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Protein aggregation is associated with a variety of pathological conditions,
including Alzheimer’s and Creutzfeldt-Jakob diseases and type II dia-
betes. Such degenerative disorders result from the conversion of the nor-
mal soluble state of specific proteins into aggregated states that can
ultimately form the characteristic amyloid fibrils found in diseased tissue.
Under appropriate conditions it appears that many, perhaps all, proteins
can be converted in vitro into amyloid fibrils. The aggregation propensities
of different polypeptide chains have, however, been observed to vary sub-
stantially. Here, we describe an approach that uses the knowledge of the
amino acid sequence and of the experimental conditions to reproduce,
with a correlation coefficient of 0.92 and over five orders of magnitude,
the in vitro aggregation rates of a wide range of unstructured peptides
and proteins. These results indicate that the formation of protein aggre-
gates can be rationalised to a considerable extent in terms of simple
physico-chemical parameters that describe the properties of polypeptide
chains and their environment.
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Introduction

Pathological conditions such as type II diabetes
and neurodegenerative disorders such as
Alzheimer’s and Creutzfeldt-Jakob diseases
have been linked with the deposition in tissue of
insoluble protein aggregates.1– 5 These deposits,
often in the form of amyloid plaques, are largely
composed of misfolded proteins that assemble to
form extended fibrillar structures.6 Despite the
lack of detectable similarities among the amino
acid sequences or the native structures of amyl-
oidogenic proteins, amyloid fibrils from different
sources share common morphological and struc-
tural features.7 Electron and atomic force
microscopy have shown that amyloid fibrils are
formed from protofilaments that associate
laterally or twist together to form fibrils of larger
diameter.6,8 – 10 Moreover, amyloid fibrils show a

common cross-b pattern in which the polypeptide
chains form b-strands oriented perpendicularly to
the long axis of the fibril, resulting in b-sheets pro-
pagating in the direction of the fibril.7 Although
amyloid deposits were initially discovered in
association with several human disorders, it has
recently become apparent that a wide range of
other proteins, unrelated to any known disease,
can form amyloid structures in vitro when
incubated under appropriate conditions.4,11 – 13 As a
consequence it has been suggested that the
ability to form amyloid fibrils is a common charac-
teristic of polypeptide chains, although the ease
with which they form varies greatly with the
sequence.11,14,15

Given the increasing number of diseases that are
recognised to be related to amyloid formation, and
the apparent generic ability of natural and syn-
thetic polypeptide chains to form amyloid fibrils,
it is important to understand the determinants of
this process. Diverse factors, both intrinsic and
extrinsic to the proteins, have been reported to
influence the rate of aggregation of amyloidogenic
peptides and proteins. Extrinsic factors that affect
the formation of protein aggregates include the
interaction with cellular components such as
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molecular chaperones,16 proteases that generate or
process the amyloidogenic precursors,17 and the
effectiveness of quality control mechanisms, such
as the ubiquitin–proteasome system.18,19 They also
include physico-chemical parameters defining the
environment of the polypeptides, such as pH,
temperature, ionic strength and concentration.20 – 25

Intrinsic factors associated with amyloid formation
include a range of characteristics of polypeptide
chains, such as charge,26 – 29 hydrophobicity,30 – 32

patterns of polar and non-polar residues,33 and the
propensities to adopt diverse secondary structure
motifs.27,32,34,35 In the case of globular proteins, the
propensity to form amyloid structures is often
inversely related to the stability of the native
state.36 – 40 Many of the proteins associated with
amyloid diseases are, however, at least partially
unstructured under physiological conditions. For
instance, mutations in the a-synuclein gene, linked
to familial forms of Parkinson’s disease, cannot
be correlated to alterations in protein stability, as
a-synuclein appears to be natively unfolded.41,42

Moreover, in many cases changes in stability are
not sufficient to account for the pathogenic nature
of mutant proteins, such as in the case of the
prion protein where a substantial fraction of the
mutations analysed so far have been found to
have little or no effect on the stability of the native
state.43 Similarly, in familial amyloid polyneuropa-
thies associated with transthyretin deposition,
the degree of destabilisation of the native state
caused by a mutation and the severity of the
related clinical condition are not fully correlated.44

It is therefore becoming clear that, even for
globular proteins, intrinsic factors other than the
stability of the native state must play a role in
determining the propensity of a given sequence to
aggregate.

The role of intrinsic properties in determining
changes in the aggregation rate resulting from
single amino acid substitutions has been recently
analysed in detail using human muscle acylphos-
phatase (AcP).45 When aggregation was studied
from a denatured ensemble, a very high correlation
was found between the observed changes in the
aggregation rates resulting from single amino acid
substitutions and the effect that each of the substi-
tutions has on three intrinsic properties of the
polypeptide chain, hydrophobicity, charge, and
the propensity of the polypeptide chain to adopt
a-helical or b-sheet structure.45 These factors were
included in an equation to correlate the changes in
aggregation rates relative to the wild-type protein
for single substitutions in regions of the poly-
peptide chains observed to be influencing
aggregation32 and for peptides and proteins that
are at least partially unfolded. The predicted varia-
tions in aggregation rates obtained by applying
this equation to different AcP mutants showed a
very good agreement (r ¼ 0:76; p , 0:001) with the
experimental results obtained from the AcP
mutants.32,45 The formula also reproduces to a
remarkable extent (r ¼ 0:85; p , 0:001) the changes

in the aggregation rates observed experimentally
for single amino acid substitutions in other poly-
peptides, including those associated with amyloid
disease.45

Here, we take a significant step forward in this
type of analysis by showing that intrinsic and
extrinsic characteristics can be used as variables in
a relatively simple formula that predicts accurately
the absolute aggregation rates of polypeptide
chains under a wide range of experimental con-
ditions, without the requirement of experimental
knowledge of the specific regions of the sequence
that are particularly sensitive for aggregation.
We introduce the following phenomenological
equation to describe the absolute rate at which a
polypeptide chain aggregates to form amyloid
fibrils or their precursors:

logðkÞ ¼ a0 þ ahydrI
hydr þ apatI

pat þ achI
ch

þ apHE
pH þ aionicE

ionic þ aconcE
conc ð1Þ

where log(k) is the logarithm in base 10 of the
aggregation rate k, in units of s21. Factors intrinsic
to the amino acid sequence are denoted as I, while
extrinsic, condition-dependent, factors are denoted
as E. Ihydr represents the hydrophobicity of the
sequence, calculated as the sum of the hydrophobic
contributions of each residue, normalised by N, the
number of amino acid residues in the sequence;
the Roseman scale of hydrophobicity was used to
estimate these propensities at neutral pH, using
the data from Cowan and co-workers to adjust the
changes in hydrophobicity experienced by amino
acid residues at different pH values.46,47 Ipat takes
into account the existence of patterns of alternating
hydrophobic–hydrophilic residues; a factor of þ1
was assigned for each pattern of five consecutive
alternating hydrophobic and hydrophilic residues
in the sequence.48 Ich is the absolute value of the
net charge of the sequence. EpH accounts for the
pH of the solution in which aggregation occurs
and Eionic defines the ionic strength of the solution,
given in millimolar units. Finally, Econc refers to the
polypeptide concentration C (in millimolar units)
in the solution, represented here as log(C þ 1), a
term always positive for any value of C.

At this stage of our investigation we focus on
analysing the absolute rates of aggregation for
polypeptide chains determined from their
denatured states in vitro. We therefore exclude at
the present time parameters linked to the presence
of cellular components such as chaperones, pro-
teases, and quality control systems as well as
those related to the conformational stability of the
folded proteins, although such factors could be
included in extensions of the present study. The
results of this work demonstrate our ability to
correlate, and hence to predict, over a broad range
of potential experimental conditions, the aggrega-
tion rates of a number of non-homologous partially
unstructured peptides and proteins.
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Results and Discussion

Prediction of the aggregation rates

In order to determine the coefficients in equation
(1), we considered a comprehensive database from
the experimental data on aggregation rates avail-
able in the literature at the time of preparation of
the manuscript (see Methods). The dataset
comprised data from mutational studies on the
aggregation of one protein, human muscle acyl-
phosphatase (AcP), for which extensive measure-
ments have been reported,28,32 and data on other
systems obtained from a systematic literature
search44,49 – 57 (see Table 1). Aggregation rates for
AcP and for transthyretin variants were deter-
mined under conditions that promote the con-
version of the native state into an ensemble of
unfolded or partially unfolded conformations.
This permitted factors favouring aggregation to be
examined in the absence of complications from
changes in the stability of the native state that
might occur as a consequence of the mutations.
Since the remaining sequences are all peptides
that do not fold into a defined globular structure,
we can use experimental kinetic data while
remaining confident that the changes in aggrega-
tion rates as a result of mutation are not due to
changes in the stability of the globular structure.

The coefficients in equation (1) were determined
by using a standard regression analysis to repro-
duce the experimental log(k) values for the poly-
peptides reported in Table 1 (see Methods). The
values reported in Table 2 represent the resulting
estimates of these parameters. The comparison
between the calculated and observed aggregation
rates for various sequences is illustrated in Figure
1; AcP variants are shown in blue and the
remaining sequences in green. The linear corre-
lation coefficient between the calculated and the
observed values for the entire dataset is 0.92 ðp ,
0:0001Þ: The root-mean-squared error between the

calculated and observed log(k) values is 0.3; this
value is an estimate of the statistical error on the
prediction of log(k) consistent with the results
obtained by the bootstrapping test (see below).

Validation of the predictions

The results of procedures such as the one
described in the previous section can be highly
dependent on the database used in the fitting pro-
cedure, a problem known as “overfitting”. In the
specific case that we have studied, an extensive
testing of the approach is particularly difficult at
the present stage owing to the relative scarcity of
good-quality experimental data on polypeptide
aggregation rates; indeed one of the objectives of
the present work is to promote the measurement
of the aggregation rates of a much larger number
of polypeptides and proteins. Therefore, in order
to test the accuracy and predictive power of
equation (1) in determining the aggregation rate of
any polypeptide chain we used two cross-
validation methods, the bootstrapping procedure,58

and the jackknife method.59

Table 1. Experimental data used in the present work

Peptide/protein Variants pH Ionic strength (mM) [Peptide] (mM) References

AcP 59 5.5 43 0.04 28,32,61
Ab40 2 7.4 150 0.25 53
Ab40 1 7.4 81 0.03 55
Ab42 1 7.4 81 0.01 55
ABri 1 9.0 89 1.31 56
AChE peptide 586–599 1 7.0 7.7 0.20 57
Amylin 22–29 2 7.2 1.1 2.0 54
Amylin 1–37 1 7.3 1.4 0.14 52
Amylin 9–37 1 7.3 1.4 0.14 52
HypF-N 1 5.5 40 0.08 75
Amglin 1 5.0 0.1 0.001 50
Leucine-rich repeats 1 7.8 3.3 0.39 49
PrP peptide 106–126 3 5.0 1.2 0.33 51
Transthyretin 3 4.4 130 0.014 44
Human calcitonin 1 7.4 25 1.5 (S. Fowler & J.Z., unpublished results)

The sequences are denoted by the common abbreviation of the peptide or protein in each case. The number of mutations whose
aggregation rates were measured is given along with the experimental conditions. The sequences listed were used to fit the para-
meters in equation (1), with the exception of HypF-N and calcitonin that were used as a test of its predictive ability.

Table 2. Results from the regression analysis of the entire
dataset, which correspond to the best fit of the coef-
ficients in equation (1)

a p-value

Hydrophobicity 21.56 ^ 0.38 ,0.001
Patterns 0.41 ^ 0.04 ,0.001
Charge 20.16 ^ 0.02 ,0.001
pH 0.04 ^ 0.07 0.53
Ionic strength 20.011 ^ 0.001 ,0.001
Concentration 0. 4 ^ 0.6 0.57
Intercept 23.3 ^ 0.4 ,0.001

Errors are estimated from the variability of the coefficients
resulting from the bootstrap and the jackknife validation pro-
cedures; the respective p-statistics indicate the significance in
the predictions, with a p-value ,0.05 indicating a significant
result (see the text for comments on the values for pH and con-
centration).
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In the bootstrapping test, we randomly divided
the entire dataset into two subsets. The first subset,
composed of two-thirds of the sequences, was used
as the training set, from which the coefficients in
equation (1) were estimated. These coefficients
were then used to predict the aggregation rates of
the remaining sequences, representing the test set.
The procedure was repeated 25 times, each time
with a different random choice of the training set.
The distribution of the correlation coefficients
between the predicted and the experimental values
was plotted for the training and test sets (Figure
2A). The correlation coefficient for the training set
ranged from 0.90 to 0.94 with an average of 0.93;
the p-value is lower than 0.0001 in all cases. The
correlation coefficient for the test set ranged from
0.78 to 0.95 with an average value of 0.89; in only
one of the 25 cases the correlation coefficient was
lower than 0.80. We analysed carefully the list of
data used in the training set in this case and
found that the random selection procedure
excluded all the data corresponding to a set of
measurements relative to a given range of experi-
mental conditions. The resulting overfitting of the
coefficients was thus responsible for the relatively
poor performance in this case. This type of effect
should become less pronounced as more data on
aggregation rates become available.

We then adopted the jackknife cross-validation
method, in which the aggregation rate for each
sequence is predicted in turn after having left that
particular sequence aside during the determination
of the optimal coefficients for the remaining
sequences.59 We performed this procedure for all
of the wild-type and mutated polypeptides
reported in Table 1. The linear correlation coef-

ficient between predicted and observed rates was
0.91 in this case. The results of this test for various
non-homologous polypeptide sequences are
shown in Figure 2B. The good agreement between
the predicted and experimental aggregation rates
for the various proteins and peptides examined in
this study shows the reliability of the formula in
determining absolute aggregation rates from
unstructured polypeptide chains.

Two further compelling tests for our formula are
the predictions of the aggregation rate of the
N-terminal domain of prokaryotic globular protein
HypF (HypF-N) and human calcitonin, two pro-
teins that were not included in the analysis
described so far. The 91 residue polypeptide chain
of HypF-N has been shown to form amyloid fibrils
under conditions similar to those used in the AcP
studies.28,32,60 HypF-N forms amyloid fibrils even
more rapidly than AcP, which has one of the fastest
amyloid aggregation rates in the dataset used.60 We
predict log(k) ¼ 22.0 for HypF-N using equation
(1). An experimental bound for the rate of
aggregation61 is log(k) $ 2 1.3. The comparison
between predicted and observed aggregation rates
of HypF-N (see Figure 1) shows that both values
are faster than any other rate in our dataset. Simi-
larly, the rate of amyloid aggregation for human
calcitonin was found to be log(k) ¼ 23.4 at 25 mM
ionic strength (S. Fowler & J.Z., unpublished
results). Equation (1) predicts log(k) ¼ 23.2 for
this sequence (see Figure 1).

Influence of individual factors

The values of the coefficients in equation
(1) obtained in the present analysis have been

Figure 1. Results from the
regression analysis of the dataset
reported in Table 1. The calculated
values for log(k), determined using
equation (1) and the coefficients
reported in Table 2, are plotted
against the experimental values.
Data for wild-type AcP and its
mutants are shown in blue (dia-
monds), while data for other
sequences in the dataset are shown
in green (triangles). The compari-
son between the predicted and the
experimental aggregation rates for
the N-terminal domain of HypF-N
is plotted as a red bar and yellow
circle for human calcitonin. A line
of slope 1.0 is plotted for
comparison.  
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examined to discuss the extent to which they
correlate individually with the factors that are
considered to influence the propensity of a poly-
peptide chain to aggregate to form amyloid struc-
tures. We note, however, that equation (1) is
phenomenological and may involve double-
counting of some factors. Therefore, the interpret-
ation of the coefficients of individual terms should
be made with caution.

Intrinsic factors

Hydrophobicity

Hydrophobic interactions have long been
suggested to play a significant role in amyloid
formation.62 The hydrophobicity scale that we use
here assigns positive values to hydrophilic
residues and negative values to hydrophobic
residues;46,63 the use of other hydrophobicity scales
is also possible, requiring only a re-fitting of the
coefficients in Table 2. As we found a significant

ðp , 0:001Þ coefficient for Ihydr; our analysis con-
firms the well-documented effect that an increased
hydrophobicity leads to increased aggregation,61

as also shown by the fact that natively unfolded
proteins tend to have a low average hydrophobic
content.64

Hydrophobic patterns

Hydrophobic patterning was found in the
present study to be one of the most significant ðp ,
0:001Þ determinants of aggregation rates in
equation (1). The importance of hydrophobic–
hydrophilic patterns has been extensively studied
by Hecht and co-workers,33,65 – 68 and alternating
patterns of the type that we used have been
shown to be among the least common features of
natural protein sequences.48 A length of five con-
secutive hydrophobic and hydrophilic alternating
residues was found to yield the most significant
correlation with the experimental values of aggre-
gation kinetics. The positive value of the coefficient

Figure 2. A, Results from the
bootstrapping test for equation (1)
(see Methods). The histogram
shows the distribution of the corre-
lation coefficients of both training
(black) and test (grey) sets for 25
trials. B, log(k) values predicted for
all the non-homologous wild-type
sequences in our dataset by means
of the jackknife cross-validation
analysis. Predicted values of log(k)
for each of the wild-type sequences
shown were calculated using a
regression analysis on the data for
all the sequences in the dataset
except those for the single wild-
type sequence predicted; namely,
Ab40,53 ABri,56 transthyretin,
44amylin,52 AChE,57 PrP,51 AcP and
HypF-N.75 The experimental con-
ditions for each observed aggrega-
tion rate are reported in Table 1 as
well as in the references cited.
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for patterns indicates that the more patterns of this
type occur in a given sequence, the faster is its
aggregation rate. Although a previous study31

observed a selection against consecutive hydro-
phobic residues in natural sequences, we detected
no correlation in our dataset between aggregation
rates and either consecutive hydrophobic or
consecutive hydrophilic residues.

Charge

The highly significant ðp , 0:001Þ negative coeffi-
cient of the charge contribution indicates that the
aggregation rate of a polypeptide chain is inversely
proportional to the absolute value of the net
charge; such a correlation has been observed before
for AcP and its mutants.28 In the case of a small
peptide, however, charges of ^1 were shown to
be more favourable to the formation of highly
regular amyloid structures than net charges29 of
0 or ^2. These studies suggest, however, that
rapid aggregation may be associated with the for-
mation of poorly defined structures, whereas the
formation of highly ordered amyloid seems to
require longer periods of incubation.29 Modifi-
cation of the functional form of Ich from a linear to
a polynomial expression with maxima at ^1 gave
a lower correlation coefficient for the equation.
Thus, our investigation supports a linear depen-
dence of the aggregation kinetics on the absolute
value of the net charge of the polypeptide.45

Extrinsic factors

pH

The coefficients for pH and for concentration
(see below) could not be fitted precisely, owing to
the limited size of the available database on aggre-
gation rates. Nevertheless, we included them in
equation (1) because we anticipate that the
measurement of additional aggregation rates will
allow better estimates to be obtained in the future.
Our present results suggest that the pH may be
positively correlated to the rate of aggregation.
This finding is apparently not consistent with the
observation that formation of amyloid fibrils often
occurs at low pH.11,12,24,34,69 A possible explanation
is that the charge is included explicitly as an
intrinsic factor. The increased positive charge that
proteins tend to have at low pH is expected to dis-
favour aggregation, but such an effect is more
than counterbalanced by the lowering of the
stability of most proteins with decreasing pH.

Ionic strength

We found that taking into consideration the ionic
strength improved the accuracy of the predictions
of the aggregation rates. The extension of the data-
set to include aggregation rates measured for the
same peptide or protein under a wider range of
salt concentrations than the one we studied here

(from 0.1 mM to 150 mM) will enable a more
accurate rationalization of this effect.

Peptide concentration

Our results indicate that, as expected, the rate of
aggregation may increase with the peptide concen-
tration, C, although a fully quantitative analysis of
this effect is not possible at present (see above).
Several authors have proposed the existence of a
critical concentration for amyloid formation,
which is specific for each particular system.70 How-
ever, since all the experimental data that we
considered were obtained above the critical con-
centration required for aggregation, the extra-
polation of equation (1) to very low concentrations
should be considered with considerable caution.

Additional factors

Factors, such as temperature, stirring and native-
state stability, are known to influence amyloid
aggregation rates significantly. High temperatures
are generally found to lead to faster aggregation
rates20,23 but the limited range of temperatures in
the available experimental results included in the
dataset (298–310 K) makes it difficult to establish
reliably its contribution at the present time. Simi-
larly, although the extent to which solutions are
agitated is known to influence greatly the kinetics
of aggregation, this factor was not considered here
(see Methods). Lastly, as already mentioned, the
present procedure does not take into account the
stability of the native state, but rather predicts
rates of aggregation from unfolded states. For glob-
ular proteins such states are likely to be populated
at low levels under physiological conditions;
nevertheless, they may still determine the observed
aggregation rates.71 In principle, however, the
stability of the native state, which is likely to be an
important factor in determining aggregation rates
in many cases, could also be considered as an
additional factor in the formula, once a sufficiently
large set of experimental data becomes available.

Although b-sheet and a-helical propensities
have been found to influence significantly the
changes in amyloid formation rates with mutations
in a variety of studies,34,35,45,72 they were not found
to be statistically significant in our analysis and
therefore were not included in equation (1).
Secondary structure propensities are known, how-
ever, to be relevant in describing aggregation rates
for regions directly involved in the aggregation
process,45 or when secondary structure pro-
pensities do not lead to the formation of stable
secondary structural motifs.34 In addition, Hecht
and co-workers33,65 – 67 showed that amino acid
patterns are a major determinant in defining the
secondary structure adopted by polypeptides, and
in influencing the ability of amino acid sequences
to form amyloid structures. The inclusion of
patterns in equation (1) might, therefore account
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for some of the effects previously attributed to
secondary structure propensities.34,35,45

The present analysis has been carried out using
experimental data available in the literature at the
time the manuscript was prepared (see Methods).
The relative scarcity of these data has prevented at
this stage the consideration of the effects of some
additional factors, such as those mentioned above,
known to influence amyloid aggregation rates.
For a similar reason, as additional data become
available, estimates for parameters in the ranges
for which we have optimized the coefficients in
equation (1) should also become more reliable.
The methodology that we present is, however,
general, and we hope that the opportunity to
refine the quantitative analysis will promote the
systematic collection of data relevant to these
additional factors in order to rationalize their
effects.

Conclusions

We have shown that relatively simple para-
meters defining a polypeptide sequence and its
environment can determine, under a wide range
of experimental conditions, its aggregation rate
from an unfolded or partially unfolded state into
amyloid fibrils. In the present work we have ana-
lysed the effects of intrinsic properties of the poly-
peptide sequence, such as hydrophobicity,
hydrophobic–hydrophilic patterning and charge,
and also environmental parameters, such as pH,
ionic strength and concentration. Other factors,
such as stability of the native state, temperature
and the degree to which the solution is agitated
could also be included in the formula, if suitable
data become available to enable a reliable determi-
nation of their coefficients.

The aggregation rates calculated using the
approach that we present here reproduce the
experimentally observed rates with a correlation
coefficient of 0.92 (bootstrap cross-validated 0.89,
jackknife cross-validated 0.91). They can, therefore,
be expected to allow accurate predictions within
the ranges of conditions included in the dataset
used at the present time, namely protein lengths
from 8 to 127 residues, pH values from 4.4 to 9.0,
ionic strengths from 0.1 mM to 150 mM, tempera-
tures from 298 K to 310 K and peptide concen-
trations from 0.001 mM to 2 mM. We should also
note that the formula derived in this work was
obtained by neglecting the observation that some
regions of a polypeptide chain are likely to be
more important than others for determining the
aggregation rates.32 The approach presented here
considers the overall properties of an amino acid
sequence, with all residues having the same rela-
tive importance. This approximation is likely to be
responsible for the negligible influence of secon-
dary structure propensities that was found in the
present analysis. When such propensities were
analysed using the experimental knowledge of the

regions important for the aggregation of AcP, the
results demonstrated their importance for the pre-
diction of changes in aggregation rates caused by
single amino acid substitution.45 However, even
with the limitations imposed by neglecting the
existence of these regions, perhaps compensated
for by the inclusion of hydrophobic patterns, we
have found a robust correlation between predicted
and experimental aggregation rates for essentially
any sequence of residues. The quality of the predic-
tions presented here is likely to be improved
further by combining equation (1) with an algor-
ithm capable of predicting the relative importance
of different regions in a polypeptide chain. At the
same time, the fact that the regions important for
aggregation do not need to be experimentally
determined in order to use this formula enhances
greatly its general applicability.

The present analysis is applicable to the kinetic
behaviour measured after the lag phase in the
aggregation, which is a common feature of aggre-
gation resulting in highly organised amyloid
fibrils, as indeed for crystallization. After the lag
phase, single-exponential behaviour is generally
observed. We hope that the encouraging results
we have presented here will stimulate experi-
mental groups, in addition to our own, to carry
out systematic studies of the factors that influence
the duration of the lag phase as well as the sub-
sequent growth phase, thus gathering a body of
knowledge that will make it possible to rationalise
its origin and the factors on which it depends.

One of the most important conclusions of the
present work is that, under the conditions of appli-
cability of equation (1) that we have discussed, a
relatively small number of physico-chemical para-
meters of a polypeptide chain and its environment
can be used to determine its intrinsic propensity
to form amyloid aggregates, with no apparent
influence of the mechanism of aggregation and
structure adopted by the polypeptide chain in the
resulting aggregates. In addition to providing a
computational tool for determining a priori the
rate of a process with so many implications in pro-
tein science, biotechnology and medicine, this find-
ing supports further the suggestion that protein
aggregation is a generic process where the com-
mon backbone of a polypeptide chain plays a
dominant role, although amino acid side-chains
modulate the propensity of the backbone to aggre-
gate as well as many details of the resulting
structure. The ability to predict the aggregation
propensity of a given peptide or protein with the
accuracy shown here for a range of rates varying
by a factor of 105 should be a powerful tool to assist
experimental studies of the behaviour of natural
polypeptides and their propensity to aggregate, as
well as to establish the principles by which
sequences have been selected through evolution to
avoid misfolding and aggregation. A quantitative
understanding of the factors influencing aggre-
gation rates will increase our capability to
predict the onset of amyloidoses and other protein
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deposition diseases, in addition to helping us
explore effective therapeutic strategies. It will also
help us to design or modify polypeptides and
proteins rationally, to enhance their properties of
folding and self-association for biotechnology,
pharmaceutical developments and structural
biology.

Methods

Dataset

Kinetic data on the aggregation of AcP and its mutants
were obtained from the literature;28,32 in these studies
thioflavin T fluorescence was used to determine the rate
of aggregation of each protein in solution. All AcP data
were measured under identical conditions and provided
the largest set of data used in the present analysis (60
sequences). The second set of data included the aggrega-
tion rates of a range of peptides under different con-
ditions, obtained from published results (see Table 1).
A literature search was conducted using “kinetics” and
“fibril” or “amyloid” as keywords, resulting in an initial
list of over 800 references. We then selected those studies
that described quantitative measurements of the rates of
aggregation of short peptides or denatured proteins in a
buffer solution that formed fibrils detectable by electron
microscopy over the course of the experiment. Because
of the difficulties in quantifying different stirring pro-
cedures in a variety of sample vessels, no aggregation
experiments performed under stirring or agitation were
considered. This selection procedure led us to ten refer-
ences that provided kinetic data on 23 sequences under
various salt conditions, occasionally with small amounts
of co-solvent remaining from the peptide stock solution.
Sequences were chosen using the criteria described
above, prior to any kinetic analysis. No sequences were
excluded after the analysis, nor were new ones added.

Aggregation rates were determined from kinetic traces
obtained by the following methods: thioflavin T fluor-
escence, turbidity, CD, or direct estimation of the relative
amount of aggregated material using techniques such as
sedimentation, size-exclusion chromatography, and fil-
tration. Although these methods detect slightly different
aspects of aggregation, they are closely linked, and in
some systems where two or more experimental tech-
niques have been applied, a similar kinetic profile has
been observed.32,52,57 The values of log(k) determined by
different methods in these papers differ by less than
0.1 unit32,52 in all but one case,57 where turbidity kinetics
and thioflavin T kinetics differ by 0.8 unit, perhaps as a
result of other differences in experimental procedure. In
the experimental studies that we considered, mass/
volume analyses were used in the absence of an indepen-
dent technique to confirm the results. However, since
these methods may be considered the most direct
method of observing the growth of physical aggregates,
the data obtained solely by these methods were included
in the analysis.

Lag phases were not considered in our analysis, as
they are often not reported or difficult to extract from
the published data. While a comprehensive understand-
ing of lag phases in protein aggregation is still lacking,
they appear to be particularly susceptible to slight
changes in aggregation procedure, as illustrated by var-
ious studies where seeded and non-seeded solutions
result in nearly identical elongation rates.50,73 Thus, the

present analysis focuses on the aggregation kinetics
after the lag phase where an elongation phase with
single exponential behaviour is generally observed. Kin-
etic traces were fitted to the equation y ¼ Að1 2 e2ktÞ
where k is the rate constant in units of s21. The logarithm
in base 10 of the rate constant, log(k), was used in
equation (1), since the values of log(k) were better
described by a normal distribution than the value of k
itself.

Derivation and validation of the formula

The functional form of each factor in equation (1) was
chosen after examining a variety of phenomenological
combinations of the factors likely to influence the
propensity to aggregate. We considered two classes of
factors, intrinsic and extrinsic. Intrinsic factors included
properties of the amino acid sequence, such as hydro-
phobicity, hydrophobic patterns and charge. Their func-
tional forms were determined by examining a subset
of AcP mutants to find the representation that best corre-
lated with changes in log(k) amongst the mutants. The
extrinsic factors included peptide concentration, ionic
strength, and pH. We used a logarithm form for the
term describing the effect of the peptide concentration
in order to avoid overestimating rates at higher concen-
trations. This choice is also supported by recent
observations of the critical nucleus of aggregation,
where the dependence of log(k) on log(C) has been
found to be linear.74 All other terms considered here
were assumed to be approximately linear.

Regressions were performed with the software Rweb
1.8.0† to obtain the coefficients in equation (1) that mini-
mize the differences between the calculated and experi-
mental log(k) values. In interpreting the meaning of the
numerical constants in the formula we should note
again its phenomenological nature. The formula may
contain double-counting for some factors (e.g. hydro-
phobicity and hydrophobi, patterns, pH and charge);
this is not problematic, as the coefficients are fitted from
experimental data and not derived from first principles.
The formula was validated using both bootstrap and
jackknife cross-validation techniques as described in the
text.58,59
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