eq. (1). The expression Eq. (33) de-
scribes in closed form the time evolution of systems charac-
terised by nucleated polymerisation and fragmentation.

Downloaded 29 Aug 2011 to 131.111.61.172. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



065105-7 Polymerization with secondary pathways J. Chem. Phys. 135, 065105 (2011)

0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

0 5 10 15 20 25 30
Time (h)

P
ol

ym
er

 m
as

s 
co

nc
en

tr
at

io
n 

(M
)

P
ol

ym
er

 m
as

s 
co

nc
en

tr
at

io
n 

(M
)

Time (h)

(a) (b)

FIG. 4. Kinetics of fibrillar growth. Growth through nucleation, elongation, and fragmentation leads to sigmoidal kinetic curves for the mass concentration of
fibrils as a function of time. Solid line: first moment M(t) computed from the numerical solution of the master equation Eq. (2). Dashed curve: analytical solution
given in Eq. (33). Dotted curve: early time limit from Eq. (23). The parameters are: k+ = 5 × 104 M−1 s−1, koff = 0, k− = 2 × 10−8 s−1, mtot = 5 × 10−6 M,
kn = 2 × 10−5 M−1 s−1, nc = 2, M(0) = P (0) = 0. (b) shows the maximal growth rate rmax, polymer concentration corresponding to the maximal growth rate
Mmax, time of maximal growth rate tmax, and lag time τlag.

The shape described by this function is somewhat
similar to that of the logistic function M(t) = mtot/[1
+ e−mtotktm(0)/M(0)] which emerges as a solution of sim-
ple autocatalytic reactions: m → M , dM(t)/dt = kM(t)m(t)
with rate constant k. Logistic functions and generalised lo-
gistic functions (Richards’ functions) have been successfully
used to fit78–87 the growth kinetics of protein aggregation as
they describe sigmoidal curves. The parameters in the logis-
tic function and in related sigmoidal curves do not, however,
in general have an interpretation as microscopic rate con-
stants when applied to the more complex case of filamentous
growth, as the logistic modelling does not consider explicitly
the nature of the linear growth process as a polymerisation
rather than a simple autocatalytical reaction.

VI. ANALYSIS OF LIMITING CASES

In this section a range of limiting cases of Eq. (33) that
are of particular practical interest are highlighted. Neglecting
terms that are not significant in specific limits allows in many
cases more compact forms to be given for the integrated rate
laws.

A. Early time limit

For early times when t � κ−1 and M(t)/M(∞) � 1 we
can expand the outer exponential in Eq. (33) to yield:

M(t) ≈ M(∞)C+eκt − M(∞)C−e−κt − DM(∞), (35)

≈ m(0)[C+eκt − C−e−κt ] − knm(0)nc

k−
= M0(t). (36)

This functional form recovers the exponential behaviour
characteristic of situations with constant monomer
concentration.58

B. Long time limit

The expression Eq. (33) can be simplified for long times
t � κ−1, as the argument of the first exponential will be dom-
inated by the increasing exponential term eκt in the sum, and
therefore in this regime the linear, constant, and exponentially
decaying terms can be neglected yielding

M(t) = M(∞)[1 − exp(−C+eκt )] t � κ−1, (37)

a form which has the advantage of possessing an exact
closed form integral function, contrary to the full expression
Eq. (33), a fact which can be exploited in deriving higher or-
der results.71

C. Irreversible filament growth

In the absence of depolymerisation, koff = 0, and for
cases of small or no initial seed material, m(0) ≈ mtot,
Eq. (33) reduces to

M(t) = mtot

[
1 − exp

(
−C+eκt + C−e−κt + λ2

κ2

)]
,

(38)
where

C± ≈ k+P (0)

κ
± M(0)

2mtot
± λ2

2κ2
(39)

since M(∞) ≈ m(0) ≈ mtot and so D ≈ λ2/κ2. The effect of
varying the depolymerisation rate is shown in Fig. 5.

Interestingly, we note that in the case of irreversible
growth, the time evolution of the polymer mass depends on
three combinations of the kinetic parameters: k+, λ, and κ ,
whereas in the case of irreversible growth without secondary
pathways, Eq. (1), the kinetics depends primarily on k+ and
λ.88
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FIG. 5. Effect of the depolymerisation rate. Sigmoidal reaction profiles
for increasing depolymerisation rates are shown. Depolymerisation rates
are given as a percentage of k+mtot. In most cases of practical interest
(Refs. 36 and 58), koff � k+mtot. Solid lines: first moment M(t) computed
from the numerical solution of the master equation Eq. (2). Dashed lines:
analytical solution given in Eq. (33). The parameters are: k+ = 5 × 104

M−1 s−1, k− = 2 × 10−8 s−1, mtot = 1 × 10−6 M, kn = 5 × 10−5 M−1 s−1,
nc = 2, M(0) = 1 × 10−8 M, P (0) = M(0)/5000.

D. Absence of seed material

When M(0) = P (0) = 0, implying m(0) = mtot, the dou-
ble angle formulae result in:

M(t) = M(∞)

[
1 − exp

(
−4C+ sinh2

(
κt

2

))]
(40)

with

C+ = λ2

2κ2
(41)

where only one constant C+ is required as in this limit C+
= −C−. In this case, the evolution of the polymer mass de-
pends only upon two combinations of the rate constants,
κ and λ. In comparison, the Oosawa theory for filament
growth without secondary pathways, Eq. (1), shows that in
the absence of seeds the kinetics then depend primarily only
upon λ.

E. Infrangible filaments

It is interesting to consider the limit of Eq. (32) where
nucleation is more important in producing new ends than
breakage, k− → 0; in this situation, the rate of production
of new fibrils is independent of the quantity of existing fib-
rils, in contrast to the case where fragmentation is active. The
limit k− → 0 implies κ → 0, and therefore the inner expo-
nentials can be expanded in series. The constants C± diverge
only quadratically with κ and therefore terms in the expansion
O(κ3) and higher will tend to zero with k− → 0 resulting in

M(t) = M(∞)

{
1 − exp

(
− [C+ − C−] − κt[C+ + C−]

−κ2t2

2
[C+ − C−] + D + k+ncknm(0)nc

m(0)k+ − koff
t

)}
. (42)

Substituting the expressions for C± = C1,22k+/κ from
Eq. (24) and setting also the depolymerisation rate to zero as
in Refs. 10, 11, Eq. (42) yields

M(t) = mtot

[
1− exp

(
− k+knm

nc

tott
2−2k+P (0)t−M(0)

mtot

)]
.

(43)

It is interesting to note that Eq. (43) is essentially equivalent
to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation,
originally derived for crystallisation:6, 7

M(t) = mtot
[
1 − exp(−Km

nc

tott
d+1)

]
(44)

if one considers one-dimension, d = 1, and if we keep the
leading order t2 time dependency and identify k+kn with K . In
one dimension the JMAK equation is analogous to the nucle-
ated growth of polymers,89, 90 and therefore this equivalence
is to be expected as we set k− = 0.

The structure of the solution for early times can be anal-
ysed by expanding the remaining exponential function for
small values of the exponent to yield:

M0(t) = M(0) + k+knm
nc+1
tot t2 + 2k+mtotP (0)t + ncknm

nc

tott.

(45)

Therefore, in the absence of breakage, when nucleation is the
dominant process contributing to the creation of new ends,
fibril growth tends to a polynomial form in time, and we re-
cover the ∼ t2 dependence of the Oosawa solution Eq. (1).
This limit is illustrated in Fig. 6.

In addition to the direct interaction of nc monomers to
form a critical nucleus,10, 58, 91 a variety of other schemes have
been proposed in the literature for the primary nucleation term
that lead to a zeroth and first moment in the form of a poly-
nomial relationship,15, 32, 58, 72, 92–100 including pre-equilibrium
and lattice-based models. For example, nucleation could oc-
cur via the rapid equilibrium of sub-critically sized small
oligomers f (t, j ) + m ↔ f (t, j + 1) with a single equilib-
rium constant K to form oligomers up to a critical size n∗.
Upon monomer addition, such an oligomer transforms into an
aggregate capable of elongating from j = nc to j = ∞ with
a rate k+, and this process can be captured with an overall
nucleation rate ∂nucl

t P (t) = 2k+m(K/c−�−)n∗−1mn∗ ∼ mn∗+1,
where c−�− is the standard concentration 1M.

VII. POLYMER NUMBER CONCENTRATION

In order to evaluate the time evolution of the number of
polymers P (t), the second component of A(M0, P0) is re-
quired. To this effect the fixed point iteration Eq. (12) is car-
ried out up to second order; this procedure effectively leads
to substituting the result in Eq. (33) (first order) as a sub-
expression in Eq. (12). Rearranging the terms and neglect-
ing the linear and inverse exponential terms in front of the
growing exponential yields

P (t) = M(∞)k−e−(2nc−1)k−t

{
P (0)

k−M(∞)
+ e(2nc−1)k−t − 1

(2nc − 1)k−

−
∫ t

0
exp(−C+eκt )dτ

}
(46)
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FIG. 6. Low breakage rate limit, k− → 0. (a) shows Eq. (33) evaluated for successively smaller breakage rates k− = 10−7 s−1, k− = 10−8 s−1, k−
= 10−9 s−1, k− = 10−10 s−1. The other parameters are k+ = 5 × 104 M−1 s−1, koff = 0, mtot = 50 × 10−6 M, kn = 10−6 M−1 s−1, M(0) = P (0) = 0.
(b) shows an expanded portion of the t → 0 limit showing the progressive transition from exponential to polynomial growth (red line, shows Eq. (45)) as a
function of time when nucleation takes over from breakage as the most important source of new fibril ends.

and now the integral has a closed form expression in terms of
the exponential integral function Ei(t) = − ∫ ∞

−t
e−s/sds:

P (t) = k−M(∞)e−(2nc−1)k−t

[
P (0)

k−M(∞)
+ e(2nc−1)k−t − 1

(2nc − 1)k−

− 1

κ
Ei(−C+eκt ) + 1

κ
Ei(−C+)

]
(47)

which is exact for t = 0 and in the long time limit t � κ−1.

VIII. ANALYSIS OF THE CENTRAL MOMENTS

A. Mean filament length

The mean length, μ(t), of the filament population is given
by the ratio of the two first raw moments, μ(t) = M(t)/P (t).

At early times in the growth reaction, when the monomer con-
centration is approximately constant, this expression is given
by dividing Eq. (23) by Eq. (22), which in the absence of ini-
tial seed material takes the form of a hyperbolic tangent:

μ0(t) = 2[k+m(0) − koff]

κ
tanh

(
κt

2

)
. (48)

For long times, both of these forms, Eq. (23)/Eq. (22) and
Eq. (48), approach the limit:

lim
t→∞ μ0(t) = 2[k+m(0) − koff]

κ
(49)

and so, whilst in a system where the monomer concentration
is held constant, the polymer number and polymer mass con-
centrations increase exponentially for large times, their ratio
tends to a constant.
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FIG. 7. Effect of elongation rate and breakage rate on the growth kinetics in the absence of nucleation. In (a) the elongation rate k+ is varied, from left to right:
k+ = 7.3 × 105 M−1 s−1, k+ = 2.9 × 105 M−1 s−1, k+ = 1.2 × 105 M−1 s−1, k+ = 4.7 × 104 M−1 s−1, k+ = 1.9 × 104 M−1 s−1, and k+ = 7.5 × 103 M−1

s−1 and the other parameters are koff = 0, kn = 0, k− = 10−8 s−1, mtot = 50 μM, M(0) = 1 nM and P (0) = M(0)/1000. In (b) the breakage rate is varied
from left to right: k− = 6.4 × 10−8 s−1, k− = 3.2 × 10−8 s−1, k− = 1.6 × 10−8 s−1, k− = 8.0 × 10−9 s−1, k− = 4.0 × 10−9 s−1, and k− = 2.0 × 10−9 s−1

and the other parameters are: koff = 0, kn = 0, k+ = 1 × 104 M−1 s−1, mtot = 50 μM, M(0) = 100 nM and P (0) = M(0)/1000.
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FIG. 8. Effect of monomer concentration on the growth kinetics in the absence of nucleation. (a) Polymer mass concentration M(t) Eq. (33) as a function
of time for different total monomer concentrations, from left to right: mtot = 20 μM, mtot = 40 μM, mtot = 80 μM, mtot = 160 μM, mtot = 320 μM, and
mtot = 640 μM. The values used for the other parameters are: koff = 0, kn = 0, k+ = 2 × 104 s−1 M−1, k− = 10−9 s−1, M(0) = 100 nM, P (0) = M(0)/1000.
(b) shows the normalised polymer mass fractions M(t)/mtot as a function of time, for the same monomer concentrations as in (a).

At later times, as the monomer is depleted, the full non-
linear solutions for M(t), Eq. (33), and P (t), Eq. (47), show
that the length decreases due to fragmentation dominating
over elongation. After the growth phase, which occurs over
a timescale of order 1/κ , the polymer mass remains approx-
imately constant whereas the polymer number continues to
increase over a timescale of 1/k−, as shown in Fig. 9, hence
leading to a decrease in the average filament length. This func-
tional form is illustrated in Fig. 10(a). The average length
of fibrils formed evolves through two phases: initially fib-
rils elongate and the average length increases and reaches a
maximum given approximately by the limit of the linearized
solution, Eq. (49); subsequently, as the available monomer is
depleted, fragmentation of the formed fibrils results in a re-
duction in their mean length.
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FIG. 9. Polymer number concentration. The time evolution of the polymer
number concentration P (red) from Eq. (47) and mass concentration M (blue)
from Fig. 4 are shown for the same parameter values as in Fig. 4. The solid
lines show the numerical results, the dashed lines are the analytical solutions
and the dotted lines are early time limits from Eqs. (22) and (23).

B. Width of the filament length distribution

The variance of the filament population, σ 2(t), is given
in terms of the first three raw moments, σ 2(t) = Q(t)/P (t)
− μ(t)2. At early times in the growth reaction, when the
monomer concentration is approximately constant, calculat-
ing the standard deviation of the distribution using Eqs. (25),
(26), and (28) yields the compact result:

σ (t) = 1√
3
μ(t). (50)

This result shows that for a system of fragmenting filaments
growing in constant monomer concentration, the filament
length distribution evolves such that the ratio of the mean fil-
ament length to the standard deviation of the distribution of
filament lengths is constant.

As the monomer becomes depleted at the end of the re-
action, the filament population shifts towards shorter lengths
under the action of fragmentation; this process leads to the
decrease of both the mean filament length and the standard
deviation of the filament length distribution. The form of this
decrease is closely analogous for both central moments; an
observation that can be verified also in the limit:

lim
t→∞

σ (t)

μ(t)
= 1

2
√

3

√√√√ 1 − 1
n2

c(
1 − 1

2nc

)3

= 1

2
√

3

(
1 + 3

4nc

+ O
(
n−2

c

))
. (51)

In this limit for large times, therefore, the ratio of the standard
deviation to the mean filament length differs by less than a
factor of two relative to the ratio at early times, with the two
limits being closer for small nucleus sizes. The ratio of the
mean length and standard deviation remains a number of the
order unity over the whole timecourse of the reaction; this fact
can be used to evaluate the width of the distribution during
late times as shown in Fig. 10(b).
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FIG. 10. Time evolution of the central moments of the filament length distribution. (a) shows the mean filament length computed numerically (solid black
line) and a comparison to the early time linear solution (dotted blue line), given by M0(t)/P0(t) from Eqs. (23) and Eq. (22), and the full closed-form solution
(dashed blue line), given by M(t)/P (t) from Eqs. (33) and (47). The standard deviation of the length distribution is shown in (b). The black line is the result
from evaluating the standard deviation from a numerical solution to the master equation Eq. (2), the blue dotted line shows the linear solution valid for early
times Eq. (50) and the dashed line shows the approximation σ (t) ∼ μ(t) valid for late times Eq. (51). The kinetic parameters are the same as for Fig. 4.

IX. MONOMER DEPENDENT SECONDARY
NUCLEATION

We now illustrate the wider applicability of the fixed-
point scheme to growth phenomena characterised by sec-
ondary nucleation pathways other than fragmentation. We
take here the example of monomer-dependent secondary nu-
cleation (Fig. 1(e)), the analysis of which was pioneered
by Eaton and coworkers for the polymerisation of sickle
hemoglobin in the 1980s.40, 101 In such a system the time evo-
lution of the principal moments can be approximated as (cf.
Eqs. (4) and (5) and Refs. 40, 101, 102):

dP (t)

dt
= k2M(t)m(t)n2 + knm(t)nc , (52)

dM(t)

dt
= 2[m(t)k+ − koff]P (t)

+ ncknm(t)nc + n2k2M(t)m(t)n2 . (53)

It is interesting to note that in the limit n2 → 0 these dif-
ferential equations go over to the case where the secondary
process is fragmentation, Eqs. (5), when direct production or
consumption of monomers through secondary nucleation is
neglected in front of the monomer consumption through fil-
ament elongation for the growth stages; for the t → ∞ limit
discussed in Ref. 103, these terms can however become im-
portant, particularly in defining the equilibrium behaviour of
the polymer number concentration.

We sketch out the derivation in this paper of first order
self-consistent solutions to this growth problem. These solu-
tions are valid for longer times than the linear and perturba-
tive expressions that were derived earlier.58 Due to the highly
non-linear nature of these differential equations, however, es-
pecially for n2 � 1, their analysis is significantly more chal-
lenging than for the case discussed in the first part of this
paper where fragmentation is the dominant secondary path-
way. Therefore, we expect the first order self-consistent so-
lutions derived below to be less accurate than the equivalent
results for the case of fragmenting filaments. In the second

part of this series71 we present a detailed derivation and anal-
ysis of higher order solutions which are able to describe ac-
curately the full time course of the reaction, even for values
of nc, n2 � 1. The discussion in the present papers, based
on the first order solution, illuminates nevertheless qualita-
tively some of the changes in behavior that emerge when the
monomer dependence of the secondary pathway increases.

As for the case of frangible filaments, we begin with the
linearized solutions to Eqs. (52) and (53) which read:58

P0(t) = C1e
κt + C2e

−κt + (n2 − nc)knm(0)nc

2[m(0)k+ − koff]
(54)

M0(t) = 2[m(0)k+ − koff]C1

κ
eκt

−2[m(0)k+ − koff]C2

κ
e−κt − kn

k2
m(0)nc−n2 (55)

with the relevant constants:

κ =
√

2m(0)n2 [m(0)k+ − koff]k2 (56)

C± ≡ C1,22k+/κ (57)

≈ k+P (0)

κ
± k+M(0)

2[m(0)k+ − koff]
± λ2

2κ2
(58)

for λ = √
2knk+m(0)nc , Eq. (1). The large majority of

monomer consumed is from the term 2k+m(t)P (t) (elonga-
tion of existing filaments) and the nucleation terms mainly
contribute indirectly through the increase in P (t); therefore
we can formally solve the time evolution for M(t) under the
action of the term 2k+m(t)P (t) to yield the second component
of a fixed-point equation for [P,M]:

M(t) = M(∞)

[
1 − exp

(
− M(0)

M(∞)
− 2k+

∫ t

0
P (τ )dτ

)]
(59)

for M(∞) ≈ mtot − koff/k+, which emerges from Eq. (53)
under the action of the dominant mechanism of monomer con-
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sumption from its incorporation into fibrils and by neglecting
direct monomer consumption from the nucleation processes.
The first iteration yields the first order self-consistent solution
for the polymer mass concentration M(t):

M1(t) ≈ M(∞)[1 − exp(−C+eκt + C−e−κt + D)], (60)

where D = λ2/κ2 − M(0)/M(∞) + k+M(0)/[m(0)k+
− koff]. Due to the action of the fixed point operator, the
validity of this solution is extended in time when compared
to the linearized equations which form the starting point of
this analysis.

X. DISCUSSION OF THE CHARACTERISTICS
OF FIBRILLAR GROWTH

Important characteristics of nucleated elongation and
fragmentation kinetics are discussed briefly in this section
based on Eq. (33) which predicts, as a function of time, the
changes in the number of monomers that are incorporated into
polymers.

A. Maximal growth rate

The analytical form Eq. (37) for the growth kinetics
can be used to investigate the dependence of the maximal
growth rate rmax = dM/dt |t=tmax , where tmax is the solution
of d2M/dt2|t=tmax = 0, on different parameters. We obtain

tmax = log(1/C+)

κ
(61)

and

rmax = M(∞)κ

e
. (62)

Interestingly Eq. (62) is independent of C+ and therefore of
the initial conditions. In other words, the maximal rate of the
reaction depends only on the kinetic parameters k+, k− and
the total protein concentration, but not on the number of poly-

mers present initially in the solution or the nucleation rate kn.
This universality breaks down for conditions where secondary
nucleation ceases to be the dominant nucleation process in
front of primary nucleation, and in cases where the lag phase
disappears completely (equivalent to C+ + C− > Cc), as dis-
cussed in Sec. X B. The time, given by Eq. (61), at which the
reaction reaches the maximal rate is on the other hand depen-
dent (logarithmically) on the details of the system.

B. Lag phase and convex rate profile

Eq. (61) has the interesting feature that the initial rate
of growth Ṁ(0) = r0 < rmax is smaller than the maximal rate
of growth rmax in many cases, implying the presence of a
lag phase. This effect can be analysed in more detail: since
r0 = mtotκ(C+ + C−), the condition r0 < rmax is equivalent
to C+ + C− < Cc = 1/e, or substituting for C+ + C− from
Eq. (24):

2k+P (0)

κ
+ k+ncknm(0)nc

κ[m(0)k+ − koff]
<

1

e
. (63)

This observation naturally suggests a definition for a critical
seed concentration Mc = PcLc assuming the fibrils have an
initial length of Lc as:

Mc = κLc

2k+e
(64)

or a critical nucleation rate kc
n:

kc
n = κ[m(0)k+ − koff]

k+ncm(0)nce
(65)

above which the lag phase ceases to exist, and the poly-
merisation rate is fastest initially and then decays as the free
monomer in solution is being used up. This result can be com-
pared with the rate profiles shown in Fig. 11; the conditions
used result in a critical seed-concentration of Mc = 260 μM,
and all curves with M < Mc indeed exhibit a lag phase.
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FIG. 11. Effect of initial seed concentration. (a) Polymer mass concentration M(t), Eq. (33), as a function of time for different initial seed concentrations, from
left to right: M(0) = 729 nM. M(0) = 243 nM, M(0) = 81 nM, M(0) = 27 nM, M(0) = 9 nM and M(0) = 3 nM. The values used for the other parameters
are: koff = 0, kn = 0, k+ = 5 × 104 s−1 M−1, k− = 10−9 s−1, mtot = 50 μM, and P (0) = M(0)/1000. (b) shows the growth rate dM(t)/dt . Interestingly the
maximal growth rate is independent of the seed concentration, except for seed concentrations that are higher than the critical concentration (Mc = 260 nM for
the parameters used) as described in the text. The maximal growth rate Eq. (62) (1.3 × 10−9 M s−1 for the parameters used) is shown as a dashed red line.
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TABLE I. Comparison of the first order self-consistent solutions for irreversible filament growth with secondary nucleation or fragmentation with the analogous
results from the theory of nucleated polymerisation.

Monomer-dependent
Nucleated polymerisation88 Breakable filaments secondary nucleationa

Parameters kn, nc , k+, mtot kn, nc , k+, k−, mtot kn, nc , k2, n2, k+, mtot

Polymer mass M(t)
mtot

= 1 − m(0)
mtot

[
μ sech

(
ν + λβ− 1

2 μt
)]β

1 − exp
(
−C+e−κt + C−e−κt + λ2

κ2

)
1 − exp

(
−C+eκt + C−e−κt + λ2

κ2

)
λ = √

2k+knm(0)nc β = 2/nc κ = √
2k+k−m(0) κ =

√
2k+k2m(0)n2+1

γ = β1/2k+nc

λ
P (0) μ =

√
1 + γ 2 ν = arsinh (γ ) C± = k+P (0)

κ
± M(0)

2m(0) ± λ2

2κ2 C± = k+P (0)
κ

± M(0)
2m(0) ± λ2

2κ2

Early time behaviour M(t) ≈ 1
2 mtotλ

2t2 mtot(C+eκt − C−e−κt ) mtot(C+eκt − C−e−κt )

Lag time τlag = μ−1β
1
2

⎡
⎣artanh

(
1√

1+β

)
− arsinh(γ ) [log(1/C+) − e + 1]κ−1 [log(1/C+) − e + 1]κ−1

−
√

2+nc
2β

(
2μ2

2+nc

)− 1
nc

(
mtot
m(0) −μ

2
nc

(
2

2+nc

) 1
nc

)⎤
⎦λ−1

Approximate lag time −nc/2 −1/2 −(n2 + 1)/2
exponent γ =
Maximal growth rate rmax = 2m(0)√

2(2+nc)

(
2μ2

2+nc

) 1
nc

μλ mtot
e

κ mtot
e

κ

aSee Ref. 71 for a detailed discussion..

Qualitatively, these critical values, Eqs. (64) and (65), corre-
spond to a crossover in the dominant monomer-consuming
process. Above the critical seed concentration the con-
sumption of monomer via the elongation of seed material,
∼k+P (0), becomes more important than the consumption due
to the proliferation (fragmentation and elongation) of fibrils,
∼κ; similarly, above the critical nucleation rate the direct con-
sumption of monomer via primary nucleation, ∼ncknm(0)nc ,
is more important than the consumption through proliferation.

In particular, these results demonstrate that the length of
the lag phase does not necessarily correspond to the time re-
quired to form the initial growth nuclei, as has sometimes
been assumed. In fact, a lag phase can exist even when seed
fibrils are present at t = 0 and no primary nucleation occurs,
Figs. 7 and 8.

C. Lag time and correlation with growth rate

A key characteristic present in many measurements of
filamentous growth49, 59 is the presence of a lag phase prior
to the conversion of the majority of soluble material into
filamentous structures. Two commonly used definitions of
this lag time are discussed. First, an arbitrary concentration
threshold mth can be defined; this concentration could, for ex-
ample, correspond to an experimental threshold above which
the presence of polymer can be detected. The time to reach
this value will be τlag = 1/κ log(mth/mtot · 1/C+) if we as-
sume that the threshold value is small mth � mtot. Note that
the length of this lag phase scales inversely with the kinetic
parameter κ . The other frequently used way to measure the
lag phase is to extrapolate the maximal growth rate back to
zero polymer concentration, and use the intersection with
the time axis as the value for the lag phase as shown in

Fig. 4. Let us evaluate this quantity from the model for poly-
merisation driven by secondary pathways: the rate of maxi-
mal growth occurs from Eq. (61) at tmax = log(1/C+)/κ and
for the concentration Mmax = M(∞)(1 − e−1). The condition
Mmax/(tmax − τlag) = rmax implies that the lag time has the
form:

τlag = [log(1/C+) − e + 1]κ−1 (66)

again inversely proportional to κ . In particular, in both cases,
the lag time follows approximately a power law with re-
spect to the initial monomer concentration, τlag ∼ m(0)γ , with
an exponent of γ = −(n2 + 1)/2 since κ ∼ m(0)−(n2+1)/2

when monomer-dependent secondary nucleation is dominant
and γ = −1/2 when fragmentation dominates (n2 = 0). This
scaling is analogous to that predicted by Oosawa10 for pri-
mary nucleated systems τlag ∼ m(0)−nc/2. Nucleation in gen-
eral necessitates a molecular collision, nc ≥ 2, and therefore
a sub-extensive scaling of the lag time with monomer con-
centration is indicative of fragmentation, rather than nucle-
ation dominated growth. Interestingly, we will show in Part
II71 that the dependencies on the kinetic parameters that have
emerged in the first-order scaling laws for the lag-time and
maximal growth rate, Eqs. (62) and (66), have more general
validity and are conserved in higher order self-consistent so-
lutions that emerge from further application of the fixed-point
operator, Eq. (12).

More generally, as the kinetic equations for nucleated
polymerisation and for the growth of breakable filaments are
given in the form of sigmoidal equations that principally de-
pend on a specific combination of the individual rate pa-
rameters (either κ for growth dominated by secondary pro-
cesses, or λ for growth dominated by primary nucleation),
these factors will also dominate the values of the macroscopic
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FIG. 12. Nucleated growth with varying monomer concentrations. (a) Polymer mass concentration M(t), Eq. (33), as a function of time for different total
monomer concentrations, from left to right: mtot = 1.3 × 10−4 M, mtot = 6.4 × 10−5 M, mtot = 3.2 × 10−5 M, mtot = 1.6 × 10−5 M, mtot = 8.0 × 10−6 M,
mtot = 4.0 × 10−6 M. The values used for the other parameters are: koff = 0, nc = 2, kn = 10−8 M−1 s−1, k+ = 5 × 104 s−1 M−1, k− = 5 × 10−8 s−1,
M(0) = P (0) = 0. (b) shows the normalised polymer mass fractions M(t)/mtot as a function of time, for the same monomer concentrations as in (a).

observables that characterise the growth process, Table I. In
particular we find a correlation between the lag phase and the
maximal growth rate which emerges as a consequence of this
observation. Indeed, for filaments growing under the action
of secondary pathways, the maximal growth rate rmax scales
with κ , and hence there must very generally exist an inverse
correlation between the lag phase τlag and the maximal growth
rate rmax as the specific initial conditions enter only logarith-
mically through log(1/C+).

This strong correlation has been established empirically
for a variety of amyloid fibrils systems.104–106 The results dis-
cussed above show that it is not necessary to assume a corre-
lation between the elongation and nucleation rates to observe
such an effect. Instead, the present analysis shows that this
connection between growth rate and duration of the lag phase
is inherent to the way that both observables are strongly influ-
enced by the same kinetic parameter.

XI. CONCLUSION

Self-consistent solutions to the sigmoidal growth kinet-
ics of fragmenting structures have been derived, and the ac-
curacy of the solutions relative to numerical data has been
verified. These solutions extend the validity of the previously
known linearized solutions to include conservation of mass.
Due to the applicability of such self-consistent solutions over
the full duration of the reaction, we recover the characteristic
sigmoidal behaviour observed for protein aggregation exper-
iments. Our results, therefore, represent a theoretical frame-
work for analyzing experimental observations of filamentous
growth in terms of microscopic rate constants, rather than the
phenomenological parameters available heretofore from fit-
ting data to empirical sigmoid functions. We have also shown
that in the limit of vanishing breakage rate our analysis repli-
cates the well-known results for nucleated growth given by
the Oosawa theory. Our results furthermore provide a unified

explanation from first principles for a wide range of empiri-
cally established relationships for amyloid growth.

APPENDIX: SECOND MOMENT IN THE LINEARIZED
PROBLEM

The exact expression for the second moment in the lin-
earised problem, given from solving Eq. (11) after substitut-
ing for P (t) and M(t) from Eqs. (25) and (26), is given by

Q0(t) = knm
nc−1
tot

2k−

e−κt

(1 + eκt )2

[
mtot

2
− 4κmtot

3k−
− κ

12k+

− k−nc

12k+
+ k−n2

c

4k+
− k−n3

c

6k+
+ eκt

(
2mtot + 8κmtot

3k−

− k−nc

3k+
− κn2

c

k+
+ k−n2

c

k+
− 2k−n3

c

3k+

)

+ e2κt

(
− 5mtot + 5k−nc

6k+
− 5k−n2

c

2k+
+ 5k−n3

c

3k+

+ 4k−mtotn
2
c t − 2

3
k−mtott

)
+ e3κt

(
2mtot − 8κmtot

3k−

− k−nc

3k+
+ κn2

c

k+
+ k−n2

c

k+
− 2k−n3

c

3k+

)
+ e4κt

(
mtot

2

+ 4κmtot

3k−
+ κ

12k+
− k−nc

12k+
+ k−n2

c

4k+
− k−n3

c

6k+

)]
.
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