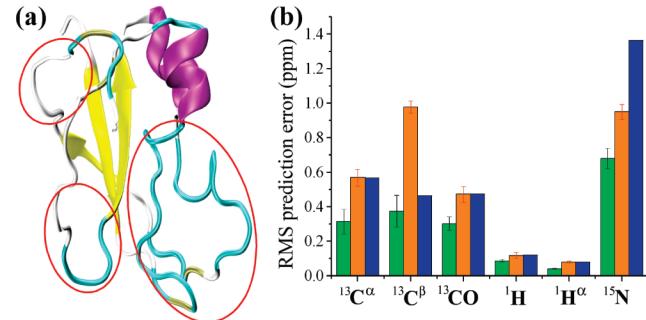


1 **Accurate Random Coil Chemical Shifts from an Analysis of Loop Regions in
2 Native States of Proteins**3 Alfonso De Simone,[†] Andrea Cavalli,[†] Shang-Te Danny Hsu,[†] Wim Vranken,[‡] and
4 Michele Vendruscolo*,[†]5 *Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., and European
6 Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, U.K.*


7 Received June 16, 2009; E-mail: mv245@cam.ac.uk

8 The definition of a standard set of reference random coil chemical
9 shift values is a key component in many applications of protein
10 NMR spectroscopy.^{1–3} The comparison of measured chemical shifts
11 with their random coil counterparts is commonly used to identify
12 secondary structure elements in folded proteins and to reveal the
13 presence of regions with residual structure in unfolded states.^{3,4}
14 The importance of measuring backbone chemical shifts in unfolded
15 states has recently been further increased with the recognition that
16 proteins containing natively unfolded regions may represent up to
17 one-third of eukaryotic proteomes and play a variety of essential
18 biological roles;⁵ furthermore, it has also been realized that several
19 amyloidogenic proteins associated with neurodegenerative diseases
20 are natively unfolded.⁶

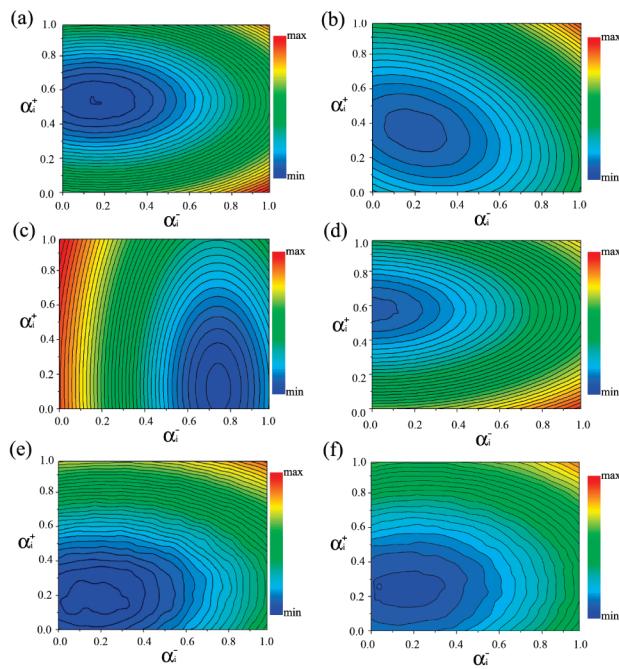
21 Several methods for associating random coil chemical shift values
22 to amino acid sequences of proteins based on experimental
23 measurements of chemical shifts from model peptides that mimic
24 the random coil state^{1–3} or derived by analysis of protein databases
25 have been proposed.^{7,8} In this work, we present an approach called
26 CamCoil, in which we map the relationship between amino acid
27 sequences and chemical shifts using the flexible loop regions in
28 native states as a model of the random coil state (Figure 1a). This
29 strategy enables us to discriminate the dependence of the chemical
30 shifts on the primary structure of proteins from the effects associated
31 with the secondary and tertiary structures. The parameters were
32 derived by statistical analysis of a recently constructed database of
33 1772 proteins for which structures and chemical shifts are known⁹
34 [see the Supporting Information (SI)]. From this database, we
35 extracted for analysis fragments classified by STRIDE¹⁰ as loops
36 (Figure 1a), i.e., not as α -, π -, or β -helices, β -sheets, turns or
37 bends; we further selected only flexible loops by including only
38 residues with an RCI index¹¹ corresponding to an S^2 order parameter
39 smaller than 0.5 (Figure S1 in the SI). We first considered tripeptide
40 fragments, since we expect the dominant sequence-dependent effects
41 on the chemical shifts in a given amino acid to be due to the
42 identities of its nearest neighbors. We thus can express the random
43 coil (RC) chemical shift δ_{iA}^{RC} of an atom of type i in amino acid of
44 type A as

$$\delta_{iA}^{\text{RC}} = \delta_{iA}^0 + \alpha_i^- \delta_{iBA}^1 + \alpha_i^+ \delta_{iAC}^1 \quad (1)$$

45 In this formula, the term δ_{iA}^0 represents the contribution due to the
46 identity of the amino acid in which atom i is present. The list of
47 values for δ_{iA}^0 is provided in the form of residue-specific scales of
48 chemical shifts for the nuclei $^{13}\text{C}^\alpha$, $^{13}\text{C}^\beta$, ^{13}CO , ^{15}N , ^1H , and $^1\text{H}^\alpha$
49 (Table S1 in the SI). Nearest-neighbor effects are included through
50 the δ_i^1 terms in eq 1; the δ_{iBA}^1 and δ_{iAC}^1 terms represent the

5 **Figure 1.** (a) CamCoil random coil chemical shift values are obtained by
6 analyzing the amino acid sequences in the loop regions in a recently
7 compiled database of native structures and corresponding chemical shifts.⁹
8 (b) Average values of the RMS distances (in ppm) for five experimental
9 sets of chemical shifts (a leave-one-out procedure was adopted); green bars
10 refer to the CamCoil values, orange bars to the values of Schwarzinger et
11 al.,² and blue bars to the standard deviations of chemical shift values in the
12 database. The five experimental chemical shift data sets are: ddFLN5^{12,13}
13 (Figure S3), GED of dynamin in 9.7 M urea,¹⁴ GED of dynamin in 6 M
14 GuHCl,¹⁵ SUMO from *Drosophila melanogaster* in 8 M urea,¹⁶ and
15 *Azotobacter vinelandii* apoflavodoxin in 6 M GuHCl.¹⁷ A web server for
16 the CamCoil method is available at <http://www-vendruscolo.ch.cam.ac.uk/camcoil.php>.

17 contributions from the flanking residues (of types B and C,
18 respectively).


19 The weights of these contributions are given by the parameters
20 α_i^- and α_i^+ (Table S2), which were optimized by applying a
21 calibration procedure on five experimental data sets of random coil
22 chemical shifts measured under conditions minimizing the presence
23 of residual structure (see the SI). We found consistent results for
24 weights calculated using independent data sets (Figure S2), thereby
25 enabling a global optimization procedure (Figure 2). Thus, the
26 hybrid parametrization that we carried out takes advantage of a
27 large database of flexible native loops to obtain the main set of
28 parameters and correction factors and employs data from unstruc-
29 tured proteins to calibrate the balance between these terms, with
30 the aim of improving the predictions of the chemical shifts in
31 random coil states.

32 The residue-specific δ_{iA}^0 values are already in good agreement
33 with the experimental data for the five experimental random coil
34 data sets that we considered (Figure S4). This correlation is
35 comparable with that obtained using the method by Schwarzinger
36 et al.,² although some differences exist between the two sets of
37 values (Figure S5). When the sequence-specific correction factors
38 are applied, the quality of the method increases significantly (Figure
39 1b and Figure S6). In all cases, the CamCoil root-mean-square
40 (RMS) distances are smaller than the overall variability of the
41 random coil chemical shift values in the data sets that we considered
42 in this work (blue bars in Figure 1b). The analysis of the RMS

[†] University of Cambridge.

[‡] European Bioinformatics Institute.

COMMUNICATIONS

Figure 2. RMS distance surfaces as a function of the parameters α_i^- and α_i^+ in eq 1. These plots were calculated through a global optimization of the five sets of experimental random coil chemical shifts analyzed here (see the Figure S2 caption for more details). Each panel refers to a different atom type: (a) $^{13}\text{C}^a$; (b) $^{13}\text{C}^b$; (c) ^{13}CO ; (d) ^{15}N ; (e) ^1H ; (f) $^1\text{H}^a$.

77 distance surface projected on the (α_i^-, α_i^+) space reveals that the
 78 use of unitary weights for neighbor corrections is not the optimal
 79 solution (Figure 2). To better account for sequence-dependent
 80 effects on chemical shifts, in principle, we could use amino acid
 81 triplets (or quintuples and so on); however, larger databases would
 82 be required to derive the corresponding parameters in these cases.
 83 Here, in order to at least partially take into account next-nearest-
 84 neighbor effects,² we considered two additional pairwise terms (eq
 85 S1 in the SI).

86 The approach that we have presented, in which random coil
 87 chemical shifts are determined by analyzing the amino acid
 88 sequences in the loop regions in a database of known structures
 89 and corresponding experimentally measured chemical shifts, enables
 90 a variety of experimental conditions to be averaged out, thus
 91 removing biases associated with specific experimental conditions
 92 (e.g., the range of pH values at which the structures in the database
 93 were determined, which is shown in Figure S7). Moreover, since
 94 this approach is based on the analysis of a very large data set, we
 95 were able to employ two sets of 400 correction factors in eq 1 and
 96 four sets in eq S1, thereby achieving a high accuracy in defining
 97 the random coil chemical shift values. The database also enables
 98 us to discriminate between oxidized and reduced cysteine residues
 99 and between *cis*- and *trans*-proline residues.

100 The CamCoil method can be also used to obtain pH-specific
 101 random coil chemical shift scales. The random coil chemical shift
 102 values that we report refer to pH 6.1 (Figure S7). It is possible,
 103 however, to define random coil chemical shifts at other pH values

104 by recalibrating the chemical shifts of the side chains of residues
 105 D, E, and H in the experimental data sets (Figure S8). This feature
 106 is important since the comparison of experimental chemical shifts
 107 measured at a given pH with random coil chemical shifts defined
 108 at a different pH can generate a significant bias in the interpretation
 109 of the results.

110 Another useful application of the CamCoil approach is the
 111 prediction of chemical shifts of loops in native-state proteins (Figure
 112 S9 and Table S3). In this case, the parameters α_i^- and α_i^+ in eq 1
 113 are determined by optimizing the agreement between experimental
 114 and predicted chemical shifts in native states of proteins (see the
 115 SI).

116 The close agreement that we have presented between the
 117 CamCoil random coil chemical shifts and the chemical shifts
 118 measured experimentally for unfolded proteins (Figure 1 and Figure
 119 S3) provides further support for the idea that it is possible to
 120 describe fairly accurately random coil states by analyzing the loop
 121 regions in folded structures.¹⁸

122 In conclusion, we suggest that increasingly accurate random coil
 123 chemical shift scales will be obtained through approaches of the
 124 type that we have presented here by exploiting the continuous
 125 growth of databases of protein structures and chemical shifts, which
 126 will enable progressively more sophisticated functions to be
 127 parametrized.

128 **Acknowledgment.** We thank G. G. Tartaglia for useful
 129 comments and discussions. We acknowledge support by EMBO (A.D.S.
 130 and M.V.), Netherlands Ramsay (S.-T.D.H.), the Human Frontier
 131 Science Program (S.-T.D.H.), NSC Taiwan ROC (S.-T.D.H.), the
 132 EU FP6 Extend-NMR Grant (18988) (M.V.), the Leverhulme Trust
 133 (M.V.), and the Royal Society (M.V.).

134 **Supporting Information Available:** Materials and methods, Tables
 135 S1–S3, and Figures S1–S9. This material is available free of charge
 136 via the Internet at <http://pubs.acs.org>.

References

- Braun, D.; Wider, G.; Wüthrich, K. *J. Am. Chem. Soc.* **1994**, *116*, 8466.
- Schwarzinger, S.; Kroon, G. J. A.; Foss, T. R.; Chung, J.; Wright, P. E.; Dyson, H. J. *J. Am. Chem. Soc.* **2001**, *123*, 2970.
- Wishart, D. S.; Sykes, B. D.; Richards, F. M. *J. Mol. Biol.* **1991**, *222*, 311.
- Spera, S.; Bax, A. *J. Am. Chem. Soc.* **1991**, *113*, 5490.
- Dyson, H. J.; Wright, P. E. *Nat. Rev. Mol. Cell Biol.* **2005**, *6*, 197.
- Chiti, F.; Dobson, C. M. *Annu. Rev. Biochem.* **2006**, *75*, 333.
- Wang, L.; Eghbalnia, H. R.; Markley, J. L. *J. Biomol. NMR* **2007**, *39*, 247.
- Wang, Y. J.; Jarde茨ky, O. *J. Am. Chem. Soc.* **2002**, *124*, 14075.
- Vranken, W. F.; Rieping, W. *BMC Struct. Biol.* **2009**, *9*.
- Heinig, M.; Frishman, D. *Nucleic Acids Res.* **2004**, *32*, W500.
- Berjanskii, M. V.; Wishart, D. S. *Nucleic Acids Res.* **2007**, *35*, W531.
- Hsu, S. T. D.; Cabrita, L. D.; Fucini, P.; Dobson, C. M.; Christodoulou, J. *J. Mol. Biol.* **2009**, *388*, 865.
- Hsu, S. T. D.; Cabrita, L. D.; Christodoulou, J.; Dobson, C. M. *Biomol. NMR Assign.* **2009**, *3*, 29.
- Chugh, J.; Sharma, S.; Hosur, R. V. *Arch. Biochem. Biophys.* **2009**, *481*, 169.
- Chugh, J.; Sharma, S.; Hosur, R. V. *Biochemistry* **2007**, *46*, 11819.
- Kumar, D.; Kumar, A.; Misra, J. R.; Chugh, J.; Sharma, S.; Hosur, R. V. *Biomol. NMR Assign.* **2008**, *2*, 13.
- Nabuurs, S. M.; Westphal, A. H.; van Mierlo, C. P. M. *J. Am. Chem. Soc.* **2008**, *130*, 16914.
- Jha, A. K.; Colubri, A.; Freed, K. F.; Sosnick, T. R. *Proc. Natl. Acad. Sci. U.S.A.* **2005**, *102*, 13099.

JA904937A

138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164