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We explore the long-time behavior and equilibrium properties of a system of linear filaments grow-
ing through nucleated polymerisation. We show that the length distribution for breakable filaments
evolves through two well defined limiting cases: first, a steady state distribution determined by
the balance of breakage and elongation is reached; upon monomer depletion at the end of the
growth phase, an equilibrium length distribution biased towards smaller filament fragments emerges.
We furthermore compute the time evolution of the concentration of small oligomeric filament
fragments. For frangible filaments, oligomers are present both at early times and at equilibrium,
whereas in the absence of fragmentation, oligomers are only present in significant quantities at the
beginning of the polymerisation reaction. Finally, we discuss the significance of these results for the
biological consequences of filamentous protein aggregation. © 2011 American Institute of Physics.
[doi:10.1063/1.3608918]

I. INTRODUCTION

The polymerisation of proteins into fibrillar structures
is a type of behavior characteristic of many different sys-
tems, both in the context of functional1–5 and aberrant bi-
ological pathways6–20 in nature. In particular, aberrant pro-
tein aggregation is observed in relation with 50 or more dis-
orders associated with formation of amyloid fibrils.14, 16, 21 A
key question characterising such linear growth phenomena is
the size of the structures that are formed from the proteins, as
this factor can influence the severity of disease or its rate of
progression.22–28 Nucleated polymerisation reactions yield fil-
ament populations with highly heterogeneous lengths,22, 29–32

a complexity due to the concurrent action of competing mi-
croscopic processes favoring either the lengthening or short-
ening of individual filaments in the ensemble. In this paper,
we focus on the behavior of the size distribution of aggre-
gates for long times, and explore the nature of the equilibrium
distribution using numerical solutions to the master equation
of filamentous growth, and obtain analytical results for many
of the important limiting cases.

II. MASTER EQUATION

The starting point for the analysis of the length distribu-
tion of filaments is given by the master equation describing
the kinetics of breakable filament assembly. Letting f (t, j )
denote the number of filaments of size j the master equation
reads32–36

∂f (t, j )

∂t
= 2m(t)k+f (t, j − 1) − 2m(t)k+f (t, j )

+ 2kofff (t, j + 1) − 2kofff (t, j )

a)Author to whom correspondence should be addressed. Electronic mail:
tpjk2@cam.ac.uk.

− k−(j − 1)f (t, j ) + 2k−
∞∑

i=j+1

f (t, i)

+ knm(t)ncδj,nc
. (1)

The condition f (t, j ) = 0 is imposed for all j < nc, where
nc ≥ 2 is the critical nucleus size for the filament growth,
that is, all chains shorter than nc are unstable. The concen-
tration of monomers in the system is m(t), and the last term in
Eq. (1) represents the spontaneous formation of a growth nu-
cleus of size j = nc. The dynamics of the system are defined
by the rate constants k+ for elongation, koff for monomer dis-
sociation from fibril ends, k− for fragmentation, and kn for
primary nucleation. Other processes, such as protein synthe-
sis and degradation32, 37 can be considered in this framework;
here, we focus on the intrinsic factors that govern the evo-
lution of the aggregate population. This case corresponds to
aggregation phenomena in vitro, or in vivo for cases where
aggregate growth dominates the opposing contribution from
degradation and results in the pathological deposition of ag-
gregated proteins.

The behavior of the system for k− = 0 yields classi-
cal linear polymerisation that has been studied previously by
Oosawa1, 29 and is discussed briefly in Sec. V. In order to pro-
vide a complete picture of the length distributions in nucle-
ated polymerisation phenomena, in this paper we focus pri-
marily on the other limiting case where filament fragmen-
tation and elongation dominate the evolution of the length
distribution, and primary nucleation and monomer dissocia-
tion are of lesser importance. In this limit, the rate of pro-
duction of filaments through nucleation, knm(∞)nc , is negli-
gible in front of the rate of production of filaments through
breakage k−[M(∞) − (2nc − 1)P (∞)]. Similarly, the rate of
generation of free monomer from aggregates through direct
dissociation 2koffP (∞) is taken to be negligible in front of
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the contribution from breakage through the creation of unsta-
ble filaments with a length smaller than the critical nucleus
size k−nc(nc − 1)P (∞). Interestingly (Sec. III B), intermedi-
ate parameter ranges interpolate smoothly between the clas-
sical nucleated polymerisation results and the fragmentation
dominated case.

III. FILAMENT GROWTH IN A CLOSED SYSTEM

A. Principal moments

In a closed system, the total protein concentration in so-
lution mtot = m(t) + ∑

j j · f (t, j ) is constant. Insights into
the behavior of the system at long times t → ∞ can be ob-
tained from considering average properties, such as the princi-
pal moments of the length distribution. From the master equa-
tion, the evolution of the principal moments,1, 38

P (t) =
∑

j

f (t, j ) M(t) =
∑

j

j · f (t, j ), (2)

have been shown to obey the differential equations1, 32, 37, 39

dP (t)

dt
= k−[M(t) − (2nc − 1)P (t)] + knm(t)nc , (3)

dM(t)

dt
= 2[m(t)k+ − k−nc(nc − 1)/2]P (t)

+ ncknm(t)nc . (4)

To determine the equilibrium steady state values of P and
M , the derivatives are set to zero. In the absence of nucleation,
kn = 0, we identify32

M(∞) = mtot − k−nc(nc − 1)

2k+
, (5)

P (∞) = M(∞)

2nc − 1
=

mtot − k−nc(nc − 1)

2k+
2nc − 1

, (6)

μ(∞) = M(∞)

P (∞)
= 2nc − 1. (7)

These equilibrium values correspond to stable node points
of the dynamical system, Eqs. (3) and (4), whereas the
trivial solution, M(0) = P (0) = 0, corresponds to an un-
stable saddle point. Equations (5)–(7) are also to a good
approximation satisfied even for kn > 0 in a wide range
of parameter space that is relevant to the analysis of
experimental data. More formally, we note that for nc

= 1, Eqs. (5)–(7) are verified exactly. For nc > 1, substitut-
ing M(t) = mtot − m(t), a polynomial equation of order nc

+ 1 is found for m(∞) which must be solved. For ex-
ample, for nc = 2, defining the dimensionless quantities μ

=m(∞)/mtot, χn =kn/k+, and χ− =k−/(mtotk+), we obtain
a cubic equation: μ3χn − μ2χ− (1 − 2χn) + μχ− (1 + χ−)
− χ2

− = 0. The exact solution to this cubic equation has
the leading order terms for small χ− � 1: m(∞) = k−/k+
− 3k2

−kn/(mtotk
3
+) + O(k3

−kn/(m2
totk

4
+)), confirming the accu-

racy of Eq. (7) for values of kn such that kn � mtotk
2
+/k−.

B. Equilibrium length distribution

Using the values for the principal moments from
Sec. III A, we can gain more detailed insight into the equi-
librium length distribution of an ensemble of breakable fila-
ments under the condition that the total mass in the system
is conserved.Qualitatively, we expect the length distribution
to be defined by a balance between filament fragmentation,
leading to a shortening of filaments, and filament elongation
which drives the length distribution towards a longer average
value. At equilibrium, the number of fibrils created through
fragmentation of long filaments into structures larger than the
critical nucleus size is compensated by the destruction of fil-
aments through fragmentation of short filaments to unstable
structures smaller than the critical nucleus size which disinte-
grate into their component monomers.

At steady state t = ∞, the left-hand side of the master
equation (1) is zero,

0 = 2m(∞)k+f (∞, j − 1) − 2m(∞)k+f (∞, j )

−k−(j − 1)f (∞, j ) + 2k−
∞∑

i=j+1

f (∞, i), (8)

an expression which takes the form of a recursion relation for
f (∞, j ). In order to solve for f (∞, j ), we rewrite the relation
as

∞∑
i=j+1

f (t, i) = P (∞) − f (t, j ) − f (t, j − 1) −
j−2∑
j=nc

f (t, i).

(9)
Equations (5) and (6) give m(∞) and P (∞). Substituting
these into the master equation and rearranging yields

f (∞, j )

P (∞)
=

(
nc (nc − 1) − 2

nc (nc − 1) + (j + 1)

)
f (∞, j − 1)

P (∞)

+
(

2

nc (nc−1) + (j+1)

)⎛
⎝1−

j−2∑
i=nc

f (∞, i)

P (∞)

⎞
⎠ .

(10)

This difference equation admits, as can be confirmed by direct
substitution, the exact solution:

f (∞, j )

P (∞)
= (j−(nc−1))(j+nc)(nc (nc−1))j−(nc+1)(nc−1)(

1+n2
c

) (
2+n2

c

)
j−nc

,

(11)

where (a)n is the Pochhammer symbol defined as
(a)n = a(a + 1), . . . , (a + n − 1) = �(a + n)/�(a). Equiv-
alently we can write

f (∞, j )

P (∞)
= nc[(nc−1)nc]j−nc

(
nc−n2

c +j+j 2
)(

n2
c −1

)
![

1+(nc−1)nc+j
]
!

,

(12)

where the gamma function can be used instead of the factori-
als to provide a straightforward continuous extension. Equa-
tion (12) describes the equilibrium length distribution of a
fragmenting filament system in closed form. Since this result
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is exact, it satisfies exactly
∑∞

j=nc
f (∞, j )/P (∞) = 1 and∑∞

j=nc
jf (∞, j )/P (∞) = 2nc − 1.

Interestingly, Eq. (12) shows that the entire shape of the
length distribution at long times, not just the average length,
is defined solely by nc, and does not depend on the rate con-
stants k+ or k−, which only serve to scale the long-time length
distribution by a constant factor.

In order to elucidate more clearly the functional form
of the equilibrium length distribution given by Eq. (12), an
approximation with a simpler functional form can be given
by solving the differential equation which results from con-
sidering the difference equation, Eq. (8), in the continuum
limit,

f (∞, j − 1) ≈ f (∞, j ) − f ′(∞, j ) + O(f ′′), (13)

∞∑
i=j+1

f (∞, i) ≈
∫ ∞

j+1/2
f (∞, i)di, (14)

where the lower limit of the integral has been chosen using the
midpoint approximation. Substituting these expressions into
Eq. (8) and differentiating with respect to j yields

0 = nc(nc − 1)f ′′(∞, j ) + (j − 1)f ′(∞, j )

+ f (∞, j ) + 2f (∞, j + 1/2) , (15)

and expanding the final term in Eq. (15),

f (∞, j + 1/2) ≈ f (∞, j ) + 1

2
f ′(∞, j )

+ 1

8
f ′′(∞, j ) + O(f ′′′), (16)

allows us to rewrite Eq. (15) as

0 = (nc(nc − 1) + 1/4)f ′′(∞, j ) + jf ′(∞, j ) + 3f (∞, j ).

(17)

The general solution to this differential equation Eq. (17)
is given, with arbitrary constants A and B, by

f (∞, j ) = Ae
− 2j2

(1−2nc )2 (4j 2 − (2nc − 1)2)

+ B

4j (2nc − 1) + 2
√

2
(
4j 2 − (2nc − 1)2

)
D

( √
2j

1 − 2nc

)

8(2nc − 1)3
,

(18)

where D(x) = e−x2 ∫ x

0 ey2
dy is the Dawson integral.

The second term in Eq. (18) does not contribute signif-
icantly for small nc, and decays quickly with j for large nc,
affecting only the value of f (∞, j ) around j = nc. Accord-
ingly, to first approximation, we set B = 0 and fix A by the
normalisation condition

∫ ∞
nc

f (∞, i)di = P (∞). These sim-
plifications result in a length distribution in the form of a bi-
ased Gaussian distribution,

f (∞, j )

P (∞)
= e

2(−j2+n2
c)

(1−2nc )2 [4j 2 − (1 − 2nc)2]

(1 − 2nc)2nc

. (19)

As a control for the quality of the approximations made
in the derivation of Eq. (19), we compute the mean, μ, of the
approximate continuum length distribution as

μ = 2nc − 1 + 1

4nc

≈ 2nc − 1, nc 	 1. (20)

A comparison of this result with the exact value from
Eq. (7) indicates that Eq. (19) becomes exact for large nc, and
it is expected that the continuum limit result, Eq. (19), will be-
come more accurate as nc increases. A comparison between
numerically generated data, Eqs. (19) and (12), is shown in
Fig. 1. The continuum limit gives the correct form – a biased
Gaussian function – and matches the exact solution well for
large nc. An approximation of the length distribution which
also accounts for the degradation of filaments has been put
forward previously by Ref. 32 and the results from this ap-
proach in the limit of no degradation are also shown in Fig. 1
for comparison.

The ratio of the standard deviation, σ , to the mean, μ,
of the equilibrium length distribution can also be calculated
from Eq. (19) in terms of the error function,

σ

μ
≈ 1

2

√
√

2eπ

[
1 − erf

(
1√
2

)]
− 1 ≈ 0.28, nc 	 1,

(21)

a result which recovers our previous analytical result,40 de-
rived from consideration of the moments of the length dis-
tribution only, that the equilibrium ratio between the standard
deviation and the mean filament length in a system of constant
mass is independent of the rate constants and approximately
equal to 1/(2

√
3) ≈ 0.29.

It is interesting to note that in the domain where the
continuum approximation, Eq. (19), is valid, the presence
of a finite but small dissociation rate koff > 0 does not, to
first approximation, modify the length distribution. Indeed
the equilibrium monomer concentration analogous to Eq. (5)
becomes40

m(∞) = k−nc(nc − 1)

2k+
+ koff

k+
, (22)

such that the terms involving koff cancel in the master
equation,

0 = 2m(∞)k+f (j − 1) − 2m(∞)k+f (j )

+ 2kofff (j + 1) − 2kofff (j )

− k−(j − 1)f (j ) + 2k−
∞∑

i=j+1

f (i), (23)

= nc(nc − 1)k−[f (j − 1) − f (j )]

+2koff[f (j + 1) + f (j − 1) − 2f (j )]

−k−(j − 1)f (j ) + 2k−
∞∑

i=j+1

f (i). (24)
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FIG. 1. Comparison of solutions for the equilibrium length distribution of frangible filaments in a closed system. The black dots are calculated numerically
from the recursion relation, Eq. (8), while the red continuous line is from the exact solution, Eq. (12). The blue dashed line is the continuum limit solution from
Eq. (19). The green line shows the solution given by Pöschel et al.32 when setting the clearance rate to zero.

In the continuum limit the second line in Eq. (24) vanishes
and therefore we recover Eq. (19) even when koff > 0.

The continuum limit becomes less accurate for increasing
koff as shown in Fig. 2. Furthermore, it can be seen from Fig. 2
that the action of koff broadens the distribution and shifts the
mean to a larger length value. Qualitatively, this change can
be understood as the terms proportional to koff in Eq. (24),
f (j + 1) + f (j − 1) − 2f (j ), represent a discrete Lapla-
cian, which describes a diffusion-like process acting to
broaden the length distribution.

IV. FILAMENT GROWTH UNDER CONSTANT
MONOMER CONCENTRATION

A. Principal moments

In Sec. III, we derived the length distribution of a closed
filament system at equilibrium for t → ∞.A qualitative pic-
ture for the evolution of the length distribution at earlier times
can be provided by noting that as long as the total mass con-
centration of fibrils M(t) is much smaller than the concen-
tration of available monomer m(t) = mtot − M(t) ≈ mtot, this
latter quantity is approximately constant in time. In this sec-
tion, we therefore focus on the growth of filaments in a con-
stant concentration of precursor monomers. Such a situation
might arise also, for example, in vivo when biosynthesis and
degradation are in balance with the depletion due to aggre-
gation. In this case, the principal moments, which we label
P0(t) and M0(t), obey linear moment equations1, 32, 37, 39 that
have the solution,

P0(t) = C1e
κt + C2e

−κt − ncknm
nc−1
tot

2k+
, (25)

M0(t) = 2mtotk+C1

κ
eκt − 2mtotk+C2

κ
e−κt − knm

nc

tot

k−
, (26)

with the constants defined as

κ =
√

2mtotk+k−, (27)

C1,2 = 1

2

(
P (0) ± κ

2k+mtot
M(0) ± κknm

nc−1
tot

2k+k−

)
. (28)

The long-time limiting forms are, thus, given by

P0(t) → C1e
κt , (29)

M0(t) → 2C1mtotk+eκt

κ
, (30)

and the average length μ0 = M0/P0 tends to a constant value
that depends only on the ratio of the elongation and fragmen-
tation rates and not on the nucleation rate or on the critical
nucleus size,

μ0(t) → 2mtotk+
κ

≈
√

2mtotk+
k−

, t → ∞. (31)

B. Stationary length distribution

As long as there is a constant supply of monomers, the
number of breakable filaments increases exponentially, as de-
scribed by Eq. (29), and we have ∂tP0 = κP0(t). If the length
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FIG. 2. Effect of the depolymerisation rate koff. (a) A small depolymerisation rate in a fragmentation dominated case, 2koff < nc(nc − 1)k−. (b) The effect of
increasing depolymerisation rates to broaden and shift the length distribution towards larger lengths that is described in the main text. The depolymerisation
rates are given as percentages of k+mtot. The red solid line is the exact solution neglecting the depolymerisation rate and primary nucleation, Eq. (12). The
kinetic parameters are: mtot = 1 μM, k+ = 1 × 104 M−1 s−1, k− = 2 × 10−6 s−1, knm

nc−1
tot = 1 × 10−7 s−1, nc = 8, M(0) = P (0) = 0.

distribution approaches a form which does not change over
time, we must also have ∂tf (t, j ) = αf (t, j ) for a constant α

for all values of j ; as P0(t) = ∑
j f (t, j ) this condition can

only be satisfied if α = κ and the (time independent) distribu-
tion sought is

ρ(j ) = lim
t→∞ f (t, j )e−κt . (32)

The master equation, Eq. (8), can be rewritten for ρ(j ) to yield

κρ(j ) = 2mtotk+ρ(j − 1) − 2mtotk+ρ(j ) − k−(j − 1)ρ(j )

+ 2k−
∞∑

i=j+1

ρ(i). (33)

In order to explore how the form of this length distribution
compares to the result obtained for the case of conserved mass
in Sec. III, we again consider the continuum limit via the ap-
proximations Eqs. (13), (14), and (16). Defining the dimen-
sionless constant ξ ,

ξ = 2k+mtot

k−
, (34)

results in a differential equation with the form

0 = (ξ + 1/4)ρ ′′(j ) + (j +
√

ξ )ρ ′(j ) + 3ρ(j ). (35)

This expression is formally analogous to Eq. (17) obtained
for systems with conserved total mass. Contrary to the case of
constant mass, however, the individual rate constants enter the
differential equation. Using the same arguments as in Sec. III,
a normalised solution satisfying

∫ ∞
nc

ρ(i)di = 1 is given by

ρ(j ) = e
− 2(j−nc )(2

√
ξ+j+nc)

1+4ξ [4j (2
√

ξ + j ) − 1]

(1 + 4ξ )(
√

ξ + nc)
. (36)

The mean length, μ, can be evaluated as a consistency
check,

μ = nc + 1 + 4ξ

4(
√

ξ + nc)
≈

√
ξ, ξ 	 nc, (37)

a result which agrees with the exact result in Eq. (31) in the
limit ξ 	 nc; as nc is of order unity and ξ , giving the ratio
between the elongation and breakage processes, is typically

ξ 	 1 in order for long filaments to be present in the system,
the approximation ξ 	 nc is likely to be accurate for most
cases of practical interest. Figure 3 shows this result in com-
parison to the numerical solution. As expected, the continuum
limit is seen to become slightly less accurate as nc increases.

Interestingly, the ratio of the standard deviation, σ , to the
mean, μ, can also be determined from Eq. (36) in terms of an
error function,

σ

μ
≈

√
√

2eπ

[
1 − erf

(
1√
2

)]
− 1 ≈ 0.56, ξ 	 nc,

(38)

a value which is in agreement with our more general ana-
lytical result,40 derived by consideration of the moments of
the distribution only, that the ratio between the standard de-
viation and mean of the filament length distribution in a sys-
tem of constant monomer concentration is constant and equal
approximately to 1/

√
3 ≈ 0.58 throughout the reaction time

course. Furthermore, using Eq. (36), calculation of the ratio
of the modal value, jmode, to the mean of the filament length
distribution yields

jmode

μ
≈

√
3 − 1 ≈ 0.73, ξ 	 nc, (39)

which is likewise consistent with our more general analyti-
cal result41 that the ratio between the mode and mean of the
filament length distribution in a system of constant monomer
concentration is approximately constant and equal to ∼0.8
throughout the reaction.

The results for the behavior in the long-time limit both in
the case of constant monomer concentration, Eq. (36), and in
the case of mass conservation, Eq. (19), allow an understand-
ing to be developed of the full time evolution of the length
distribution of filaments growing in a closed system conserv-
ing total mass. Considering that the monomer concentration
is approximately constant at a value mtot at early times in the
polymerisation reaction, even for closed systems, we expect
that the length distribution will first develop approximately
into the biased Gaussian found as the equilibrium behavior
for this case, given by Eq. (36), before shifting at later times
into the substantially narrower biased Gaussian describing the
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FIG. 3. Length distribution in the long-time limit for increasing nc in the case of constant monomer concentration. The black dots are calculated numerically
from the recursion relation, Eq. (33), while the blue dashed line is the continuum limit solution from Eq. (36). The parameters used are: mtot = 1 μM, k+
= 1 × 104 M−1 s−1, k− = 2 × 10−7 s−1, giving ξ = 105. The green line shows the solution given by Pöschel et al.32 when setting the clearance rate to zero.

equilibrium behavior of the constant mass case given in
Eq. (19). Numerical evaluation of the master equation veri-
fies this conclusion, and strikingly shows the evolution of the
length distribution from the steady state behavior of constant
monomer systems at early times to the equilibrium behavior
of closed systems at late times as illustrated in Fig. 4.

V. COMPARISON WITH INFRANGIBLE
FILAMENT SYSTEMS

The development of the length distribution in the case of
infrangible filaments has been studied by Oosawa.1, 29 It has
been shown1, 29 that the length distribution initially develops
into a Poisson distribution in the time taken for the monomer-
polymer equilibrium to be established, before relaxing over
a longer time scale, in a diffusion-like process, into an expo-
nential distribution. In particular, this equilibrium length dis-
tribution emerging for long times has been shown1, 29 to take
the form

f (∞, j ) = knm(∞)nc

2koff

(
k+m(∞)

koff

)j−nc

, (40)

where m(∞) is the equilibrium concentration of soluble
monomer, for which a derivation is sketched in the Appendix.
There is no peak in this equilibrium length distribution, and
Oosawa comments in his textbook:1 “in polymers growing
one-dimensionally, length distributions having a sharp max-
imum cannot be realized as a true equilibrium”. This time
evolution of the length distribution in the absence of frag-
mentation is shown in Fig. 5. In contrast to the Poisson-to-
exponential evolution seen in the case of nucleated polymeri-

sation, introducing the phenomenon of filament breakage fun-
damentally alters both the evolution and the equilibrium re-
sult, and as we have shown, can lead to true equilibrium
length distributions having a sharp maximum. A qualitative
picture for why Oosawa’s argument for the lack of a maxi-
mum in the distribution breaks down in the presence of fila-
ment fragmentation can be provided by considering the fact
that the master equation for nucleated polymerisation satis-
fies detailed balance at equilibrium, whereas in the presence
of breakage but the absence of fibril association only balance
is satisfied, allowing thereby the emergence of a length dis-
tribution described by a biased Gaussian. It is also interesting
to note that the approach to equilibrium is also significantly
faster when breakage processes operate. Instead of the Pois-
son to exponential development, the distribution now moves
from one biased Gaussian form to another.

In contrast to fragmentation, secondary processes that
create structures of a single size will generally lead to an
equilibrium distribution of the exponential type. For exam-
ple, a monomer-dependent secondary process that creates
new structures of a critical size n2 through nucleation on
the surface of existing structures8 results in an additional
term of the form k2m(t)n2M(t)δj,n2 in the master equation.
If the term describing monomer-dependent secondary nu-
cleation is included in the master equation, the equilibrium
length distribution (in the presence of a non-zero depoly-
merisation rate) is identical to Eq. (40) with the formal
replacement knm(∞)nc → k2m(∞)n2 + knm(∞)ncM(∞) in
the prefactor for n2 = nc. For a fixed primary nucleation
rate kn, the introduction of monomer-dependent secondary
nucleation for n2 = nc therefore maintains the decaying
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FIG. 4. Time evolution of the fibril length distribution in the constant mass case. The black dots are calculated numerically from the master equation, Eq. (1).
The blue dashed line is the predicted continuum equilibrium length distribution for the constant monomer case given in Eq. (36). The red line is the predicted
continuum equilibrium length distribution for the constant mass given in Eq. (19). The parameters used are mtot = 1 μM, k+ = 1 × 104 M−1s−1, k− = 2 ×
10−6 s−1, kn = 0, nc = 8, M(0) = 0.01 μM, and P (0) = 0.001 μM. The mass loss from the system in the numerical solution, due to solving a finite number of
equations, is zero to within machine precision.

exponential form of the equilibrium distribution whilst de-
creasing the decay length, resulting in an increased number
of small structures at equilibrium. In general, on mechanis-
tic grounds, it is plausible to suppose n2 ≈ nc and therefore
the distribution can still be expected to be of a qualitatively
similar form as long as both nucleus sizes are approximately
equal.

It is interesting to note that in some cases further
processes, not explicitly described by the master equation
studied in this paper, can affect the length distribution at
equilibrium and the time that is taken for the system to reach

equilibrium. In particular, for some systems there is evidence
for the lateral association of individual filaments at late stages
of the growth process to form higher order assemblies.42, 43

Such an assembly is likely to result in a substantially lower
fragmentation rate of the resulting larger diameter compound
filaments than that observed for the individual filaments and
could substantially increase the time taken to reach equi-
librium, and therefore, other mechanisms such as monomer
exchange from filament ends could become dominant for de-
termining the length distribution in such a system for long
times.
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FIG. 5. Evolution of the fibril length distribution in a system with depolymerisation from the ends of fibrils but no breakage calculated numerically from the
master equation Eq. (1). (a) Earlier times and (b) later times. The black dotted line in (b) is the analytical result for the equilibrium length distribution,1, 29

Eq. (40). The kinetic parameters used are mtot = 1 μM, k+ = 1 × 104 M−1 s−1, koff = (2/3)mtot k+, nc = 8, knm
nc−1
tot = 1 × 10−7 s−1, M(0) = P (0) = 0.
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FIG. 6. Evolution of the oligomer population up to size nmax = 20 as a fraction of total fibril population. (a) The case with breakage and (b) the case without
breakage but with an off-rate. The black dashed lines are the analytically predicted equilibrium values from Eqs. (41) and (42). The red dashed line is the early
time analytical prediction from Eq. (43). The kinetic parameters used are the same as those in Figs. 4 and 5, respectively.

VI. EVOLUTION OF OLIGOMER OCCUPANCY

There is increasing interest in the evolution of the popula-
tion of small aggregated species, known as oligomers, as they
are believed to play an important biological role in protein ag-
gregation disorders.23–28 In general, the structures of smaller
aggregates can differ from those found in longer fibrils, a fur-
ther degree of freedom which could be included in the master
equation. In this paper, however, we use the unmodified mas-
ter equation to investigate the population of small aggregates,
and the time evolution of this population, in the presence and
absence of filament breakage.

Prior to deriving analytical results further below, we ex-
amine the oligomer populations based on numerical solutions
to the master equation. The evolution of the number of small
species, as a fraction of the total number of fibrils, is shown
from numerical calculations in Fig. 6(a) for the case with
breakage, and for comparison for the case without breakage
in Fig. 6(b). In both cases, at early times all fibrils are small
and as time progresses, these fibrils grow and the fractional
oligomer occupancy decreases. In the case of infrangible fil-
aments, the occupancy drops very close to the eventual equi-
librium level in the time taken for monomer-polymer equilib-
rium and then equilibrates over a long time scale with only a
very small increase in oligomer occupancy. The final state is
characterised by the majority of the aggregated material being
in larger fibrils rather than small oligomers. In contrast, when
breakage is present, oligomer states are re-populated after the
monomer-polymer equilibrium is reached as larger fibrils be-
gin to break up, and the equilibrium state shows that most
aggregated material can be in oligomers as opposed to larger
fibrils.

Analytical expressions for the equilibrium val-
ues of the fractional oligomer populations, �olig

= ∫ nmax

nc
f (∞, j )/P (t)dj , may be found by integrating

the population distributions. If the maximum oligomer size is
denoted nmax, then for the case with breakage using Eq. (19),
we obtain at equilibrium the result,

�br
olig =

∫ nmax

nc

e
2(−j2+n2

c)
(1−2nc )2 [4j 2 − (1 − 2nc)2]

(1 − 2nc)2 nc

dj

= 1 − nmax

nc

e
2(n2

c−n2
max)

(1−2nc )2 . (41)

In the converse limit, in the absence of breakage in a system
including a monomer dissociation rate koff, we obtain using
Eq. (40) the form

�off
olig =

∫ nmax

nc

(
k+m(∞)

koff

)−nc

knm(∞)nc

2P (∞)koff

(
k+m(∞)

koff

)j

dj

=
knm(∞)nc

[(
m(∞)k+

koff

)nmax−nc − 1

]

2P (∞)log
(

m(∞)k+
koff

)
koff

. (42)

In addition, by making use of the result for the case of break-
able filaments that the distribution at an early time corre-
sponds to that found in the presence of a constant monomer
concentration, the corresponding early time limit oligomer
population can be found from Eq. (36) as the closed form ex-
pression,

�
br,early
olig =

∫ nmax

nc

e
− 2(j−nc )(2

√
ξ+j+nc)

1+4ξ [4j (2
√

ξ + j ) − 1]

(1 + 4ξ )(
√

ξ + nc)
dj

= 1 − e
− 2(nmax−nc )(2

√
ξ+nmax+nc)

1+4ξ (
√

ξ + nmax)√
ξ + nc

. (43)

From these results, Eqs. (41), (43), and (42), it is ex-
pected that in general the fractional oligomer population be-
gins at unity. For frangible filaments, it then falls to the value
given by Eq. (43) before rising to the value given by Eq. (41),
whereas in the case without breakage the population falls and
remains at around the value given by Eq. (42). The evolu-
tion of the respective cases relative to these analytical limits is
shown in Fig. 6. These results highlight the importance of fila-
ment fragmentation in the production of small oligomers. It is
interesting to speculate that filament fragmentation, and other
secondary nucleation mechanisms, could therefore be an im-
portant factor in the generation of low molecular weight toxic
aggregates in protein aggregation disorders.23–28 In agreement
with this idea, it has been observed that strains of prion aggre-
gates with lower stabilities and, therefore, likely larger frag-
mentation rates have a tendency to be more infectious44, 45 and
result in higher toxicity46 to the host organism than strains, in
which fibers are highly stable.
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VII. CONCLUSION

In this paper, we have used the master equation of fila-
ment assembly to study the length distribution of the result-
ing structures. We have shown that the classical result of Oo-
sawa for the absence of a maximum in the aggregate length
distribution at equilibrium does not hold for breakable fila-
ments. Furthermore, we have shown that the time evolution of
the length distribution of breakable filaments evolves through
two key stages: first the growth proceeds to a length distri-
bution which is determined by the elongation and breakage
rates of the filament system and which is typically orders
of magnitude larger than the equilibrium length. In a sec-
ond slower step, the length distribution shifts towards smaller
sizes once the monomer pool is depleted and growth stops,
finally to reach an equilibrium length distribution which is
defined solely by the critical nucleus size.

APPENDIX: EQUILIBRIUM CONCENTRATION
OF MONOMER IN THE OOSAWA THEORY

For a filament system that undergoes primary nucleation,
elongation and depolymerisation, the equilibrium length dis-
tribution emerging for long times has been shown1, 29 to take
the form

f (j,∞) = knm(∞)nc

2koff

(
k+m(∞)

koff

)j−nc

. (A1)

We now derive an expression that relates the long-time solu-
ble monomer concentration, m(∞) to the total monomer con-
centration, mtot, and the kinetic parameters, k+ and kn. We
note immediately that for kn = 0, f (j,∞) = 0 ∀j implying
m(∞) = mtot. In other cases, an expression for m(∞) may be
derived from Eq. (A1) by noting

mtot − m(∞) =
∞∑

j=nc

jf (t, j ). (A2)

Differentiating the well-known expression for the sum of
a geometric series

∑∞
j=m αj = αm/(1 − α) yields the result∑∞

j=m jαj = (mαm(1 − α) + αm+1)/(1 − α2) which may be
used to evaluate the right-hand side of Eq. (A2) to yield

mtot = m(∞) +
knm(∞)nc

2koff

(
nc

(
1 − k+m(∞)

koff

)
+ k+m(∞)

koff

)
(

1 − k+m(∞)
koff

)2 .

(A3)
Equation (A3) is a polynomial equation of order nc + 1 for
m(∞), which may in general only be solved analytically for
nc ≤ 3. Oosawa presented1 an exact solution to the special
case kn = 2k+ and nc = 2 for which the cubic terms cancel
and we are left with a simple quadratic equation for m(∞).
The general behavior of m(∞) as a function of the total
monomer concentration mtot may be examined without for-
mally inverting Eq. (A3).1 It may be shown by differentiation
and inversion that

dm(∞)

dmtot

∣∣∣∣
mtot=0

= 1, (A4)

which in conjunction with the trivial result m(∞)|mtot=0 = 0
describes the behavior for low total monomer concentration.
In addition, from Eq. (A3), the limit as the total monomer
concentration becomes large is given by

m(∞)|mtot→∞ = koff

k+
, (A5)

such that the long-time soluble monomer concentration tends
to be a constant as the total monomer concentration becomes
large (mtot 	 koff/k+). Therefore, for small positive kn → 0,
the solution to Eq. (A3) must tend towards

lim
kn→0

m(∞) = min

{
mtot,

koff

k+

}
. (A6)

Higher values of kn lead to a less abrupt transition between
the limits where m(∞) = mtot and m(∞) = koff/k+. Interest-
ingly for kn = 0, we have already seen that the solution is
given always by m(∞) = mtot, implying that the long-time
free monomer concentration, m(∞), is discontinuous in kn as
kn → 0.
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