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Abstract Enzymes can increase the rate of biomolecular reactions by several orders of 
magnitude. Although the steps of substrate capture and product release are essential in the 
enzymatic process, complete atomic-level descriptions of these steps are difficult to obtain because 
of the transient nature of the intermediate conformations, which makes them largely inaccessible  
to standard structure determination methods. We describe here the determination of the structure 
of a low-population intermediate in the product release process by human lysozyme through a 
combination of NMR spectroscopy and molecular dynamics simulations. We validate this structure 
by rationally designing two mutations, the first engineered to destabilise the intermediate and  
the second to stabilise it, thus slowing down or speeding up, respectively, product release. These 
results illustrate how product release by an enzyme can be facilitated by the presence of a 
metastable intermediate with transient weak interactions between the enzyme and product.
DOI: 10.7554/eLife.02777.001

Introduction
As it is becoming increasingly clear that proteins populate a variety of ‘intermediate’ states during 
their function (Dobson, 2003; Sekhar and Kay, 2013), it is essential to determine the structures of 
such states in addition to defining the native conformations. Protein intermediates are involved in 
folding, misfolding, and aggregation processes, as well as in events associated with molecular recog-
nition, catalysis, and allostery (Dobson, 2003; Sekhar and Kay, 2013; Tzeng and Kalodimos, 2013). 
These species are transient in nature and as such they have been difficult to characterise. Nuclear 
magnetic resonance (NMR) spectroscopy has emerged in this context as a powerful technique to 
define such states as exemplified by the characterisation of the structures of species involved in folding 
(Korzhnev et al., 2010), molecular recognition (Tang et al., 2006), and aggregation (Neudecker 
et al., 2012).

In the present paper, we describe a study of the mechanism involved in the process by which an 
enzyme releases its products. This is one of the three major steps in an enzymatic catalysis process 
(Fersht, 1999). In the first step, the enzyme forms a complex with the substrate. In the second step, 
the transition state of the reaction is reached within the favourable environment provided by the cat-
alytic site enabling the conversion of the substrate into product. In the third step, which is often rate-
limiting, the product is released and the enzyme returns to its original state. Each of these steps is 
usually rather complex and involves reaction intermediates, which are transient in nature and difficult 
to characterise.

In order to investigate the third step, we have studied here lysozyme, the first enzyme to be crystal-
lised (Blake et al., 1965), and whose structural properties have been characterised in great detail 
(Blake et al., 1965; Phillips, 1967; Artymiuk and Blake, 1981; Radford et al., 1992). The native 
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structure of this enzyme is divided into a α domain (residues 1 to 38, and 86 to 130) and β domain 
(residues 39 to 85), containing primarily α-helical and β-sheet secondary structures, respectively (Blake 
et al., 1965; Phillips, 1967; Artymiuk and Blake, 1981; Radford et al., 1992). This enzyme degrades 
bacterial cell walls by catalysing the hydrolysis of the 1,4-β-linkages of the cell wall peptidoglycans, 
with a reaction that has been the object of intense scrutiny (Chipman and Sharon, 1969; Warshel and 
Levitt, 1976; Post et al., 1986; Vocadlo et al., 2001). According to the mechanism originally pro-
posed by Phillips on the basis of his structure (Phillips, 1967), lysozyme binds to a peptidoglycan 
molecule in the binding site within the cleft between its two domains thus causing the substrate to 
adopt a strained conformation similar to that of the transition state of the hydrolysis. Here, we study 
the product release process. To this end, we used a well-characterised oligosaccharide product having 
an inhibitory effect on the enzyme, N,N',N"-triacetylchitotriose (triNAG) (Turner and Howell, 1995), 
which has been frequently used for studying lysozyme–product interactions (Post et al., 1986).

Results and discussion
In order to define the structural populations of human lysozyme in the presence and in the absence of 
an inhibitor, we measured 15N-1H residual dipolar couplings (RDCs) (Tjandra and Bax, 1997; Tolman 
et al., 1997) in the ligand-free and ligand-bound states (see ‘Materials and methods’) and used them 
as structural restraints in molecular dynamics simulations (De Simone et al., 2011; Montalvao et al., 
2011). In this way, we determined two ensembles of structures of the enzyme representing, respec-
tively, the ligand-free and the ligand-bound states of this protein. Our results indicate that large-scale 
concerted motions between the α and β domains of the enzyme generate an intermediate state 
involved in the release of the product.

The use of RDCs as structural restraints assists the conformational sampling in molecular dynamics 
simulations in order to estimate the free-energy landscape of a protein, as recently shown with hen 
lysozyme for which a large body of experimental data were used for validation purposes (De Simone 
et al., 2013b). This approach enables the translation of the experimental measurements into struc-
tures according to the principle of maximum entropy (Pitera and Chodera, 2012; Cavalli et al., 2013; 
Roux and Weare, 2013). A number of methods to employ NMR measurements of RDCs for the 

eLife digest Enzymes are proteins that catalyse biochemical reactions. They bind to their target 
molecules—known as substrates—and help to change them to make ‘products’. Afterwards, the 
products are released and the enzymes are free to bind to the next molecules. To perform this 
activity, an enzyme can change its structure several times, but it has been challenging to 
characterise the intermediate shapes because of their transient nature.

De Simone et al. took advantage of a technique called nuclear magnetic resonance spectroscopy 
to get a better look at the structures adopted by the human enzyme lysozyme. This enzyme  
helps to protect us from bacterial infections because it breaks the links between peptidoglycan 
molecules, which make up the wall that surrounds bacterial cells.

The experiments show that two ‘arms’ in the lysozyme structure move to create an intermediate 
shape during the final step—the release of the product—in the chemical reaction. This type of 
flexibility gives the enzyme the ability to tightly bind the peptidoglycan at the start and to let go of 
the product when the chemical reaction is complete.

Next, to confirm their findings, De Simone et al. examined what happened when they introduced 
particular mutations in the gene that makes lysozyme. The first mutation was meant to destabilise 
the intermediate shape of the enzyme, which resulted in the enzyme binding more tightly to the 
peptidoglycan in the final step and releasing it more slowly. A second mutation was made to 
stabilize the structure of the intermediate shape, which, as expected, allowed lysozyme to release 
the peptidoglycan more quickly.

De Simone et al.'s findings explain how intermediate shapes can be involved in the release of the 
product from lysozyme and other enzymes. The next challenges will be to characterise the structure 
of the intermediate shape that binds to the substrate and, more generally, to extend this type of 
approach to other enzymes.
DOI: 10.7554/eLife.02777.002
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characterisation of the structure and dynamics of proteins have been proposed (Clore and Schwieters, 
2004b; Bouvignies et al., 2006; Lange et al., 2008). Since these approaches have generally been 
used to assess dynamic events of relatively small amplitude, it was necessary to derive a means of 
extending these methods to enable the description of the large conformational interconversions asso-
ciated with the function of many protein molecules.

The strategy that we have used for this purpose relies on the ability to extract from time and 
spatially averaged data the contributions to the experimental observables that come from the low-
population states present as a result of conformational fluctuations. Intermediate states determined 
in this way have been already described using paramagnetic resonance enhancement (PRE) (Tang 
et al., 2006) and RDC (De Simone et al., 2013a; De Simone et al., 2013b) measurements, comple-
menting approaches in which NMR parameters specific for these states are obtained directly, in par-
ticular by relaxation–dispersion methods (Korzhnev et al., 2004, 2010; Bouvignies et al., 2011; 
Neudecker et al., 2012). By applying this approach using RDCs to human lysozyme, we generated a 
structural ensemble representing the free state of this enzyme that reveals large breathing motions 
between the α and β domains (Figure 1A and Figure 1—figure supplements 1,2). This motion, which 
influences the mutual orientation of the two domains thereby altering the structure of the catalytic 
pocket at their interface, can be accounted for by defining a ‘breathing’ angle θ between the α-domain, 
the hinge region and the β-domain (De Simone et al., 2013b) (Figure 1—figure supplement 3).

In order to compare the free and bound states of the enzyme, we measured the RDCs also in the 
bound state (Figure 1A, Figure 1—figures supplements 1 and 2). While in the free state the free-
energy landscape is characterised by a single basin (Figure 1A), in the bound state a second local 
minimum appears (Figure 1B). This change, which reflects the differences in the RDC data of the free 
and bound states, corresponds to a wider distribution of values of the θ angle in the bound state com-
pared with the free state (Figure 1 and Figure 1—figure supplement 4). The bound state ensemble 
was validated using NOEs, J-couplings, chemical shifts and RDCs (Figure 1—figure supplement 5). 
The relative populations of the ground and excited states are comparable to those that we have 
studied previously using the method adopted here (De Simone et al., 2009; De Simone et al., 2011; 
De Simone et al., 2013a; De Simone et al., 2013b).

Having in mind the release of the product, we designate the global free energy minimum observed in 
this study as the ‘locked state’ (i.e., release incompetent), which is centred at θ values of about 58° and 
Cα-RMSD values of about 0.9 Å from the X-ray structure of the complex (calculated by considering 
secondary structure elements only), and the other free energy minimum, which has about a 13% 
population under the conditions of our experiments, defined as the ‘unlocked state’ (i.e., release com-
petent, Figure 1B). The unlocked state is a compact conformation that differs from the locked state by 
a global motion in which the α and β subunits become closer, with a θ value of about 49° in the centre of 
the basin. This motion generates particularly distorted structures with global RMSD values of about 1.5 Å 
from the X-ray structure. The angle θ provides a simple and effective reaction coordinate to describe the 
effect of triNAG binding on the energy landscape of human lysozyme (Figure 2A), which clearly illus-
trates how the protein is able to explore closed conformations (i.e., θ < 50°) upon ligand binding.

In the structural ensemble representing the complex between human lysozyme and triNAG, 
unlocked conformations are characterised by less favourable intermolecular Coulomb and van der 
Waals interactions than those found in the locked state (Figure 2B–E). A comparison between the 
locked and unlocked conformations indicates that this difference corresponds to specific interactions 
between the substrate and the binding pocket (Figure 2D), which include hydrophobic interactions 
between a methyl group of triNAG and the side-chain of W109, as well as hydrogen bonds between the 
ligand and the main chain amide group of N60 and the side chains of W64 and Q104. These interactions 
are present in essentially all the structures in the ensemble representing the locked state, while they are 
absent in the structures in the ensemble of the unlocked state. Indeed, because of a partial displacement 
of the ligand from the binding pocket, the unlocked conformations lose the tight interactions that are 
stabilised in the locked state and gain new interactions on the external surface of the protein. These 
interactions, which mainly involve hydrogen bonds between donor and acceptor groups from the ligand 
and the protein surface, are highly variable and heterogeneous in the unlocked conformations.

Overall, this analysis of the structural ensembles of human lysozyme suggests that, as a conse-
quence of a concerted conformational transition, the enzyme explores conformations in which the 
specific and tight intermolecular interactions with the substrate in its locked state are largely lost in 
favour of the formation of weak and non-specific interactions in its unlocked state. This transition is 
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Figure 1. Comparison of the free-energy landscapes of human lysozyme in the free state (A) and in the bound state 
with triNAG (B). The bound state exhibits a ground state (the ‘locked state’) and an additional local minimum with 
about 13% population (the ‘unlocked state’), which represents an intermediate in the release of the product of the 
enzymatic reaction. Free-energy landscapes are shown as function of the ‘breathing’ angle θ and of the RMSD from 
the X-ray structure, which was calculated on the Cα atoms by including secondary structure regions only, of a 
human lysozyme variant in complex with triNAG (PDB code 1BB5); free-energy landscapes were obtained as 
−kBTlnH(θ, RMSD), where H(θ, RMSD) is the number of times conformations with specific θ and RMSD values was 
sampled during the simulations (De Simone et al., 2013b).
DOI: 10.7554/eLife.02777.003
The following figure supplements are available for figure 1:

Figure supplement 1. Assignments of the 1H-15N HSQC spectra of the free and triNAG-bound states of human 
lysozyme. 
DOI: 10.7554/eLife.02777.004

Figure supplement 2. Extracts of 1H-15N HSQC spectra showing the titration of triNAG to human lysozyme for 
selected residues showing significant chemical shift changes upon binding. 
DOI: 10.7554/eLife.02777.005

Figure supplement 3. Illustration of the breathing angle θ of lysozyme (De Simone et al., 2013b), which accounts 
for the large-amplitude motion between the α-domain and β-domain of lysozyme and is computed from the 
centres of mass of Cα-atoms from three protein regions (De Simone et al., 2013b). 
DOI: 10.7554/eLife.02777.006

Figure supplement 4. (A, B) Experimentally measured 15N-1H residual dipolar couplings (RDCs) of human lysozyme 
in the free state (A) and the triNAG-bound state (B). 
DOI: 10.7554/eLife.02777.007

Figure supplement 5. Validation of the RDC-refined structural ensembles determined in this work representing the 
free and triNAG-bound states of human lysozyme. 
DOI: 10.7554/eLife.02777.008
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favoured by large-scale conformational motions in which the α and β domains become closer, thus 
suggesting that these motions are employed by the enzyme to modulate the affinity with the li-
gand. The unlocked state therefore represents an intermediate state for product release. In this view 
(Figure 3), the enzyme product complex (EP) populates transiently an intermediate state (EP*) that 
favours the release of the product (E + P). Thus, the analysis of the structural ensembles that we have 
determined provides evidence that large-scale conformational transitions are employed by enzymes 
along their catalytic cycles including key events in the product release step, which often represents the 
rate-limiting step that governs the turnover of the enzyme. The difficulty for enzymes to release the 
products can arise from the fact that typically the latter have similar physico-chemical characteristics to 
the substrates and therefore maintain a significant affinity for the enzyme.

To test the possibility that the structure that we have determined of the unlocked state represents 
an intermediate state in the release of the product, we compared in detail the energetic contributions 

Figure 2. Analysis of the interactions that stabilise the intermediate state in the release of the product (the ‘unlocked state’). (A) Free-energy landscape 
as a function of the angle θ. (B) Potential energy landscape, Epot, of lysozyme in the free state; Epot represents the contribution of the force field used in 
the simulations, that is, the total force field without the RDC restraint term (see ‘Materials and methods’). (C) Potential energy landscape, Epot, of the 
lysozyme-triNAG bound state. (D) Structure of the ‘locked state’. (E) Structure of the ‘unlocked state’.
DOI: 10.7554/eLife.02777.009
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that stabilise the locked and unlocked states and 
identified a stabilising hydrogen bond that can be 
formed only in the unlocked state (Figure 4A), 
which involves side-chain atoms of residue N44 in 
the β-domain and residue E35 in the α-domain. 
These two residues are too far away from each 
other in the locked state to form a hydrogen 
bond (Figure 4B), and therefore this interaction 
is characteristic only of the unlocked conforma-
tion. This finding suggests that this hydrogen 
bond provides a specific interaction by which one 
could selectively target the stability of the EP* 
intermediate. To this end, we rationally designed 
the N44A single-amino acid mutation to verify if 
the ability of the enzyme to release the prod-
ucts is indeed altered by preventing the forma-
tion of the hydrogen bond that stabilises the 
unlocked state.

Comparison of the 1H-15N-HSQC spectra of 
the wild-type and the N44A variant of human 
lysozyme shows that the mutation does not affect 
the structural properties of the mutant in the 
native state (Figure 4—figure supplement 1). 
This result was expected as the mutation does 

not modify interactions present in the native state but was designed explicitly to perturb a hydrogen 
bond in the intermediate state. The ability of the N44A variant to release triNAG from its bound 
state was assessed by surface plasmon resonance (SPR) experiments (Figure 4C). By using a double-
referenced single chain model (see ‘Materials and methods’), we estimated that the destabilisation 
of the intermediate in the N44A mutant reduces the koff by a factor 3, while changing the Kd by a 
factor 1/3. The variation of a factor 2 of the kon suggests that the pathways of capture and release 
are not completely distinct and thus perturbing the pathway for release affects in part also that of 
capture. These results are consistent with our prediction that the N44A mutation affects the sta-
bility of the EP* intermediate, that is, of the unlocked state. Finally, we tested the catalytic efficiency 
of the wild-type and N44A mutant by using a cellular assay (see ‘Materials and methods’), and com-
pared these results with those obtained for an inactive mutational variant lacking the catalytic res-
idue (E35D). The results (Figure 4D) show that the N44A variant has an intermediate activity between 
wild type and the totally inactive control E35D variant, which is again consistent with the predic-
tion that the mutation of asparagine to alanine of residue 44 would reduce the efficiency of the 
product release in such a way to affect the catalytic activity of the enzyme. Finally, to verify that the 
N44A modified the free-energy landscape of lysozyme by reducing the population of the unlocked 
state, we performed 15N-1H RDC measurements on the N44A mutant and carried out restrained 
molecular dynamics simulations to determine its free-energy landscape. The results (see Figure 4—
figure supplement 2A) demonstrate that the unlocked state is not appreciably populated in the 
N44A mutant.

To further validate the conclusion that the structure that we have determined of the unlocked state 
represents a release intermediate, we designed a second mutational variant to stabilise the unlocked 
state, rather than destabilising it as the N44A mutation. In the new mutant, N46Q/V110Q, a strong 
glutamine–glutamine interaction is inserted with the purpose to stabilise the ‘unlocked’ state in its 
conformation (Figure 4—figure supplement 3A). We have verified the folding of the mutant by NMR 
(Figure 4—figure supplement 3B) and measured the binding constants of the ligand for the unlocked 
state by SPR to show that it corresponds to a weaker binding affinity (Figure 4—figure supplement 3C). 
While the Kd of the wild type is about 9 μM, the Kd of the N46Q/V110Q mutant is high almost beyond 
detection, indicating that the mutant essentially does not bind the substrate. These experimentally 
measured binding constants are consistent with the observation that, considering that the free energy 
of the free state is the same, the binding free energy of the locked state is larger than that of the 
unlocked state because the free energy of the former is lower than that of the latter (Figure 1).

Figure 3. Schematic illustration of the process of 
product release. The product (P) is released by the 
enzyme (E) in a process that begins in the ground (or 
‘locked’) state of the complex (EP), visits a metastable 
(or ‘unlocked’) intermediate state (EP*) and reaches the 
unbound state (E + P). The interactions in the ‘locked 
state’ (EP) and in the ‘unlocked state’ (EP*) are shown  
in light blue.
DOI: 10.7554/eLife.02777.010
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Conclusions
We have presented the atomic resolution structure of an intermediate associated with the prod-
uct release in an enzymatic reaction. We have validated this structure by identifying a distinctive 
structural characteristic of this state, a transient hydrogen bond between the side-chains of  
residues N44 and E35. As this interaction stabilises the intermediate state but not the ground 
state, we introduced a mutational variant (N44A) that, by removing specifically the hydrogen 
bond, reduces the stability of the intermediate state but not that of the ground state and  
thus inhibits the release process. Our results provide an illustration of the manner in which confor-
mational fluctuations can play a central role in enzymatic reactions by creating low-population  
intermediate states that facilitate the challenging step of release of the products of the catalytic 
reaction.

Figure 4. Experimental assessment of the role of the intermediate state determined in this work in the product release process. (A) Structure of the 
unlocked state illustrating the hydrogen bond between side chains of N44 and E35 that stabilises this intermediate species. (B) The hydrogen bond is 
not formed in the locked state because N44 and E35 are too far apart. (C) The N44A variant, which lacks the hydrogen bond donor, is unable to form this 
hydrogen bond, thus destabilising the intermediate state and inhibiting the release of the product. The decrease of the ability of the N44A mutant to 
release triNAG has been assessed by surface plasmon resonance (SPR) experiments. (D) Cellular assay of lysozyme activity. The N44A variant has an 
intermediate activity between wild type and the control E35D variant.
DOI: 10.7554/eLife.02777.011
The following figure supplements are available for figure 4:

Figure supplement 1. Comparison of the 1H-15N HSQC spectra of WT (black) and N44A mutant (red). 
DOI: 10.7554/eLife.02777.012

Figure supplement 2. Comparison of the free-energy landscapes of wild-type (red) and N44A mutant (black) lysozyme. 
DOI: 10.7554/eLife.02777.013

Figure supplement 3. Study of the N46Q/V110Q mutant. 
DOI: 10.7554/eLife.02777.014

http://dx.doi.org/10.7554/eLife.02777
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Materials and methods
Sample preparation
Human lysozyme was expressed in Pichia pastoris and purified on an ion exchange column, as previ-
ously described (Johnson and et al., 2005). 15N ammonium sulfate and 13C methanol were used to 15N 
and 13C label the protein, respectively. NMR experiments were carried out using a 700 MHz spectrom-
eter at 37°C in a buffer at pH 5.0 containing 20 mM potassium phosphate and 10% D2O; the pH was 
re-adjusted after the addition of the protein. Protein concentrations were in the range of 200–350 μM. 
For the measurements of the bound state, N,N′,N"-triacetylchitotriose (triNAG) sugar was purchased 
from Sigma and dissolved in water to constitute a concentrated stock solution.

Assignment of NMR spectra
For the assignment of the free state at pH 5.0 and 37°C, we used a previously published assignment 
(Ohkubo et al., 1991; Hagan and et al., 2010), which was confirmed using HNCA measurements, 
which was run with a spectral width of 1561 Hz and 68 points in the 15N dimension, and a spectral width 
of 5456 Hz and 64 points in the 13C dimension (Grzesiek and Bax, 1992). In total, 126 backbone 
amides were assigned in the 1H-15N spectrum.

For the full assignment of human lysozyme bound to triNAG, we performed titrations of 1H-15N 
HSQC spectra of a 200 μM sample of 15N human lysozyme, which were recorded using progressive 
concentration of the ligand (0, 0.3, 0.5, 0.8, 1.1, 1.6, 2.4, 3.1, 5.2, and 10 equivalents), allowing us to 
sample different points along the binding curve. HSQC spectra were recorded with a spectral width of 
1621 Hz and 128 points in the 15N dimension (Figure 1—figure supplement 2). Additional information 
was obtained using HNCA and HNCACB experiments of a triNAG-saturated human lysozyme sample 
(Grzesiek and Bax, 1992; Muhandiram and Kay, 1994). The HNCA experiment was carried out with 
the same settings as for the free state (see above). The HNCACB experiment was carried out with a 
spectral width of 1561 Hz and 68 points in the 15N dimension and with a spectral width of 13,210 Hz 
and 72 points in the 13C dimension. These complementary data allowed us to obtain the full assign-
ment of the 1H-15N spectra (Figure 1—figure supplement 1).

Residual dipolar coupling measurements
Residual dipolar couplings (RDCs) were measured by orienting the free and triNAG-bound states 
in two different bicelle solutions, neutral and charged (Ottiger and Bax, 1998; Schwalbe and  
et al., 2001). The neutral bicelle solution contained 5% wt/vol of a mixture of DMPC and DHPC  
(q = 2.9), whereas CTAB was used to create a positively charged solution of 10% wt/vol of the 
(DMPC:DHPC:CTAB) = (2.9:1:0.2) composition. Splitting of the 2H signal was recorded before and 
after the IPAP experiments, to ensure that alignment had remained constant during the course of 
the NMR experiment. IPAP experiments were recorded on the isotropic sample as well as on the two 
anisotropic samples (neutral and charged) (Ottiger et al., 1998). These experiments were per-
formed using a spectral width of 2447 Hz with 320 points in the indirect 15N dimension for the in-phase 
(IP) or anti-phase (AP) spectra. J-couplings were extracted in each medium and RDCs were derived, 
discarding overlapping and poorly defined peaks. For the free state, we extracted 109 RDCs in the 
steric medium and 110 in the charged medium; 109 RDCs were extracted for the bound state, both 
for steric and charged media.

3J scalar coupling measurements
3J HNHα couplings were obtained using HNHA experiments (Vuister and Bax, 1993), which were 
performed on the free and bound states using a 700 MHz spectrometer and a spectral width of 1454 
Hz with 68 points in 15N and 9800 Hz with 72–80 points in the indirect 1H dimension. The 3J HNHα 
couplings were extracted using the ratio of intensities of cross- (IX) and diagonal (ID) peaks (Kuboniwa 
et al., 1994)

2 3

X DI /I = – tan (2 J)πξ  (1)

with ξ = 13.05 ms.
Errors in the 3J HNHα coupling values were based either on a 5% uncertainty or on the noise level 

for cross-peaks with intensities below the RMS noise of the HNHA spectrum, estimated using Sparky 
(Goddard, T. D., and D. G. Kneller. SPARKY 3. University of California, San Francisco, 2004). Errors on 

http://dx.doi.org/10.7554/eLife.02777
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intensities were propagated according to Equation (1) to yield the error on 3J HNHα couplings. 
Residues with overlapping diagonal peaks were discarded, as well as glycine residues.

Molecular dynamics simulations
As a starting structure for the ligand-free state, we used the crystal structure of human lysozyme  
at 1.9 Å resolution (PDB code 2ZIJ). For the bound state, we used the crystal structure of the 
human lysozyme A96L variant bound to triNAG at 1.8 Å resolution (PDB code 1BB5). This structure 
was modelled by mutating back residue 96 from L to A, as in the wild-type sequence. Molecular 
dynamics simulations were performed by using AMBER99SB with corrections on backbone (Best 
and Hummer, 2009) and side chains (Lindorff-Larsen et al., 2010) dihedral angles as the force 
field (EFF) for the protein. triNAG was modelled using the GLYCAM06 force field (Kirschner et al., 
2008). The protein and protein/triNAG systems were solvated using the TIP3P water model 
(Jorgensen et al., 1983). A time step of 2 fs was used together with LINCS constraints (Hess, 
2008). Systems were energy minimised and equilibrated with positional restrained simulations of 
20 ns, in which the heavy atoms of the protein and triNAG molecules were restrained to their 
Cartesian coordinates. For the free state, the resulting system box after equilibration was 5.55 × 
6.16 × 5.56 nm3, with 5698 water molecules for a total of 19,123 atoms. For the bound state, the 
resulting system box after equilibration was 6.15 × 5.62 × 5.99 nm3, with 6131 water molecules for 
a total of 20,509 atoms.

The simulations were performed in the NPT ensemble by weak coupling the pressure and temper-
ature with external baths. Temperature coupling was performed with the v-rescale method (Bussi 
et al., 2007) with a coupling constant of 0.1 ps. The pressure was kept constant using the Berendsen 
method (Berendsen et al., 1984), with a coupling constant of 1.0 ps and at a reference pressure of 
1 bar. The isotropic compressibility value was set to 4.5 × 10−5 bar−1. Electrostatic interactions were 
treated by using the particle mesh Ewald method (Essmann and et al., 1995).

Molecular dynamics simulations with RDC restraints
We used replica-averaged RDC restraints in molecular dynamics simulations (De Simone et al., 2011; 
Montalvao et al., 2011; De Simone et al., 2013a; De Simone et al., 2013b). This method has been 
tested for its ability to sample interdomain motions in proteins (De Simone et al., 2011; De Simone 
et al., 2013b), as well as in multiple conformational states in fast exchange in the NMR measurements 
(De Simone et al., 2013a). A recent study was carried to generate accurate ensembles of hen egg 
white lysozyme using RDC measured under the same conditions of the present work (De Simone 
et al., 2013b). This investigation has defined the sampling method that we have used here to char-
acterise the conformational properties of lysozyme using RDC restraints. The accuracy of the result-
ing ensemble was benchmarked using a large variety of NMR observables, including eight sets of 
RDCs. Briefly, in this approach (De Simone et al., 2011; De Simone et al., 2013b), the structural 
information provided by RDC measurements is imposed to restrain the molecular dynamics simula-
tions by adding a term, ERDC, to a standard molecular mechanics force field, EPot:

= + .
Tot Pot RDC

E E E  (2)

The resulting force field, ETot, is employed in the integration of the equations of motion. In this work, 
the restraint term, ERDC, is given by (De Simone et al., 2011; De Simone et al., 2013b):

( )2exp= – ,RDC calc

i
E D D∑α  (3)

where α is the weight of the restraint term, and Dexp and Dcalc are the experimental and calculated 
RDCs, respectively. The RDC of a given bond vector is calculated as (De Simone et al., 2011; De Simone 
et al., 2013b):

1
= ,

calc

mm
D D

M
∑

 
(4)

where m runs over the M replicas and Dm is the RDC of replica m, which is given by:

max
= cos cos ,ij i j

ij

D D A∑ φ φ
 

(5)
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where 
i
φ  and jφ  are the angles between the internuclear vector and the molecular reference frame, the 

indices i and j run over the three Cartesian coordinates, x, y, and z, and ijA  is the (i,j) component of 
the alignment tensor.

The use of replica-averaged molecular dynamics simulations enables one to generate an ensemble 
of conformations compatible with the experimental data according to the maximum entropy principle 
(Pitera and Chodera, 2012; Cavalli et al., 2013; Roux and Weare, 2013), at least in the limit of large 
M and α. We have previously shown (Cavalli et al., 2013), however, that it is possible to effectively 
achieve this limit even if the values of M and α remain relatively small and thus obtain conformational 
ensembles that provide a good agreement between experimental and calculated observables. 
Following these procedures, we used here M = 16 and for the weight, α, we first carried out an initial 
equilibration simulation at 310 K, during which the agreement between the calculated and experi-
mental data was allowed to converge by gradually raising α to the largest possible value that did not 
generate numerical instabilities. Subsequently, we performed a series of 50 cycles of simulated anneal-
ing between 310 and 500 K to sample the conformational space. Each cycle was carried out for a total 
of 250 ps (125,000 molecular dynamics steps). For each cycle, we collected 24,000 structures (1 per ps 
in the final 50 ps of the final 30 cycles of each of the 16 replicas). These structures were employed for 
the analyses reported in this study.

The alignment tensor is calculated from the shape and charge of the protein molecule using a pro-
cedure recently described (Montalvao et al., 2011). We adopted such an approach here rather than 
the more commonly used singular value decomposition (SVD) method (Clore and Schwieters, 2004b; 
Clore and Schwieters, 2004a) because in the presence of conformational fluctuations of relatively 
large amplitude, such as those exhibited by hen lysozyme, the SVD method, when used in combination 
with the replica-averaging procedure of Equations 2–5, is less effective in capturing the motions of a 
protein (De Simone et al., 2013b). The reason is that the SVD method does not necessarily provide 
the actual alignment tensor of a given structure but rather the alignment tensor that generates the 
RDC values in the closest agreement with the experimental ones and hence is less well suited in 
describing the specific differences between the structures considered in the averaging procedure in 
Equation (3) (Montalvao et al., 2011; De Simone et al., 2013b).

This structure-based method was used here to calculate the orientations of lysozyme in two align-
ment media, one steric (DMPC/DHPC) and one electrostatic (DMPC/DHPC/CTAB). The Q factors for 
the refined ensembles of the free and bound states of human lysozyme were 0.10 in both cases.

In addition to the previous extensive benchmarks performed on the structural ensembles of the 
hen egg white lysozyme (De Simone et al., 2013a), which were obtained using the same protocol 
employed in this work, we performed here a set of additional validations based on NMR measure-
ments not used as restraints in the simulations and by comparing the resulting experimental values 
with those back-calculated from our ensemble of human lysozyme (Figure 1—figure supplement 5).

Mutagenesis
N44A mutation and E35D or D53N (control mutations) were introduced into the pPIC9/HuLys wt by 
using QuikChange XL II mutagenesis kit (Qiagen, Venlo, The Netherlands). The pPIC9 plasmid contain-
ing the point mutations of HuLys cDNA was linearised by digestion with StuI. Transformation into 
Pichia pastoris GS115 was performed by using Pichia EasyComp Transformation Kit (Life Technologies), 
according to manufacturer's instructions. Cell colonies were screened for lysozyme expression level 
by quantifying by NuPAGE analysis the amount of lysozyme produced in 10-ml mini-cultures. Protein 
expression and purification were performed as previously reported (Johnson and et al., 2005). Protein 
purity exceeded 95% as estimated by NuPAGE analysis. Protein concentrations were determined by 
absorbance measurements at 280 nm using theoretical extinction coefficients calculated with Expasy 
ProtParam.

Surface plasmon resonance
Surface plasmon resonance (SPR) experiments were performed using a Biacore 3000 system (GE 
Healthcare). CM5 sensor chip surfaces were activated by using an amine coupling kit (GE Healthcare). 
WT and N44A lysozyme variants were immobilised to the activated surfaces by amine coupling at a 
density of 2500–3000 resonance units (RU). Single chain kinetic experiments were performed at 25°C 
using a flow rate of 20 µl/min in 50 mM phosphate pH 6.2, 100 mM NaCl. Serial dilutions (200 µM, 
100 µM, 50 µM, 25 µM, and 12.5 µM) of N,N′,N′′-Triacetylchitotriose (Tri-NAG, Sigma Aldrich) were 
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sequentially injected every 700 s using a contact time of 250 s for each injection. Data fitting was per-
formed with the single chain kinetic module provided with the Biaevaluation software (Biacore GE 
lifesciences).

Cellular assay of lysozyme activity
Hydrolase activity assay was performed using Micrococcus lysodeikticus cells (Sigma Aldrich) as 
the substrate. Cells of Micrococcus were suspended at 0.3 mg/ml in 100 mM potassium phosphate, 
pH 6.2, shortly before the assay. The decrease of Absorbance at 450 nm was monitored at 25⁰C in 
the presence of 20 nM lysozyme variants.
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