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Nucleated polymerization with secondary pathways. II. Determination
of self-consistent solutions to growth processes described by non-linear
master equations
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Nucleated polymerisation processes are involved in many growth phenomena in nature, including
the formation of cytoskeletal filaments and the assembly of sickle hemoglobin and amyloid fibrils.
Closed form rate equations have, however, been challenging to derive for these growth phenom-
ena in cases where secondary nucleation processes are active, a difficulty exemplified by the highly
non-linear nature of the equation systems that describe monomer dependent secondary nucleation
pathways. We explore here the use of fixed point analysis to provide self-consistent solutions to such
growth problems. We present iterative solutions and discuss their convergence behaviour. We estab-
lish a range of closed form results for linear growth processes, including the scaling behaviours of the
maximum growth rate and of the reaction end-point. We further show that a self-consistent approach
applied to the master equation of filamentous growth allows the determination of the evolution of the
shape of the length distribution including the mean, the standard deviation, and the mode. Our re-
sults highlight the power of fixed-point approaches in finding closed form self-consistent solutions to
growth problems characterised by the highly non-linear master equations. © 2011 American Institute
of Physics. [doi:10.1063/1.3608917]

I. INTRODUCTION

There has been recently considerable renewed interest in
the development of theoretical models that describe the gen-
eral problem of growth of filamentous protein structures.1–7

The theoretical analysis of such polymerising protein sys-
tems was initiated in the 1960s in the context of a range
of functional biological assembly phenomena,8–12 including
the growth of actin and tubulin filaments. Furthermore, much
experimental and theoretical attention has been focused on
aberrant biological assembly, starting with sickle hemoglobin
assembly,13–16 and more recently the processes leading to the
formation of amyloid fibrils often observed in association
with neurodegenerative and other diseases.17–24 In the overall
kinetics of growth, secondary nucleation processes, includ-
ing filament fragmentation, have emerged as dominant factors
for amyloid formation1, 3, 25–27 and prion assembly.1, 28, 29 Such
secondary events lead to a description of the growth prob-
lem through kinetic equations that are commonly highly non-
linear, Fig. 1.

In order to address the difficulty in obtaining analyt-
ical results for the full time course of the reaction, we
proposed30, 31 a self-consistent analysis scheme and showed
that this approach yields closed form solutions to the growth
problem. The focus of the present paper is to extend this ap-
proach to highly non-linear master equations by exploring the
nature of the higher order solutions that emerge from the re-
peated application of the fixed-point iteration to the moment

a)Author to whom correspondence should be addressed. Electronic mail:
tpjk2@cam.ac.uk.

equations (Secs. II–VI) and also by exploring self-consistent
solutions to the full filament length distribution (Sec. VII).
We show that closed form solutions of high accuracy can be
generated using this approach. In particular, we derive analyt-
ical results, valid for the full duration of the reaction, which
describe in closed form the time evolution of the lower prin-
cipal moments of filament systems that grow through primary
nucleation, filament elongation, and either monomer inde-
pendent or monomer dependent secondary nucleation. These
higher order iterations also allow access to important correc-
tions to the scaling laws that emerge from the analysis of the
lower order solutions, as well as to information on the shape
of the filament length distribution.

The differential equations that describe monomer-
dependent secondary pathways involve very strong non-
linearities in addition to those originating from the primary
nucleation. These types of equations are not readily amenable
to perturbative treatments as all of the non-linear terms
contribute significantly to the overall reaction as shown in
Fig. 2. The main result of this paper is an approach to treat
such highly non-linear growth problems, and we provide an
iterative scheme to obtain a closed form expression of high
accuracy for the integrated rate laws (cf. Appendix B), the ac-
curacy of which is illustrated in Fig. 2.

II. SECOND ORDER SELF-CONSISTENT SOLUTIONS

In the first part of this paper, we focus on higher order
iterative solutions for the case where the secondary pathway
is filament fragmentation and is hence monomer independent.
This type of secondary pathway does not introduce non-linear
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Primary nucleation Secondary nucleation

FIG. 1. Highly non-linear processes in protein polymerisation. The primary
nucleation rate depends on the monomer concentration m(t) with a power of
the critical nucleus size nc , and secondary nucleation processes depend on
both the polymer concentration M(t) and the monomer concentration to a
power n2; values of n2 up to n2 = 30 have been reported.14, 16 The special
case of filament fragmentation (see Ref. 1) is monomer independent n2 = 0.

terms into the equations for the principal moments, Eqs. (1)
and (2), and therefore the only source of non-linearity is the
elongation process [terms proportional to M(t)P (t)] and the
primary nucleation process [terms proportional to a polyno-
mial of degree nc in M(t)].31 The evolution of the principal
moments, the polymer number concentration P (t) and the
polymer mass concentration M(t), has been shown to obey
the differential equations5, 9, 29, 34

dP (t)

dt
= k−[M(t) − (2nc − 1)P (t)] + knm(t)nc , (1)

dM(t)

dt
= 2

[
m(t)k+ − koff − k−nc(nc − 1)

2

]
P (t) (2)

+ ncknm(t)nc ,

where m(t) = mtot − M(t) is the free monomer concentra-
tion and k+, koff, k−, and kn are the rate constants for elon-
gation, depolymerisation, fragmentation, and primary nucle-
ation, respectively. In order to recover the detailed scaling
exhibited by solutions to the problem of filament growth un-
der conditions where filament fragmentation enhances the
number of free filament ends, we require self-consistent so-
lutions that go beyond those previously obtained as the first
order corrections restoring mass conservation30, 31 to the lin-
earized solutions5, 16, 32, 33 which do not include mass conser-
vation. We base our discussion on a fixed-point analysis; the
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FIG. 2. Illustration of the nature of the solutions to highly non-linear growth
problems derived using the fixed point scheme (insert). An analytical solu-
tion to filament growth through primary nucleation, monomer dependent sec-
ondary nucleation, filament elongation, and depolymerization [Eqs. (35) and
(36)] is shown in red and the complete closed form self-consistent solution
is provided in Appendix B, Eq. (B1). The brown dashed line is a simpli-
fied self-consistent solution also derived in this paper, Eq. (54). The black
line is the exact numerical result. For comparison, the green dashed line is
the numerical result neglecting primary nucleation, the purple dashed line is
the numerical result neglecting secondary nucleation. The blue dotted line
is the first order result (see Ref. 31) and the orange dotted-dashed line is
the linearized solution (see Refs. 16, 32, 33, and 5). The parameters are:
nc = 35, n2 = 20, k+ = 5 × 104 M−1 s−1, koff = k+mtot/30, k2m

n2
tot = 5

× 10−8 s−1, knm
nc−1
tot = 5 × 10−10 s−1, mtot = 5 × 10−5 M, M(0) = 5

× 10−11 M, P (0) = M(0)/5000.

kinetic problem is reformulated as a fixed-point equation31

and subsequent applications of the fixed-point operator yield
increasingly accurate iterative self-consistent solutions. The
first improvement beyond the lowest order result30, 31 is ob-
tained by establishing the second order self-consistent solu-
tion to the filament growth problem.

The self-consistent result obtained after one iteration has
been shown to emerge as the simple closed form expression31

for the polymer mass concentration

M1(t) = M(∞)[1 − exp(−C+eκt + C−e−κt + D)], (3)

where the filament multiplication rate is defined as κ

= √
2[m(0)k+ − koff]k− for initial monomer concentration

TABLE I. Comparison of the first and second order self-consistent solutions for irreversible filament growth with fragmentation with exact results calculated
numerically.

First order Second order Exact

Polymer mass M(t)
M(∞) = 1 − exp

(
−C+e−κt + C−e−κt + λ2

κ2

)
1 − exp

(∑∞
p=1

[
(−C+)p

p2p!

(
epκt −∑2p−2

q=0
(pκt)q

q!

)
+ C

p
−

p2p!

(
e−pκt −∑2p−2

q=0
(−pκt)q

q!

)]
− M(0)

M(∞)

)
κ = √

2m(0)k+k− λ = √
2m(0)nc k+kn C± = k+P (0)

κ
± M(0)

2m(0) ± λ2

2κ2

Lag time τlag = [log(1/C+) − 1.718]κ−1 [log(1/C+) − 1.805]κ−1 [log(1/C+) − 1.825]κ−1a

Maximal growth rate rmax/M(∞) = 0.3679 κ 0.3267 κ 0.3182 κa

No breakage limit M(t)
mtot

≈ 1 − exp
(

− t2k+knm
nc
tot

)
1 − exp

(
− t2k+knm

nc
tot 1 − exp

(
− t2k+knm

nc
tot

(no seeding M(0) = 0) + 1
6 t4k2+k2

nm
2nc
tot + O(t6)

)
+ 1

6 t4k2+k2
nm

2nc
tot + O(t6)

)
b

aNumerical (Ref. 37).
bEquation (24).
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m(0), and the final polymer mass concentration31, 35 M(∞)
≈ [2k+mtot − 2koff − nc(nc − 1)k−]/(2k+). The constants are
functions of the initial conditions and of the rate constants kn,
k+, koff, and k−

C± = k+P (0)

κ
± k+M(0)

2[m(0)k+ − koff]
± λ2

2κ2
, (4)

D = λ2

κ2
− M(0)

M(∞)
+ k+M(0)

m(0)k+ − koff
, (5)

where λ = √
2k+knm(0)nc is the effective rate constant de-

rived by Oosawa8, 9, 31 for nucleated polymerization without
secondary pathways. The aim of the present section of this
paper is to generalise Eq. (3) to higher order approximations
and recover the corresponding corrections to the scaling be-
haviour in the system kinetics. The two components of the
fixed-point operator,31 appropriate for this system, are derived
by integration of Eqs. (1) and (2) to yield 30, 31

M(t) = M(∞)(1 − e
− M(0)

M(∞) −2k+
∫ t

0 P (τ )dτ ), (6)

P (t) = k−e−(2nc−1)k−t

(
P (0) +

∫ t

0
e(2nc−1)k−τM(τ )dτ

)
.

(7)

The convergence of the fixed-point scheme is most effective
when the operator acts on a solution which is close to the fi-
nal fixed point. In our first order solutions, this condition is
better satisfied for early times, and therefore the accuracy of
the first order self-consistent solution is less good for times
corresponding to the reaction end point. The accuracy of the
expression for M(t) in Eq. (3) may be improved with higher
order corrections from further fixed point iterations. This im-
provement corresponds to substituting the first order expres-
sion P1(t) into the integral operator for M(t) in Eq. (6) to find
a more accurate solution in this self-consistent scheme.

By substituting Eq. (3) into Eq. (7), the first order result
for P1(t) has been shown to obey31

P1(t) = k−e−(2nc−1)k−t

{
P (0) +

∫ t

0
e(2nc−1)k−τM(∞)

×[1 − exp(−C+eκτ + C−e−κτ + D)]dτ

}
. (8)

For sufficiently large breakage rates (C+C− � 1) and at early
times (t � κ−1), the exponential term may be approximated
as

exp(−C+eκτ + C−e−κτ + D)

≈ exp(−C+eκτ ) + exp(C−e−κτ ) − 1.
(9)

On rearrangement and expansion for early times t � κ−1

� k−1
− , the integral Eq. (8) has a closed form expression valid

for early times

P e
1 (t) = e−(2nc−1)k−t

(
P (0) + k−M(∞)

κ
[E1(C+eκt ) − E1(C+)

−E1(−C−e−κt ) + E1(−C−) + 2κt]

)
. (10)

where the exponential integral E1(t) = −Ei(−t)
= ∫∞

t
e−s/s ds.

This result is accurate for significantly longer times than
the linearized solution31, 32 used to generate M1(t) and would,
therefore, be expected to produce an improved expression
for M(t) when operated on by Eq. (6). Indeed the correction
for the first moment can now be obtained from Eq. (10) and
Eq. (6) as M2(t). In this case, we obtain

M2(t)

M(∞)
= 1 − exp

(
− 2k+

∫ t

0
O (k−t)2

+k−M(∞)

κ
[E1(C+eκt ) − E1(C+) + κt]

−k−M(∞)

κ
[E1(−C−e−κt ) − E1(−C−) − κt]dt

− M(0)

M(∞)

)
. (11)

In order to carry out the integration in Eq. (11), the integrand
is rewritten as

I = Iy + Iz

= k−M(∞)

κ
[log(y) + E1(C+y) − E1(C+)]

− k−M(∞)

κ
[log(z) + E1(−C−z) − E1(−C−)], (12)

with y = eκt and z = e−κt . The terms Iy and Iz may be inte-
grated using an identical approach; we carry out the integra-
tion for Iy . Expansions around y = 1 (t = 0) yield

log(y) =
∞∑

p=1

(−1)p+1 (y − 1)p

p
, (13)

E1(C+y) − E1(C+) =
∞∑

p=1

(−1)p
C

p
+E1−p(C+)(y − 1)p

p!
,

(14)

and expanding the exponential integral about C+ = 0 gives

E1−p(C+) = C
−p
+ (p − 1)! +

∞∑
q=1

(−1)q
C

q−1
+

(q − 1)!(q − 1 + p)
.

(15)

Due to the convergence of the series, Iy may be obtained
exactly

Iy = k−M(∞)

κ

∞∑
p=1

∞∑
q=1

(−1)p+q C
p+q−1
+ (y − 1)p

p!(q − 1)!(q − 1 + p)
.

(16)

Transforming the rest of the integral into a function of the
variable y, and writing (y − 1)p as a binomial sum, the inte-
gration can be carried out exactly term by term. For small
depolymerization rates,31, 36 koff � k+mtot, this operation
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results in∫ t

0
Iydt ≈ − 1

2k+

∞∑
p=1

∞∑
q=1

(−1)p+q+1C
p+q−1
+

(−1)pκt +∑p−1
r=0 (−1)r p!

r!(p−r)!(p−r) (e
(p−r)κt − 1)

p!(q − 1)!(q − 1 + p)
. (17)

The major contribution to the summation over r in Eq. (17)
originates in the leading order exponentials where r = 0 and,
similarly, for C+ � 1 the leading order terms in the summa-
tion over q are given from q = 1, resulting in∫ t

0
Iydt = − 1

2k+

∞∑
p=1

(−C+)p
(epκt − 1)

p2p!
. (18)

The result for Iz may be found through the replacement
C+ → −C−, yielding a compact result for M2(t)

M2(t)

M(∞)
= 1 − exp

( ∞∑
p=1

[
(−C+)p

(epκt − 1)

p2p!

+C
p
−

(e−pκt − 1)

p2p!

]
− M(0)

M(∞)

)
. (19)

We now use this solution obtained in the early time limit
t � κ−1 and sufficiently large k− (C−C+ � 1) to construct
the full time-course solution. To this effect, we know the limit
that should be obtained in the absence of fragmentation and
depolymerisation (Oosawa limit,9, 31 Eq. (24)). Using this re-
sult to complete the missing terms in Eq. (19) by comparison
with the special case,9, 31 Eq. (24), the full result for the sec-
ond order iteration is obtained as

M2(t)

M(∞)
=1 − exp

⎛
⎝ ∞∑

p=1

⎡
⎣ (−C+)p

p2p!

⎛
⎝epκt −

2p−2∑
q=0

(pκt)q

q!

⎞
⎠

+ C
p
−

p2p!

⎛
⎝e−pκt −

2p−2∑
q=0

(−pκt)q

q!

⎞
⎠
⎤
⎦− M(0)

M(∞)

⎞
⎠ .

(20)

This equation has an analogous form to the first order solu-
tion discussed in Refs. 30 and 31 but we note the presence
of additional terms in the exponential. As in Part I,31 a linear
term ncknm

nc−1
tot t has been neglected since the breakage rate

is small such that most bonds in the system do not break over
the reaction time.

Fig. 3 shows the first and second order iterations, given
by Eqs. (3) and (20). From this figure, it is evident that the
second order iteration offers a significant improvement in ac-
curacy over the first order result in matching the exact solution
and in particular offers significant improvement over the first
order result towards the end of the growth phase.

In considering after how many terms the outer summa-
tion in Eq. (20) can be terminated whilst still offering a good
approximation for M(t), first note that the summation is ab-
solutely convergent for any given t , with the absolute ratio
between the (p + 1)th and pth terms for long times up+1/up

= p2(p + 1)−3C+eκt . The series converges in a small number
of terms for times such that C+eκt � 1, but for longer times
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FIG. 3. Convergence of the first two fixed point analytical iterations to-
wards the exact solution. The blue dotted line is the first order result, the
red dashed line is the second order result, and the solid black line is the ex-
act result. The orange dotted-dashed line is the early time limit linearized
solution. The parameters are: k+ = 5 × 104 M−1 s−1, koff = k+mtot/100,
k− = 2 × 10−8 s−1, kn = 5 × 10−5 M−1s−1, mtot = 1 × 10−6 M, nc = 2,
M(0) = 1 × 10−8 M, P (0) = M(0)/5000. The summation in the second or-
der iteration is truncated after 25 terms.

than this, a large number of terms is needed. Due to the alter-
nating nature of the series, if the sum is terminated after an
odd number of terms then in the limit t → ∞ it will yield a
large negative number, whereas for termination after an even
number of terms the result gives a large positive number in
this limit. Since the summation is within an exponential func-
tion in Eq. (20), when truncating after an odd number of terms
the exponential term tends to zero and M(t) → M(∞) in the
long time limit, as required. Conversely, if the sum is termi-
nated after an even number of terms then in the limit t → ∞,
M(t) → −∞. Hence, enough terms must be included before
terminating the summation such that the ratio between the
last included and first omitted term is small for times before
which M(t) ∼ M(∞), and the summation must also be termi-
nated after an odd number of terms. Interestingly, the scaling
behaviour of the system (Sec. VI) ensures that the number
of required terms is approximately independent of the kinetic
parameters.

Using the parameters of Fig. 3, these convergence con-
ditions are fully satisfied terminating the summation after 25
terms. The result including just three terms, offering the first
improvement over the first order iteration M1(t),31 is given
explicitly by

M2(t)

M(∞)
= 1 − exp

(
− (eκt − 1)C+ + (e−κt − 1)C−

+ (e2κt − 1 − π
(2)
+ (t))

C2
+

8
+ (e−2κt − 1 − π

(2)
− (t))

C2
−

8

− (e3κt − 1 − π
(3)
+ (t))

C3
+

54
+ (e−3κt − 1 − π

(3)
− (t))

C3
−

54

− M(0)

M(∞)

)
, (21)

where π
(2)
± (t) = ±2κt + 2κ2t2, π (3)(t) = ±3κt + 9κ2t2/2

± 9κ3t3/2 + 27κ4t4/8. We note that compared with
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the first order result M1(t) = M(∞)[1 − exp(−C+(eκt

− 1) + C−(e−κt − 1) − M(0)/M(∞))] there are new terms
∼ e2κt , e3κt and associated polynomials in κt in the exponent.

III. INFRANGIBLE FILAMENTS

For a system of infrangible filaments, k− = 0, undergo-
ing irreversible growth, koff = 0, in the absence of pre-formed
seed material, M(0) = P (0) = 0, the limit of Eq. (20) is given
as

M2(t)

mtot
= 1 − exp

⎛
⎝ ∞∑

p=1

(−1)p

p2p!

2 (knk+mtot
nc ) p

(2p)!
(pt)2p

⎞
⎠ ,

(22)

where the first few terms are given by

M2(t)

mtot
= 1 − exp

(
− t2k+knm

nc

tot

+1

6
t4k2

+k2
nm

2nc

tot − 3

80
t6k3

+k3
nm

3nc

tot + O(t8)
)
. (23)

In particular, higher powers of t are now present in com-
parison with the first order result.31 It is interesting to note
that the exact Oosawa result for irreversible growth of in-
frangible filaments9 in the absence of seeds and depolymeri-
sation, M(t)/mtot = 1 − sech2/nc (

√
ncknk+m

nc

tot), admits the
series expansion

M(t)

mtot
= 1 − exp

(
− t2k+knm

nc

tot

+1

6
t4k2

+k2
nm

2nc

tot − 2

45
t6k3

+k3
nm

3nc

tot + O(t8)
)
. (24)

It can be seen that whilst the first order result is correct to
O(t2),31 the second order iteration now reproduces the correct
limit to O(t4). The limits given by the first and second order
analytical results are compared with the exact result in Fig. 4,
where the second order result is seen to provide a significant
improvement.

In considering the limit k− → 0, we note that in the fixed-
point analysis presented so far, the fixed-point operator ne-
glects terms O(kn). This is an accurate approximation for the
first two self-consistent solutions in the case of fragmenting
filaments which we have presented, since the influence of the
primary nucleation comes mainly from its effect on the linear
solutions used as the starting point of the fixed point scheme.
Whilst the rate of creation of filaments from fragmentation
increases as the reaction proceeds, the rate of creation of fila-
ments from primary nucleation slows as monomer is depleted.
Hence primary nucleation is most important for earlier times,
and its relative importance compared to secondary nucleation
decreases monotonically. Repeated iteration, however, using
our fixed point scheme, would result in higher order solutions
that ultimately converge towards the solution of the master
equation neglecting O(kn).

A strategy to ensure the correct convergence behaviour
is to enforce the exact early time limit behaviour, includ-
ing O(kn), in each iteration, which is already satisfied in the
first two iterations presented here. As a general procedure

for higher iterations, the system can be evolved using the
linearized early time solutions M0(t) and P0(t) derived in
Part I,31 which include O(kn), for as long as the early time
solution is a good approximation to the exact solution. If the
time for which the early solution remains a good approxi-
mation is denoted by t0, for times greater than t0 the fixed
point iteration scheme is then used to find M(t), but now us-
ing M0(t0), P0(t0) from the early time solutions as the initial
conditions. The final solution, which converges to the solution
including O(kn), is then given by the early time limit result
continued piecewise to the higher order fixed point iteration
at t0.

For systems where the secondary pathway is monomer-
dependent (Sec. V), the relative importance of primary and
secondary nucleation will no longer, in general, vary mono-
tonically as the reaction proceeds, and so the explicit inclusion
of terms O(kn) in higher iterations, including the second-order
result, is then required.

IV. CORRECTIONS TO LOWER ORDER
SCALING LAWS

The availability of a highly accurate analytical solution to
the growth kinetics over the full time course of the polymeri-
sation reaction provides us with the opportunity to analyse
the corrections to the scaling behaviour in the lag time that
has emerged from the lower order solutions.30–32 In this sec-
tion, we show that the numerical values of the coefficients in
the scaling laws from the first order solutions are significantly
improved when considering the corrections obtained from the
second order results, Table I. We recall that the lag time, τlag,
is defined in terms of the maximum growth rate, rmax, and the
time at which the maximum growth rate occurs, tmax

τlag = tmax − M(tmax)

rmax
. (25)

FIG. 4. Convergence of the first two fixed-point analytical iterations towards
the exact solution (Refs. 8 and 9) in the absence of breakage. The blue dotted
line is the first order result, the red dashed line is the second order result, and
the solid black line is the numerical result. The parameters are: k+ = 5 × 104

M−1 s−1, koff = k− = 0 s−1, kn = 5 × 10−4 M−1s−1, mtot = 5 × 10−6 M,
nc = 2, M(0) = P (0) = 0.
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In order to obtain the expressions for tmax, rmax, and M(tmax)
we first perform a substitution to introduce the dimension-
less quantity y = C+eκt into the long-time limit, t � κ−1, of
Eq. (20)

M2(t)

M(∞)
= 1 − exp

⎛
⎝ ∞∑

p=1

(−C+)p
epκt

p2p!

⎞
⎠ , (26)

such that the value of y that occurs when t = tmax is ymax

= C+eκtmax whereby the explicit dependencies on C+ and κ

have been subsumed into the change of variable. Explicitly,
tmax is given by

tmax =
log

(
ymax

C+

)
κ

= log (1/C+) + log (ymax)

κ
. (27)

Remarkably, this form maintains the inverse correlation be-
tween the multiplication rate κ and the lag time,30, 31 but in-
troduces a correction to the proportionality constant. Note that
ymax = 1 recovers the result obtained from the first iteration.31

The determination of ymax requires the evaluation of the
inflection point of M2(t). Under the substitution dy/dt = κy,
the inflection point is found as(

d2M2

dy2
+ 1

y

dM2

dy

)
y=ymax

= 0. (28)

which is a polynomial equation for ymax

0 =
⎛
⎝ ∞∑

q=1

(−1)qyq−1
max

qq!

⎞
⎠

2

+
∞∑

q=1

(−1)qyq−2
max

q!
. (29)

This equation must be solved numerically and results in
ymax = 0.99616. This value determines the maximum growth
rate, rmax = (dM/dt)t=tmax = κy(dM/dy)y=ymax

, as

rmax = 0.3267 M(∞)κ, (30)

which may be compared with the first order and exact numer-
ical results to show a significant improvement over the first
order

rmax =

⎧⎪⎨
⎪⎩

0.3679 M(∞)κ first iteration

0.3267 M(∞)κ second iteration

0.3182 M(∞)κ exact numerical

. (31)

Substituting ymax into Eq. (25) yields the lag time
scaling τlag = [log(1/C+) + s]κ−1 for s = log(ymax)
− κM(tmax)/rmax, resulting in

s = log (ymax) +
1 − exp

(∑∞
p=1

(−1)py
p
max

p2p!

)
(∑∞

p=1
(−1)py

p
max

pp!

)
exp

(∑∞
p=1

(−1)py
p
max

p2p!

)
= −1.8053. (32)

Therefore

τlag = [
log (1/C+) − 1.805

]
κ−1. (33)

As a consistency check we can verify that setting the up-
per limits of the summations to unity and setting ymax = 1
recovers s = −e + 1 ≈ −1.718, which is the first iteration
result,31 as expected. Summarising the three results

τlag =

⎧⎪⎪⎨
⎪⎪⎩

[
log (1/C+) − 1.718

]
κ−1 first iteration[

log (1/C+) − 1.805
]
κ−1 second iteration[

log (1/C+) − 1.825
]
κ−1 exact numerical

(34)

The second order result is a substantial improvement over the
first, with the numerical constant now correct to within 1% of
the exact result.

V. MONOMER DEPENDENT SECONDARY
NUCLEATION

In the second part of this paper, we focus on polymeri-
sation processes where the secondary pathway is concentra-
tion dependent.4, 32 The analysis of this type of growth pro-
cess was pioneered by Eaton and Ferrone16, 32 in their work
on sickle hemoglobin gelation. Linear solutions can be ob-
tained much in the same way as for fragmentation but this
type of process introduces highly non-linear terms into the
master equations which become relevant when mass conser-
vation is enforced. Consequently, such processes are more
challenging to treat than the fragmentation case, and we an-
ticipate less rapid convergence of the fixed point scheme. In
addition, since the secondary nucleation term is now also af-
fected by the monomer depletion, the relative importance of
the primary and secondary nucleation may vary in a more
complicated way than in the fragmentation case where the
relative importance of primary to secondary nucleation de-
creases monotonically as the reaction proceeds. Hence, in the
case of monomer-dependent secondary nucleation, the inclu-
sion of primary nucleation only in the early time limit is ex-
pected to be insufficient in describing accurately the full time
course of the reaction.

For the case of monomer dependent secondary nucle-
ation, the equations for the moments become4, 16, 32

dP (t)

dt
= k2M(t)m(t)n2 + knm(t)nc , (35)

dM(t)

dt
= 2(m(t)k+ − koff)P (t)

+ ncknm(t)nc + n2k2M(t)m(t)n2, (36)

where the rate of production of filaments through the sec-
ondary pathway, k2M(t)m(t)n2 , has a monomer-dependence
for n2 ≥ 1, with the special case n2 = 0 recovering approxi-
mately the polymer mass concentration found in the case of
fragmenting filaments.31 Interestingly, the introduction of a
monomer-dependence in the secondary pathway implies that
there will be two distinct phases of behaviour. At early times,
when the monomer is not heavily depleted, the behaviour
of the system is analogous to a system of fragmenting fila-
ments, leading to exponential type growth in both P (t) and
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M(t), as can be seen from the linearized form k2M(t)m(t)n2

≈ k2M(t)mn2
tot that emerges when m(t) ≈ mtot. At later

times, as the monomer becomes depleted, there will be an
inflection point in P (t) beyond which the growth is not of
exponential type and instead approaches that of a primary
nucleation dominated system described by Oosawa8, 9 with a
modified nucleation rate. The latter identification can be made
explicit by writing k2M(t)m(t)n2 = k2m(t)n2 (mtot − m(t))
≈ k2m(t)n2mtot, which emerges when m(t) � mtot, leading to
a contribution from secondary nucleation in Eq. (35) that is of
equivalent form to the term describing primary nucleation. In
the case of fragmenting filaments, only the exponential phase
emerges over the timescale of the polymerisation reaction,
resulting in that case in the expectation that early time lin-
earized solutions could be extended in validity over the full
time course using a small number of fixed point iterations
(Ref. 31 and Sec. II). In the present case, however, we expect
to have to account explicitly for both phases of behaviour in
the proliferation of filaments in order to achieve rapid conver-
gence.

The starting point for our analysis in this section is given
by recalling the first-order self-consistent result30, 31 for the
kinetics of this process that has been derived by extending the
validity of the early-time linearized solutions16, 31 via a self-
consistent fixed-point iteration30, 31

M1(t) ≈ M(∞)[1 − exp(−C+eκt + C−e−κt + D)], (37)

for the polymer mass concentration M1 with
κ = √

2m(0)n2 [m(0)k+ − koff]k2 and C± ≈ k+P (0)/κ
± k+M(0)/{2[m(0)k+ − koff]} ± λ2/(2κ2), D = λ2/κ2

− M(0)/M(∞) + k+M(0)/[m(0)k+ − koff]. The long-time
limit is given by M(∞) ≈ mtot − koff/k+. Crucially, we note
that whilst this first order result is a significant improvement
over the linear results known previously, it becomes increas-
ingly inaccurate as n2 is increased as shown in Fig. 2. The
strategy for studying this system to a higher level of accuracy,
and hence to find a more accurate solution, is to consider
explicitly the two phases of behaviour discussed above. To
carry out this programme in practice, we first perform a
second order iteration based on the early time exponential
input, following the fragmentation case, neglecting O(kn).
This result will be accurate for earlier times before the
inflection point in P (t), but would be expected to be less
accurate for later times beyond this. The accuracy of the
solution at later times can be improved by accounting for
the deviation of P (t) from exponential behaviour in the
initial input for the fixed point scheme; as a general strategy
we use the solution itself to provide a new linearization as
an input for a subsequent fixed-point scheme that will be
accurate at later times. An additional advantage of this two
part approach is the possibility of including explicitly the
primary nucleation terms in the fixed point operator for later
times. The two solutions that emerge from this analysis, each
requiring only a small number of terms to remain convergent
over a smaller time range, can then be continued piecewise
together at an appropriate time given in closed form where
the transition between exponential type and Oosawa type
behaviour occurs; in this paper we make the natural choice of
the point of inflection of P (t) for this purpose.

Finally, through studying the two types of behaviour
present in this system, we are able to construct a single el-
ementary expression which is able to account accurately for
both the exponential and Oosawa type growth phases. To this
effect, we develop a simple closed form analytical result,
Eq. (54), to Eqs. (35) and (36) that has intermediate accu-
racy between the first order results31 and the highly accurate
second order results also presented here.

A. Exponential type growth prior
to the inflection point

In analogy with the treatment of fragmenting filaments,
the second order solution in the presence of secondary nucle-
ation can be obtained in our fixed point scheme as

M(t) = M(∞)

[
1 − exp

(
− M(0)

M(∞)
− 2k+

∫ t

0
P (τ )dτ

)]
.

(38)

Following our analysis of a system of frangible filaments, we
first derive a result for P1(t) for early times. To obtain the first
iteration result for P (t), we substitute Eq. (37) into Eq. (35).
Neglecting terms O(kn), the equation to be solved for P1(t)
becomes

dP e
1 (t)

dt
= k2M1(t)m1(t)n2 . (39)

Conservation of mass, M1(t) = mtot − m1(t), results in

dP e
1 (t)

dt
= k2mtotm1(t)n2 − k2m1(t)n2+1, (40)

where the monomer concentration m1(t) ≈ m(0)
× exp(−C+eκt + C−e−κt + D) is given for small de-
polymerisation rates from Eq. (37). Performing an equivalent
approximation to that of Eq. (9) results in the expression

dP e
1 (t)

dt
≈k2m(0)n2+1[exp(−n2C+eκt ) − exp(n2C−e−κt )

− exp(−(n2+1)C+eκt ) + exp((n2 + 1)C−e−κt )].

(41)

Integrating both sides with respect to time yields the self-
consistent solution for the polymer number concentration

P e
1 (t) = P (0) + k2m(0)n2+1

κ
[E1((n2 + 1)C+eκt )

−E1((n2 + 1)C+) − E1(−(n2 + 1)C−e−κt )

+E1(−(n2 + 1)C−) − E1(n2C+eκt ) + E1(n2C+)

+E1(−n2C−e−κt ) − E1(−n2C−)], (42)

which is analogous to Eq. (10) from our treatment of frag-
menting filaments.

We substitute y = eκt , z = e−κt into Eq. (42) so that
the integrand from Eq. (38) can be written as the difference
between two integrands of identical form as in the case of
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fragmenting filaments, Eq. (12). Thus, the solution is given
by the difference between these two known results Eq. (18).
Making the same asymptotic analysis as for frangible fila-
ments, Eq. (20), gives the closed form expression

Mseries
2 (t)

M(∞)
= 1 − exp

⎛
⎝ ∞∑

p=1

[
(−C+)p((1 + n2)p − n

p

2 )

p2p!

×
⎛
⎝epκt −

2p∑
q=0

(pκt)q

q!

⎞
⎠+ C

p
−((1 + n2)p − n

p

2 )

p2p!

×
⎛
⎝e−pκt −

2p∑
q=0

(−pκt)q

q!

⎞
⎠+ (−C+)p

p2p!

×
(

(pκt)2p−1

(2p − 1)!
+ (pκt)2p

(2p)!

)
+ C

p
−

p2p!

×
(

(−pκt)2p−1

(2p − 1)!
+ (−pκt)2p

(2p)!

)]
− M(0)

M(∞)

(43)

This equation, which is accurate for early times, in par-
ticular before the inflection point in P (t), has an analo-
gous form to the result obtained for frangible filaments,
Eq. (20), except for the presence of the multiplying factor
(1 + n2)p − n

p

2 in each term and additional polynomial terms.
Furthermore, as expected, Eq. (43) reduces to Eq. (20) for
n2 = 0.31

The convergence discussion from the fragmenting
growth section applies to this result as well, except that here
the additional multiplicative factor, which increases expo-
nentially with the index of summation, will reduce the con-
vergence rate of the series. Specifically, the rate of conver-
gence in Eq. (43), for the same timescale, is approximately
a factor of (1 + n2) slower than that observed for the anal-
ogous series in the fragmentation case. Crucially, however,
whilst the first order iteration results, Eqs. (3) and (37), pre-
dict a similar timescale for the completion of the reaction both
for the fragmentation and monomer-dependent secondary nu-
cleation cases, the more accurate second order iteration re-
sult, Eq. (43), shows that the kinetic profile in the latter case
is extended in time, with the end point being severely un-
derestimated by the first iteration. This behavior originates
from the transition from the exponential type growth in fib-
ril number, which is observed throughout the time course
for fragmenting filaments, to a slower growth form. A con-
sequence of this observation is that the truncation of the
summation must be valid in the monomer dependent sec-
ondary nucleation case over a much longer timescale than
analogous curves in the fragmentation case. Hence, although
only (1 + n2) times more terms are required to give conver-
gence over the same timescale, many more terms are required
to provide a valid truncation over the extended timescale
present in the monomer-dependent case. In the present so-
lution scheme, the requirement for large numbers of terms
in Eq. (43) is never realised, since the solution Eq. (43)
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FIG. 5. Convergence of the nth fixed point iteration, Mn(t), using the early
time linearization. M1 (blue dashed, Eq. (3)), Mseries

2 (red dashed, Eq. (43)
with 75 terms), exact solution including O(kn) (black). The lighter solid lines
show the corresponding numerical results. The black dotted line is the ex-
act result for the analogous fragmentation case for comparison. The orange
dotted-dashed line is the early time linearization. The parameters are M(0)
= P (0) = 0M , k+ = 5 × 104 M−1 s−1, koff = 0, k2m(0)n2 = 2 × 10−8s−1,
kn = 2 × 10−5 M−1s−1, mtot = 5 × 10−6M, nc = 2, n2 = 2.

will only be utilised up to the inflection point in P (t), such
that typically only terms up to p = 3 are required in the
summation.

The convergence behaviour is demonstrated in Fig. 5,
where the first two analytical iterations and the correspond-
ing numerical results are shown. For comparison, we also
consider the analogous fragmentation induced growth pro-
cess obtained by identifying k− = k2m(0)n2 and resulting
in a secondary process which for t = 0 has the same ef-
fect as that of the monomer-dependent case. In this anal-
ogous fragmentation case, 25 terms in the summation are
sufficient to prevent any significant errors from being intro-
duced in to the summation; this success is due to the fact
that the divergence in the series occurs after the reaction
end-point when M(t) ≈ mtot and is therefore inconsequen-
tial to the description of the growth phenomenon. In agree-
ment with the convergence discussion above, it is observed
in Fig. 5 that with n2 + 1 = 3 times as many terms, i.e. 75,
the summation from Eq. (43) is valid to the same time in
the monomer dependent secondary nucleation case as in the
fragmentation case, as shown by the fact that the step indi-
cating the divergence in the series Eq. (43) (red dashed line)
occurs precisely at the end-point of the fragmentation case
(black dotted line).

The change in the shape of the curve relative to the
case of fragmenting filaments can also be seen in the scal-
ing of the lag time. Although this has the same form as for
frangible filaments, the constant term in the scaling law is
changed, reflecting the change in the shape of the kinetic
profile. The scaling law from the second iteration result can
be found using the same approach as in the fragmentation
case, and the results for different vales of n2 are shown
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below

τlag=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
log (1/C+) − 1.718

]
κ−1 first iteration, all n2[

log (1/C+) − 1.805
]
κ−1 second iteration, n2 = 0[

log (1/C+) − 2.023
]
κ−1 second iteration, n2 = 1[

log (1/C+) − 2.225
]
κ−1 second iteration, n2 = 2[

log (1/C+) − 2.684
]
κ−1 second iteration, n2 = 5[

log (1/C+) − 3.167
]
κ−1 second iteration, n2 = 10

.

(44)

As expected, n2 = 0 recovers the scaling characteristic of the
growth of fragmenting filaments. As n2 is increased, the first
iteration result becomes increasingly poor. In particular, the
end time is increasingly underestimated for increasing n2, and
so more and more terms are needed in the summation for the
second order iteration using Eq. (43).

We note that the integrand that emerges from substituting
Eq. (42) into Eq. (38) may also be integrated by re-writing

I = k2m(0)n2+1

κ
[g+(n2 + 1) − g+(n2)

− g−(n2 + 1) + g−(n2)

+E1(n2C+) − E1 ((n2 + 1)C+)

−E1(−n2C−) + E1(−(n2 + 1)C−)], (45)

with the functions g+(x) = E1(xC+eκt ) and g−(x)
= E1(−xC−e−κt ). Since the integrand contains the same
functions g± evaluated with different arguments, the
integrand can be rewritten exactly as

I = k2m(0)n2+1

κ

⎛
⎝ ∞∑

i=1

1

i!

dig+(x)

dxi

∣∣∣∣∣
x=n2

−
∞∑
i=1

1

i!

dig−(x)

dxi

∣∣∣∣∣
x=n2

+E1(n2C+) − E1 ((n2 + 1)C+) − E1(−n2C−)

+E1(−(n2 + 1)C−)

⎞
⎠ . (46)

This expression can be evaluated and integrated analyt-
ically term by term. For n2 ≥ 2, an expansion to the fifth
derivative is sufficient to give an excellent approximation to
the exact result of the integral, with the result becoming more
accurate as n2 increases.

B. Oosawa type growth post-inflection point

The result Eq. (43) is accurate for all initial conditions
and early and intermediate times and gives in closed form
the time evolution of a filamentous system that grows through
monomer dependent secondary nucleation and filament elon-
gation. In order to extend the applicability of the solution to
later times, we will use Eq. (43) to provide the appropriate
initial conditions at the characteristic inflection point in the
sigmoidal growth curve for the polymer number concentra-
tion to initiate a new fixed point iteration providing a more
accurate description past the inflection point. This new lin-

earization will account for the change in form of the increase
in polymer number that emerges at later times in the reac-
tion. Crucially, this approach will also enable us to include
exactly the primary nucleation terms into the fixed-point op-
erator, which is vital as the relative balance of primary and
secondary nucleation varies as the reaction proceeds.

We consider as the initial input to the late-time fixed point
scheme the straight line P

tmaxP
0 (t) that matches P (t) and its

gradient at its point of inflection in the reaction profile; the
time corresponding to the inflection point is denoted by tmaxP.
The linear input is expected to account better for the Oo-
sawa type growth phase than the early time exponential input
that is used prior to the inflection point. The choice for the
separation between the early and late time solutions is made
since beyond the inflection point in P (t), the functional form
of P (t) is clearly not well described by exponential growth.
In addition, at the point of inflection the second derivative of
P (t) is zero and therefore a linear approximation is valid here
up to the third derivative. The concentration of free monomer
m∗ = m(tmaxP) at the time corresponding to the point of inflec-
tion is given through differentiation of Eq. (35) and enforcing
the condition d2P/dt2 = 0 to yield

0 = k2n2m
n2−1
∗ mtot − k2(n2 + 1)mn2∗ + ncknm

nc−1
∗ . (47)

First note that in the case kn = 0, Eq. (47) has the simple solu-
tion m∗ = mtotn2/(n2 + 1) and to lowest order the nucleation
terms can be included through the use of a Newton-Raphson
correction to yield

m∗ = η − knη
nc−1nc

knnc (nc−1) ηnc−2 − k2n2ηn2−2mtot
, (48)

where η = mtotn2/(1 + n2). From the first order iteration re-
sult, Eq. (37), the time to reach m∗ is given approximately by

tmaxP = κ−1 log

(
−b +

√
b2 + 4C+C−
2C+

)
, (49)

for b = log(m∗/m(0)) − D with m∗ from Eq. (48) except
for the special case m∗ > m(0) or (1 + n2)k2m(0)n2−nc [m(0)
− η] < nckn, corresponding to there being no (or two) points
of inflection in P , for which we set m∗ = m(0) such that
tmaxP = 0.

Hence, our new initial linearization of M(t) is given as

M
tmaxP
0 (t) = α + β(t − tmaxP), (50)

with α = M2(tmaxP) and β = Ṁ2(tmaxP) where M2(t) is given
by Eq. (43); as we only require the pre-inflection point solu-
tion Eq. (43) to be valid until tmaxP, typically only terms in the
sum until p = 3 are required for adequate convergence.

The corresponding initial solution for P (t) may be found
from the differential equations Eq. (35)

P
tmaxP
0 (t) = γ + δ(t − tmaxP), (51)

with γ ≈ Ṁ2(tmaxP)/[2(m2(tmaxP)k+ − koff)] and δ = k2M2

(tmaxP)m2(tmaxP)n2 + knm2(tmaxP)nc , and m2(t) = mtot − M2

(t). Inserting Eq. (51) into Eq. (36), the first self-consistent so-
lution for M is found by direct integration, neglecting direct
consumption of monomer through the nucleation processes.
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FIG. 6. The solution found using a second linearization about the point
of inflection, tmaxP (indicated by the vertical black dotted line), is contin-
ued piecewise to Mseries

2 . For clarity we illustrate the case n2 = 1, where
M(tmaxP) ∼ mtot/2. The cyan dotted-dashed line is the new initial approxi-
mation, Eq. (50). For t < tmaxP, the red dashed line is Mseries

2 (Eq. (43) with
3 terms). For t > tmax, the blue dashed line is the first order iteration given
by the new expression, M

tmax
1 (Eq. (52)), and the red dashed line is the corre-

sponding second order iteration, Mtmax
2 (Eq. (A4)). The orange dotted-dashed

line is the early time linearization. The parameters are M(0) = 5 × 10−8

M, P (0) = M(0)/5000, k+ = 2 × 104 M−1 s−1, koff = k+mtot/20, k2m
n2
tot

=5×10−8s−1, kn = 1×10−4 M−1s−1, mtot = 5 × 10−6 M, nc = 2, n2 = 1.

With the condition M(tmaxP) = α we obtain

M
tmaxP
1 (t)

M(∞)
=1 − (M(∞) − α)

M(∞)
exp

(
−2k+

[
γ (t − tmaxP)

−δtmaxP(t − tmaxP) + 1

2
δ(t2 − tmaxP

2)
])

. (52)

Interestingly, this form, including the ∼t2 dependence, is
similar to that found for infrangible systems described by
Oosawa,8, 9, 31 Eq. (24), but with an effective primary nucle-
ation rate modified to account for the secondary nucleation
process. Corrections to this form are given by forming a sec-
ond iteration including O(kn); the derivation of this is given in
Appendix A and yields a highly accurate closed-form solution
for the behaviour after the inflection point of P (t). The second
order result for M(t), Eq. (A4), can be continued piecewise at
tmaxP with the result for Mseries

2 from Eq. (43) to give a final
result which is continuous by construction. The result is illus-
trated in Fig. 6 and written out fully up to third order terms in
Appendix B, Eq. (B1).

Although these closed form solutions contain more terms
than in the case where the secondary pathway is fragmenta-
tion, Eq. (20), it is interesting to note that the dependencies on
the kinetic parameters are analogous. In particular, in the case
of irreversible growth, koff = 0, Eq. (A4) continued piecewise
with Eq. (43) depends only upon the three kinetic parameters:
κ , λ, and k+. Additionally, in the absence of seed material,
M(0) = P (0) = 0, the closed-form result depends only upon
the two combinations of kinetic parameters: κ and λ.

C. Construction of a solution unifying both
exponential and Oosawa type growth

The piecewise second-order solution discussed above and
illustrated in Fig. 6 accounts explicitly for the change in be-
haviour at the inflection point in P (t) and is highly accurate
for all parameter values over the entire time course. In this
section, we exploit our understanding of the two types of be-
haviour present in the system to construct a unified solution,
resulting in a simplified closed-form solution in comparison
to that given by Eq. (B1). In order to account for the change
from exponential (Sec. V A) to Oosawa (Sec. V B) type be-
haviour in the polymer number concentration, P (t), we con-
struct an initial expression for the fixed point scheme with a
form, Ps(t), that is exact in both known limits of the poly-

mer number concentration: Ps(t)
t→0−−→ P0(t) and Ps(t)

t→∞−−−→
P (∞), where P0(t) is the early time linearized solution,16, 31

P0(t) = C+κeκt/(2k+) + C−κe−κt /(2k+), and the long-time
limit value of the polymer number, P (∞), is derived in Ap-
pendix C, Eq. (C6). These considerations yield

Ps(t) = P0(t)

1 + P0(t)
P (∞)

. (53)

Performing a single fixed-point iteration by inserting Eq. (53)
into Eq. (38) yields the first order self-consistent result for
M(t)

Ms(t)

M(∞)
= 1 −

(
1 − M(0)

M(∞)

)

×
(

B+ + C+
B+ + C+eκt

B− + C+eκt

B− + C+

) k2∞
κk̃∞

e−k∞t , (54)

where the constants are given as

k∞ = 2k+P (∞)

= κ

√
2

n2(n2 + 1)
+ 2

nc

λ2

κ2
+ 2

n2

M(0)

m(0)
+
(

2k+P (0)

κ

)2

,

(55)

k̃∞ = √
k2∞ − 4C+C−κ2, (56)

B± = k∞ ± k̃∞
2κ

. (57)

This closed form result, which also applies for a system of
fragmenting filaments as n2 → 0, has intermediate accuracy
between the first-order solutions, Eqs. (3) and (37), and the
highly accurate second order iterations, Eqs. (20) and (B1).
The improvement in accuracy in comparison to the first order
solution generally increases with n2 as the inflection point in
P (t) moves to earlier times. Equation (54) has an accuracy
with respect to the numerical solution of Eqs. (35) and (36)
that is less in many cases than the experimental error of mea-
surements of protein aggregation acquired using fluorometric
or other optical methods commonly in use in biochemistry.
The results, Eqs. (53) and (54), are illustrated in Fig. 7.

In the special case corresponding to frangible filaments,
Eq. (53) reduces to the early time linearised solution P0(t);31
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FIG. 7. The solutions for P (t) and M(t), Eqs. (53) and (54), constructed
to include both exponential- and Oosawa-type behaviour. The results are
plotted as P (t)/P (∞) and M(t)/M(∞), respectively. The solid lines show
the exact numerical solution calculated from Eqs. (35) and (36), the dashed
lines show Eqs. (53) and (54), and the dotted-dotted lines show the pre-
viously known linearized early time solutions (see Refs. 14–16, and 32).
The blue dotted line shows the late time solution, Eq. (67). The param-
eters are M(0) = P (0) = 0, k+ = 5 × 104 M−1 s−1, koff = k+mtot/1000,
k2m

n2
tot = 3 × 10−7s−1, knm

nc−1
tot = 3 × 10−9 s−1, mtot = 5 × 10−5 M, nc

= 4, n2 = 4.

in this special case, therefore, the result Ms(t) recovers ex-
actly the first-order self-consistent solution for fragmenting
filaments,30, 31 M1(t) Eq. (3). This limiting behaviour emerges
since Eqs. (35) and (36) with n2 → 0 reproduce correctly the
time evolution of the polymer mass concentration of frag-
menting filaments, given from Eqs. (1) and (2), despite the
fact that they fail to account exactly for the long-time limiting
behaviour of the polymer number concentration.31, 35

As a consistency check we verify that the early time
limit of Eq. (54) reduces to the well-known linearised
solution.16, 31 When the system is driven by secondary nu-
cleation, the conditions |B+| � C+, |B−| � C+ with k̃∞
= k∞ − 2C+C−κ2/k∞ + O((C+C−κ2)2/k2

∞) yield the ex-
pansion for early times

Ms(t)

M(∞)
≈ 1 −

(
1 − M(0)

M(∞)

)[(
1 + k2

∞
κk̃∞

C+
B+

)

×
(

1 − k2
∞

κk̃∞

C+
B+

eκt

)
e

k2∞
κk̃∞ κt

(
1 + k2

∞
κk̃∞

B−
C+eκt

)

×
(

1 − k2
∞

κk̃∞

B−
C+

)]
e−k∞t

≈ 1 −
(

1 − M(0)

M(∞)

)[
(1 + C+) (1 − C+eκt )

× (1 + C−e−κt ) (1 − C−)

]

= C+(eκt − 1) − C−(e−κt − 1) − M(0)

M(∞)
+ O(C2

±)

+O(C±M(0)M(∞)−1). (58)

an expression that recovers exactly the early time linearized
solution.31

The scaling behaviour of the lag-time may be found from
Eq. (54). For a system dominated by secondary nucleation,
beyond early times Eq. (54) becomes

Ms(t)

M(∞)
= 1 −

(
B+ + C+

B+ + C+eκt

) k2∞
κk̃∞

, (59)

from which the time at the point of inflection in M(t) is found
to occur at

tmax =
[

log

(
1

C+

)
−log

(
k2
∞

κk̃∞B+

)]
κ−1 ≈ log

(
1

C+

)
κ−1,

(60)

since the condition ncκ
2 � n2(n2 + 1)λ2 yields B+ ≈ k∞/κ

and k∞ ≈ k̃∞ for systems that are not heavily seeded. The
maximal growth rate is then given as

rmax =
k2
∞

κk̃∞

1 + k2∞
κk̃∞

⎛
⎝ (B+ + C+) k2

∞
κk̃∞

B+
(

1 + k2∞
κk̃∞

)
⎞
⎠

k2∞
κk̃∞

M(∞)κ, (61)

≈ θ

1 + θ

(
θ

1 + θ

)θ

M(∞)κ. (62)

The lag-time, defined in Eq. (25), may then be found as

τlag =
(

log

(
1

C+

)
− log

(
k2
∞

κk̃∞B+

)

−
1 + k2

∞
κk̃∞

k2∞
κk̃∞

⎛
⎝ B+

(
1 + k2

∞
κk̃∞

)
(B+ + C+) k2∞

κk̃∞

⎞
⎠

k2∞
κk̃∞ )

κ−1, (63)

≈
[

log

(
1

C+

)
− 1 + θ

θ

((
1 + θ

θ

)θ

− 1

)]
κ−1, (64)

where k∞/κ ≈ θ = √
2/[n2(n2 + 1)]. These results Eqs. (62)

and (64) recover the form of scaling laws previously iden-
tified in Eqs. (31), (34), and (44) and provide, in a sim-
ple closed form, expressions for the constant terms in the
scaling laws valid for any n2 ≥ 0. In particular, the constant
terms generated by Eq. (64) reproduce the constants found in
Eq. (44) to within better than 10%. Moreover, for higher n2,
Eq. (64) offers an improvement over Eq. (44) in the accuracy
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of this constant relative to the numerical solution. Remark-
ably, in the limit n2 → 0, the identity e = lim

n→∞(1 + 1/n)n

results in Eqs. (62) and (64) recovering exactly the scaling
results from the first-order iteration.30, 31

VI. TIME TO COMPLETION

The polymerization reaction comes to completion when
the free monomer has been predominantly depleted, and an
equilibrium is established between the aggregated and sol-
uble phases. The time at which this equilibrium is reached
depends on the initial concentration of monomer at the be-
ginning of the reaction. We show here that this dependence is
essentially a power-law of a form analogous to that governing
the lag-time but with a different proportionality constant. We
consider here the case where the overall reaction is driven by
secondary nucleation processes, and the primary nucleation
terms described by λ can be neglected in front of terms in κ .

For times t � κ−1, Eqs. (20), (43), and (54) each show
that (for any given n2) the fractional polymer mass concen-
tration is approximately a function only of the combination
C+eκt . As such, the time needed to reach each given frac-
tional polymer mass concentration in this time limit must
correspond to a constant value of C+eκt . In particular, if
the end point of the reaction is defined as τend such that
M(τend)/M(∞) = s, for some constant s → 1, then it must
be the case that C+eκτend is constant. Explicitly, for any given
n2 there is a constant c such that C+eκτend = c, which yields
the expression

τend = [
log (1/C+) + log(c)

]
κ−1. (65)

Interestingly, since C+eκτend is approximately a constant that
is independent of the kinetic parameters, the number of terms
required in the summations in Eqs. (20) and (43), for conver-
gence up to an appropriate s, must also be independent of the
parameters.

A closed form expression for log(c) may be derived
from Eq. (54). For a secondary nucleation dominated sys-
tem beyond early times, Eq. (59) can be inverted to yield the
time for the reaction end-point as

τend =
[
log (1/C+) + log(θ [(1 − s)−

1
θ − 1])

]
κ−1, (66)

where k∞/κ ≈ θ = √
2/[n2(n2 + 1)] for a system dominated

by secondary nucleation, ncκ
2 � n2(n2 + 1)λ2, and for small

levels of initial seeding. Equation (66) has the expected form
from Eq. (65) and identifies the constant term c as a function
of the secondary nucleation exponent n2. This scaling result
is valid for all n2 ≥ 0, with n2 = 0 recovering the end-point
scaling predicted by the first-order result for the case of frag-
menting filaments.30, 31 The result in the case of fragmenting
filaments may, in particular, be improved by inverting the re-
sult of the second-order iteration Eq. (26) and solving the re-
sulting polynomial equation for c.

It is interesting to note from Eq. (59) that as the expo-
nential term becomes large at later times, C+eκt � B+, the
polymer mass concentration evolves as

Ms(t)

M(∞)
≈ 1 − B+

C+
e−k∞t . (67)

The fractional polymer mass concentration at which this
occurs depends on n2 (since B+ ≈ θ ), with the condition
C+eκt � B+ being equivalent to M(t)/M(∞) � 1 − 2−θ .
This result shows that the transition to this long-time be-
haviour, Eq. (67), occurs at lower polymer mass concentra-
tions for higher exponents n2. Qualitatively, this behaviour is
expected since, for n2 > 1, the elongation rate has the weakest
monomer dependency in the system. For n2 = 0, this regime
is not reached, with the condition reading M(t)/M(∞) � 1,
since the secondary pathway in the case of fragmenting fila-
ments has a weaker monomer dependency than the elongation
rate.

As an illustrative example, we provide explicitly the scal-
ing laws for the time to 99.9% completion for various values
of n2

τend =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
log (1/C+) + 3.0

]
κ−1 fragmentation[

log (1/C+) + 6.9
]
κ−1 n2 = 1[

log (1/C+) + 11
]
κ−1 n2 = 2[

log (1/C+) + 25
]
κ−1 n2 = 5[

log (1/C+) + 49
]
κ−1 n2 = 10

, (68)

which are similar in form to the lag time scaling Eq. (44).
This scaling is also of practical interest as it allows the pre-
diction of the relevant timescale of a reaction at the design
stage of experiments. In particular, the scaling law reveals ap-

proximately τend ∼ m(0)−
n2+1

2 , which is useful in predicting
the relevant timescales of reactions at different total monomer
concentrations.

VII. SELF-CONSISTENT SOLUTION FOR THE
LENGTH DISTRIBUTION

We have derived earlier31 the time evolution of the
mean and standard deviation of the length distribution of
fragmenting filaments in the case of a constant monomer
concentration.31 In the case of the standard deviation, these
results were obtained for a system where all of the material
was initially soluble under the assumption that the distribution
is not heavily skewed. The availability of expressions for both
the mean and the standard deviation makes it possible to eval-
uate the time evolution of the full filament length distribution
within a self-consistent framework and determine the skew-
ness and higher central moments of the length distribution. To
this effect, we demonstrate the wider applicability and power
of our self-consistent approach by finding the first correction
to the symmetric Gaussian approximation to the length dis-
tribution using a self-consistent scheme. We use this result to
determine the correction, relative to the mean, to the time evo-
lution of the mode of the distribution, which is not available
simply through knowledge of the first three moments of the
distribution.

Formally integrating the master equation31 for the irre-
versible growth of fragmenting filaments, the solution for the
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full length distribution can be written as

f (t, j ) = 2mtotk+e−2mtotk+t

∫ t

0
e2mtotk+τ f (τ, j − 1)dτ

− k−e−2mtotk+t

∫ t

0
e2mtotk+τ

⎡
⎣(j − 1)f (t, j )

−2
∞∑

i=j+1

f (t, i)

⎤
⎦ dτ + knm

nc

totδj,nc
e−2mtotk+t

×
∫ t

0
e2mtotk+τ dτ. (69)

We note that it is possible to solve this equation exactly for
any f (j, t) recursively beginning with f (t, nc) and integrat-
ing j − nc times. However, given the considerable coupling
of equations in this system through the summation term relat-
ing to filament breakage, this approach becomes impractical
beyond small j . Instead, it is possible to remove the coupling
originating in the fragmentation related terms using a self-
consistent approach.

Consider initially the master equation without filament
fragmentation, k− = 0. In this case each equation is only cou-
pled to its nearest neighbours and the solution fk−=0(j, t),
found by repeated integration, is given as

fk−=0(j, t)

P (t)
= knm

nc−1
tot

2k+
(1 − e−2mtotk+t )

−knm
nc−1
tot

2k+
e−2mtotk+t

j−n∑
i=1

(2mtotk+t)i

i!
. (70)

In this case the master equation is a discretization of an advec-
tion equation and so the solution describes a travelling wave
in j moving to encompass larger filament sizes at velocity
2k+mtot.

We now account in a self-consistent manner for the terms
in the master equation describing fragmentation by intro-
ducing for the filament length distribution in these terms
the Gaussian approximation with mean31 μ(t) and standard
deviation31 μ(t)/

√
3

f0(j, t) =
√

3

2π

e
− 3(j−μ(t))2

2μ(t)2

μ(t)

P (t)

E∞
, (71)

where E∞ is a normalization constant for the distribu-
tion between j = nc and j = ∞, E∞ ≈ 1/2(1 + erf(

√
3/2))

≈ 0.96, where the approximation is valid since μ(t) � nc.
Note that the distribution f0(j, t), due to the cut-off at nc, has
a mean length, μ0(t), different to the exact value, μ(t)

μ0(t) =
∫ ∞

nc

s
f0(s, t)

P (t)
ds = μ(t) + 1

3
μ(t)2 f0(nc, t)

P (t)
. (72)

We now consider the breakage related terms in Eq. (69).
Introducing the initial Gaussian approximation and replacing
the summation term in Eq. (69) with a continuum approxima-

tion leaves

−k−e−2mtotk+t

∫ t

0
e2mtotk+τ

[
(j − 1)f0(t, j ) − 2P (t) + 2

×
∫ j

nc

f0(t, i)di

]
dτ. (73)

In addition, we must account for the coupling of these break-
age related terms to nearest neighbours through the first term
in Eq. (69), which introduces a summation over j . This al-
lows us to write within this self-consistent framework the full
length distribution as a function of time

f1(j, t) = fk−=0 − k−e−2mtotk+t

∫ j

nc

∫ t

0
e2mtotk+τ

×
[

(s − 1)f0(t, j )−2P (t)+2
∫ s

nc

f0(t, i)di

]
dτds.

(74)

Performing the integration with respect to time using the
general expansion for large α, e−αt

∫ t

0 eαxy(x)dx = y(t)/α
+ O(y ′(t)/α2), allows us to evaluate these integrals to first-
order approximation to give a new expression for the filament
length distribution

f1(j, t) = fk−=0 + k−
2mtotk+

(2P (t)(j − nc)

−2F1(j, t) − F2(j, t)), (75)

where the functions E(j, t), F1(j, t), and F2(j, t) are given in
terms of error functions

E(j, t) =
∫ j

nc

f0(s, t)ds

= P (t)

2E∞

⎡
⎣−erf

⎛
⎝
√

3
2 (μ(t) − j )

μ(t)

⎞
⎠+ erf

(√
3

2

)⎤⎦ ,

(76)

F1(j, t) =
∫ j

nc

E(s, t)ds =
∫ j

nc

∫ s

nc

f0(r, t)drds

= [j − μ(t)]E(j, t) + 1

3
μ(t)2[f0(j, t) − f0(nc, t)],

(77)

F2(j, t) =
∫ j

nc

(s − 1)f0(s, t)ds

= [μ(t) − 1]E(j, t) − 1

3
μ(t)2[f0(j, t) − f0(nc, t)].

(78)

For large j , the errors O(α−2) accumulate due to the in-
tegral over j in Eq. (74), resulting in excellent accuracy
for small and intermediate j but an incorrect limit for j

→ ∞. This limit, however, can be evaluated exactly, yield-
ing P (t)[μ0(t) − 2nc + 1]. Removing the associated terms in
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FIG. 8. The solution derived for the time evolution of the full filament length distribution in our self-consistent scheme, Eq. (79), is shown in red (dashed).
The numerical result is shown in black, and the initial Gaussian approximation, Eq. (71), is shown in blue (dotted). The parameters are M(0) = P (0) = 0,
k+ = 1 × 104 M−1 s−1, koff = 0, k− = 2 × 10−7s−1, kn = 1 × 10−5 M−1 s−1, mtot = 1 × 10−6 M, nc = 2.

Eq. (75) yields

f1(j, t) = fk−=0 + k−
2mtotk+

[
2[P (t) − E(j, t)][j − nc]

− 1

3
μ(t)2

[
f0(j, t) −

[
1 − E(j, t)

P (t)

]
f0(nc, t)

]]
,

(79)

where fk−=0 is given in Eq. (70). The result f1(j, t), Eq. (79),
is expected to be highly accurate for small filament sizes,
since the coupled integration over j is most accurate in this
regime. Due to the contribution from the solution of the ad-
vection equation, Eq. (70), we would expect the result to be

accurate up to lengths 2μ(t), or equivalently
√

3 ≈ 1.7 stan-
dard deviations above the mean, thus being accurate for all
but the tail of the distribution. The improvement over the ini-
tial Gaussian solution obtained using the information from the
first three principal moments is shown in Fig. 8.

The mode of the distribution can be obtained from the
condition ∂f/∂j |j=jmode = 0, resulting in

0 = f0(jmode, t)(2nc − μ0(t) − j ) + 2P (t) − 2E(jmode, t),

(80)

since (μ(t)2/[3f0(j, t)])∂f0/∂j = μ(t) − j . Expanding the
Gaussian f0(j, t) to lowest order about the mean results in
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FIG. 9. The correction to the mode in relation to the mean, Eq. (82), exhib-
ited by our solution to the full length distribution, Eq. (79), is shown in red
(dashed). The numerical result is shown in black, and the result from the ini-
tial Gaussian approximation is shown in blue (dotted). The parameters are
the same as in Fig. 8.

0 =
√

3
2π

μ(t)E∞
[2nc − μ0(t) − jmode] + 2

− 2

(
1

2E∞
erf

(√
3

2

μ(t) − nc

μ(t)

)

+
√

3
2π

μ(t)E∞
[jmode − μ(t)]

⎞
⎠+ O(j 2). (81)

Using μ(t) � nc and Eqs. (71) and (72) yields the simple
result

jmode = 1

3

(
1 +

√
2π

3
− 1

3

√
3

2π

e− 3
2

E∞

)
μ(t)

≈ 0.8μ(t). (82)

As expected, the mode of the distribution is below the mean,
and we recover the interesting result that the ratio of the
mode to the mean, and hence also to the standard devia-
tion, is approximately a constant in time for this system; the
mode evolves with the same functional form as the mean and
standard deviation. The improvement in the value of the mode
of the filament distribution in the distribution f1(j, t) com-
pared with the original Gaussian f0(j, t) is shown in Fig. 9.

VIII. CONCLUSION

We have used the power of iterative fixed point schemes
to provide self-consistent solutions to growth processes de-
scribed by highly non-linear master equations. We have
shown that corrections to the scaling behaviour emerging
from first order results can be well captured by second order
self-consistent solutions, which yield coefficients for the char-
acteristic scaling laws which are very close to ones obtained
from numerical evaluation. More generally, these results

illustrate the value of fixed-point analysis strategies in order to
provide self-consistent solutions to complex growth problems
beyond perturbative treatments.

APPENDIX A: SECOND ORDER ITERATION
POST-INFLECTION POINT

The first post-inflection point self-consistent solution for
the moment P (t) is found by inserting M

tmaxP
1 from Eq. (52)

into Eq. (35); crucially, we include here exactly the term
O(kn). Together with the condition P (tmaxP) = γ this yields

P
tmaxP
1 (t)=γ + k2mtoth (n2, t) − k2h (n2 + 1, t) + knh (nc, t) ,

(A1)

where

h(x, t) = e
γ

δ
k+γ x

√
π (er(x, t) − er(x, tmaxP)) (mtot − α)x

2
√

k+δx
,

(A2)

and

er(z, t) = erf
(γ

δ

√
k+δz + (t − tmaxP)

√
k+δz

)
, (A3)

for the error function erf(z) = 2/
√

π
∫ z

0 e−t2
dt . A further it-

eration can be performed from Eq. (36) by direct integration,
yielding the final result for the post-inflection point solution
M

tmaxP
2

M
tmaxP
2 (t)

M(∞)
= 1 − (M(∞) − α)

M(∞)
exp

[
− 2k+γ (t − tmax)

− κ2
0 v (n2, t)

mtot

m(0)
+ κ2

0 v (n2 + 1, t)

− λ2v (nc, t)

]
, (A4)

where

v(x, t) =
(γ

δ
+ (t − tmaxP)

) h(x, t)

m(0)x

+ e−k+δx(t−tmaxP)2−2k+γ x(t−tmaxP) − 1

2k+δx

(mtot − α)x

m(0)x
,

(A5)

for κ0 = κ|koff=0 =
√

2m(0)n2+1k+k2. Apart from the influ-
ence of the boundary conditions defined by α and β, these
results for M , Eqs. (52) and (A4), depend on the rate con-
stants only through the combinations k+γ , k+δ and their ratio
γ /δ. These combinations are given approximately as

k+γ ≈ k+Ṁ2(tmaxP)

2(k+m2(tmaxP) − koff)
, (A6)

k+δ = M2(tmaxP)m2(tmaxP)n2

2m(0)n2+1
κ2

0 + m2(tmaxP)nc

2m(0)nc
λ2. (A7)
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We note that due to the explicit inclusion of primary nu-
cleation terms, we recover the combination λ which is the sin-
gle parameter that defines growth of filaments in the absence
of secondary nucleation.9, 31 These terms governed by λ in

Eq. (A4) become important for kinetic parameters that result
in primary nucleation being more significant than secondary
nucleation for creating seeds for times after tmaxP. In many
cases, particularly for nc > n2, these terms are not significant.

APPENDIX B: FULL SECOND-ORDER SOLUTION FOR MONOMER-DEPENDENT SECONDARY NUCLEATION

The second-order self-consistent solution to Eqs. (35) and (36) for the polymer mass concentration of a system of filaments
growing through primary nucleation, monomer addition, monomer dissociation, and secondary nucleation derived in this paper
can be written out in full as

M(t)

M(∞)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − exp

{
− (eκt − 1)C+ + (e−κt − 1)C−

+
(
(1 + n2)2 − n2

2

)
8

[(e2tκ − 1 − π
(2)
+ (t))C2

+ + (e−2tκ − 1 − π
(2)
− (t))C2

−]

+
(
(1 + n2)3 − n3

2

)
54

[−(e3tκ − 1 − π
(3)
+ (t))C3

+ + (e−3tκ − 1 − π
(3)
− (t))C3

−] − M(0)

M(∞)

}
t ≤ tmaxP

1 − (M(∞) − M(tmaxP))

M(∞)
exp

[
− 2k+γ (t − tmax) − κ2

0 v(n2, t)
mtot

m(0)
+ κ2

0 v(n2 + 1, t) − λ2v(nc, t)
]

t > tmaxP,

(B1)

where the dependencies on the rate constants and initial conditions are defined through

π
(2)
± (t) = ±2κt + 2κ2t2 + (±4κ3t3/3 + 2κ4t4/3)

{
1 − 1/

[
(1 + n2)2 − n2

2

]}
, (B2)

π
(3)
± (t) = ±3κt + 9κ2t2/2 ± 9κ3t3/2 + 27κ4t4/8 + (±81κ5t5/40 + 81κ6t6/80)

{
1 − 1/

[
(1 + n2)3 − n3

2

]}
, (B3)

κ =
√

2(k+m(0) − koff)m(0)n2k2 κ0 =
√

2m(0)n2+1k+k2 λ =
√

2m(0)nck+kn, (B4)

C± = k+P (0)

κ
± k+M(0)

2[m(0)k+ − koff]
± λ2

2κ2
b = log

(
m∗

m(0)

)
− λ2

κ2
+ M(0)

M(∞)
− k+M(0)

k+m(0) − koff
, (B5)

M(∞) = mtot − koff/k+ m∗ = η − λ2ηnc−1nc

λ2nc (nc−1) ηnc−2 − κ2
0 n2ηn2−2mtotm(0)nc−n2−1

η = mtotn2/(1 + n2), (B6)

tmaxP =

⎧⎪⎨
⎪⎩

0 m∗ > m(0) or (1 + n2)κ2
0 [m(0) − η] < ncm(0)λ2,

κ−1 log

(
−b+

√
b2+4C+C−
2C+

)
otherwise

(B7)

h(x, t)= e
γ

δ
k+γ x

√
π (er(x, t)−er(x, tmaxP)) (mtot−M(tmaxP))x

2
√

k+δx
er(z, t) = erf

(γ

δ

√
k+δz + (t − tmaxP)

√
k+δz

)
, (B8)

v(x, t) =
(γ

δ
+ (t − tmaxP)

) h(x, t)

m(0)x
+ e−k+δx(t−tmaxP)2−2k+γ x(t−tmaxP)−1

2k+δx

(mtot−M(tmaxP))x

m(0)x
, (B9)
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k+γ ≈ k+Ṁ2(tmaxP)

2(k+m2(tmaxP) − koff)
k+δ = M2(tmaxP)m2(tmaxP)n2

2m(0)n2+1
κ2

0 + m2(tmaxP)nc

2m(0)nc
λ2. (B10)

The accuracy of this solution even for high exponents n2 and nc is demonstrated in Fig. 2.

APPENDIX C: POLYMER NUMBER CONCENTRATION
IN THE LONG-TIME LIMIT

For the case of fragmenting filaments, the long-time poly-
mer number concentration is given approximately from the
differential equation system Eqs. (1) and (2) as35

P (∞) = M(∞)

2nc − 1
fragmentation. (C1)

For the case of monomer-dependent secondary nucleation,
consider Eqs. (35) and (36) in the limit of no depolymeri-
sation rate koff = 0. Obtaining dm/dt from Eq. (36) via con-
servation of mass and then dividing through by m(t), differ-
entiating, and substituting from Eq. (35) leaves an equation in
terms of m(t) only

d2 log(m(t))

dt2
= −2k+knm(t)nc − 2k+k2mtotm(t)n2

+ 2k+k2m(t)n2+1. (C2)

Multiplying both sides by d log(m(t))/dt = 1/m dm/dt and
re-writing terms results in

1

2

d

dt

(
d log(m(t))

dt

)2

= d

dt(
−2k+knm(t)nc

nc

− 2k+k2mtotm(t)n2

n2
+ 2k+k2m(t)n2+1

n2 + 1

)
.

(C3)

Integrating and rearranging results in the first-order differen-
tial equation for m(t)

1

m

dm

dt
= −

[
κ̃2 − 4k+knm(t)nc

nc

− 4k+k2mtotm(t)n2

n2

+ 4k+k2m(t)n2+1

n2 + 1

]1/2

, (C4)

where the constant

κ̃2 = (2k+P (0))2 + 4k+knm(0)nc

nc

+ 4k+k2mtotm(0)n2

n2

− 4k+k2m(0)n2+1

n2 + 1
, (C5)

is given from the initial conditions. Considering Eq. (C4)
as t → ∞, and using 1/m dm/dt = −2k+P (t) and m(∞)
= 0, the long-time limit polymer number concentration, in the
absence of a depolymerisation rate, is found in closed form

as

P (∞) = κ̃

2k+
n2 > 0. (C6)

This result is exact in the absence of depolymerisation and ap-
plies approximately over the timescale of the polymerisation
kinetics ∼κ−1 even in the presence of a small depolymerisa-
tion rate koff � k+mtot. However, even small values of the de-
polymerisation rate lead, over a significantly longer timescale
t � κ−1, to a diffusive-like redistribution in the long-time
limit length distribution of filaments. This results in Eq. (C6)
describing the transient state at the end of the polymerisation
reaction prior to this relaxation; this final redistribution is dis-
cussed in Ref. 35.
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