
ARTICLE

Received 29 Dec 2015 | Accepted 14 Jul 2016 | Published 19 Sep 2016

Structural basis of synaptic vesicle assembly
promoted by a-synuclein
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a-synuclein (aS) is an intrinsically disordered protein whose fibrillar aggregates are the major

constituents of Lewy bodies in Parkinson’s disease. Although the specific function of aS is still

unclear, a general consensus is forming that it has a key role in regulating the process of

neurotransmitter release, which is associated with the mediation of synaptic vesicle inter-

actions and assembly. Here we report the analysis of wild-type aS and two mutational

variants linked to familial Parkinson’s disease to describe the structural basis of a molecular

mechanism enabling aS to induce the clustering of synaptic vesicles. We provide support for

this ‘double-anchor’ mechanism by rationally designing and experimentally testing a further

mutational variant of aS engineered to promote stronger interactions between synaptic

vesicles. Our results characterize the nature of the active conformations of aS that mediate

the clustering of synaptic vesicles, and indicate their relevance in both functional and

pathological contexts.
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a-S
ynuclein (aS) is a 140-residue protein whose
aggregation has been strongly associated with
Parkinson’s disease (PD)1–5. Fibrillar deposits of

aS are the major constituents of Lewy bodies6–8, a hallmark of the
disease, and inherited forms of early onset PD are associated with
mutations, duplications and triplications of the aS-encoding
gene9,10. Despite the general consensus on its pathological
relevance, the physiological role of aS remains widely debated.
In this context, a view is emerging in which aS is involved in the
dynamics of synaptic vesicle (SV) trafficking by regulating a distal
reserve pool of SVs that controls the amount of vesicles docked at
the synapses during neurotransmitter release11,12. This biological
role is directly associated with the ability of aS to bind to synaptic
vesicles and induce their interaction and assembly in vitro and
in vivo13–16. Indeed, in dopaminergic neurons aS exists in a
tightly regulated equilibrium17 between a cytosolic monomeric
form, which is predominantly disordered18–20, and a membrane-
bound state, which is rich in a-helix structure in the region
spanning residue 1–90 of the protein sequence15,21–26.

Because of its intrinsic ability to bind to a wide variety of
biological membranes, the physiological state of membrane-
bound aS is extremely difficult to characterize, as a variety of
factors, including the presence of detergents22 and chemical
modification of the protein27, can alter dramatically the structural
properties of its bound state15. In a recent study, three major
regions were identified to have distinct structural and dynamical
properties that influence in different ways the nature of the
membrane-bound state of aS28; these regions include an
N-terminal a-helical segment, acting as the membrane-anchor,
an unstructured C-terminal region, weakly associated with the
membrane, and a central region, undergoing order–disorder
transitions in the membrane-bound state and determining the
affinity of aS for lipid bilayers of different composition28.
This structural variability indicates that it is of fundamental
importance to investigate the binding of aS to lipid membranes
under conditions that reproduce as closely as possible the
physiological environment relevant to that of presynaptic
vesicles15.

We describe here a detailed characterization of the dynamical
and structural properties at the surface of synaptic-like lipid
vesicles of two familial aS mutations that have opposite effects on
its affinity for membrane binding29,30. On the basis of these
studies, we characterized the details of the underlying mechanism
by which a single molecule of aS binds two different synaptic
vesicles and promotes their interaction and assembly. This
mechanism, which involves a double-anchoring step enabling
aS to form a dynamic link between two vesicles, is strongly
supported by an experiment in which a variant of aS was
engineered to adopt structural properties in its membrane-bound
state that result in enhanced aS-mediated interactions between
synaptic vesicles while maintaining the same amino acid
composition, charge and membrane-binding affinity of the
wild-type protein. The mechanism, which was verified using
both synthetic lipid vesicles and synaptic vesicles purified from
rat brain, provides evidence that the specific level of affinity for
membrane binding of the non-amyloid-b component (NAC)
region of aS is a fundamental functional property enabling this
protein to mediate the interaction between vesicles.

Results
Binding of aS variants to membranes. Using solution-state and
solid-state nuclear magnetic resonance (NMR) spectroscopy
in combination with cryo-electron microscopy (cryo-EM) and
stimulated emission depletion (STED) imaging, we have char-
acterized the structural properties at the surface of synaptic-like

vesicles of the familial aS mutants A30P31 (aSA30P) and E46K32

(aSE46K) and compared their behaviour with that of the wild-type
protein (aSWT)28. In particular, we studied the interactions
of aSA30P, aSE46K and aSWT with small unilamellar vesicles
(SUVs) composed of a mixture of 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-phospho-
L-serine (DOPS), and 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) in 5:3:2 molar ratios29, as such SUVs have been reported
to be good mimics of synaptic vesicles for composition
and curvature15. The combination of magic angle spinning
(MAS33,34) measurements in solid-state NMR (ssNMR35) and
chemical exchange saturation transfer (CEST28,36–40,
Supplementary Fig. 1) experiments in solution-state NMR used
in this study has already been shown to be highly effective in
probing interactions between aS and SUVs, enabling the degree
of order and disorder in the membrane-bound state of aSWT to be
characterized28.

In the analysis of the interaction between aSA30P and SUVs,
CEST profiles (Fig. 1 and Supplementary Fig. 2) provided detailed
information concerning the effects of the A30P mutation, which
was shown to reduce very substantially the binding affinity of aS
for SUVs15. In aSA30P, indeed, the binding of the N-terminal
anchor region was found to involve a smaller number of residues
than in the case of aSWT (the N-terminal 20 residues compared
with the N-terminal 25 residues in aSWT) with generally a lower
degree of CEST saturation than in the case of aSWT. The major
differences between aSA30P and aSWT were evident in this
membrane-anchor N-terminal region, while the remainder of the
protein sequence showed very limited variations in the CEST
profiles of these two proteins. The opposite behaviour was
observed for the aSE46K variant, which binds SUVs with higher
affinity than does aSWT

15. Indeed, the CEST data indicate a
significantly stronger interaction with the membrane for the
N-terminal anchor region of aSE46K, which in this case extends up
to residue 42 with a generally higher degree of saturation than in
the case of aSWT. As with aSA30P, only marginal variations in the
CEST profiles were observed in other regions of the sequence of
aSE46K. The differences in the CEST saturation profiles of the two
mutants compared with aSWT (Supplementary Figs 3 and 4)
indicate more specifically that the major changes in the modes of
binding to SUVs of these mutational variants are associated
primarily with the N-terminal region of the protein.

Topology of aSA30P and aSE46K bound to SUVs. To obtain
detailed information on the topology of aSA30P and aSE46K when
bound to the surface of SUVs, we used MAS ssNMR experiments.
13C–15N-labelled aS samples were mixed with SUVs, as described
previously,15,28 to reach a protein:lipid ratio of 1:65 (ref. 28).
Under these conditions we could observe directly the resonances
of both rigid and dynamical regions of the membrane-bound aS
molecule by using cross polarization and insensitive nuclei
enhanced by polarization transfer (INEPT) experiments41,
respectively. In the cross polarization regime, we performed
13C–13C dipolar-assisted rotational resonance (DARR)42

measurements to detect homonuclear correlations between
carbon atoms of residues strongly anchored to the membrane
(Fig. 2a). In our previous study of aSWT

28, the 13C–13C DARR
spectra identified resonances of residues 6–25 of the anchor
region, showing that this region folds into a highly rigid a-helix
lying essentially parallel to the membrane surface28. The 13C–13C
DARR spectra of the membrane-bound states of aSA30P and
aSE46K are, however, substantially different from those of aSWT,
indicating that the dynamical and structural properties of the
anchor region vary considerably between the wild-type and
variant forms of aS.
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In the case of aSA30P, the 13C–13C DARR spectrum showed a
very limited signal-to-noise ratio and almost a complete absence of
cross peaks, suggesting that the anchor region of this variant is
significantly more dynamic than the same region of the wild-type
protein. In contrast, the 13C–13C DARR spectrum of aSE46K

showed a higher signal-to-noise ratio and a significantly larger
number of intense cross peaks, indicating an elongated anchor
region in this mutational variant that binds more strongly to SUVs.
Using the dipolar connectivities from 15N–13C cross polarization-
based experiments, along with our previous assignment of aSWT

and 13C–13C DARR spectra acquired at different mixing times, we
were able to assign individual spin systems in the 13C–13C DARR
spectra of aSA30P and aSE46K (Fig. 2a). The chemical shifts were

then compared with those obtained from solution-state NMR
studies of aSWT in SDS and SLAS micelles22,43, and indicate that,
despite the differences in dynamics and in the binding strength
relative to lipid membranes, all the variants analysed here adopt a
helical conformation at the N-terminal anchor when bound to
membranes. This finding is particularly relevant in the case of the
A30P mutation as it shows that, like the other variants and despite
the insertion of a helix-breaker residue, aSA30P binds the lipid
bilayer by adopting an amphipathic a-helix conformation at the N
terminus and not as a disordered state that is tethered onto the
lipid surface.

The highly dynamical regions of aSA30P and aSE46K bound to
SUVs were then probed directly by INEPT measurements
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Figure 1 | CEST experiments probing the membrane interactions of aSA30P and aSE46K. CEST experiments were recorded at a 1H frequency of 700 MHz

(see Methods section), using protein concentrations of 300mM and 0.06% (0.6 mg ml� 1) of DOPE:DOPS:DOPC lipids in a ratio of 5:3:2 and assembled

into SUVs. 1H–15N HSQC spectra were recorded by using continuous wave saturation (170 Hz or 350 Hz) in the 15N channel at offsets ranging between

� 28 kHz and þ 28 kHz; an additional spectrum, saturated at � 100 kHz, was recorded as a reference. Data recorded using a saturation bandwidth of

350 Hz are shown here (the data measured using a saturation bandwidth of 170 Hz are shown in Supplementary Fig. 2). For comparison, the plots in panels

b and e are drawn using aSWT data from our previous investigation28. (a–c) CEST surfaces for aSA30P (a) aSWT
28 (b) and aSE46K (c). (d–f) CEST saturation

along the sequences of aSA30P (d), aSWT
28 (e) and aSE46K (f). The green lines refer to the averaged CEST profiles measured using offsets at þ /� 1.5 kHz,

and the profiles for þ/� 3 kHz and þ /� 5 kHz are shown in black and red, respectively. (g–i) Schematic illustration (see Materials and Methods) of the

equilibrium between surface attached/detached local conformations in the membrane-bound states aSA30P (g) aSWT
28 (h) and aSE46K (i). The major

differences in the data of aSA30P, aSWT and aSE46K are located in the anchor region. Overall, these three variants of aS maintain the same topological

properties at the surfaces of synaptic-like SUVs.
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Figure 2 | MAS ssNMR spectra of aSA30P and aSE46K bound to SUVs. (a) 13C–13C DARR correlation spectra (aliphatic regions) recorded at � 19 �C using a

50 ms mixing time at a MAS rate of 10 kHz. We used a 1:65 protein:lipid ratio in both cases, and spectra of aSA30P and aSE46K are shown in the left and right

panels, respectively. Residues are indicated using the single letter convention. The highest signal intensities in the spectra of the samples studied here were

obtained by performing the measurements at � 19 �C. Under these conditions the lipid mixtures used here are in the gel phase70, enabling 13C–13C DARR

spectra to be measured with significantly increased signal-to-noise ratios but without affecting the pattern of chemical shifts; the latter are consistent with those

measured at 4 �C (ref. 28). No variations in the number of observed resonances or in the chemical shifts were observed using protein:lipid ratios ranging from

1:30 to 1:200 (ref. 28). (b) 1H–13C correlation via INEPT transfer recorded at 4 �C at a MAS rate of 10 kHz. The experiments were performed at a 1H frequency of

700 MHz using a 3.2 mm EFree probe. Atom names ca, cb, cg, cd and ce are used for Ca, Cb, Cg, Cd and Ce atoms, respectively.
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acquired using MAS ssNMR experiments41 and revealed
1H–13C correlations for resonances of the disordered
C-terminal region of aS (Fig. 2b), which is only weakly
associated with the membrane28. In contrast to the results
obtained from the DARR spectra, no significant differences were
found between aSA30P and aSE46K in the INEPT spectra. These
measurements also indicated that the disordered C-terminal
regions (residues 98–140) of the membrane-bound states of both
variants have similar structural and dynamical properties to those
of aSWT. To gain further insights into the topological nature of
mobile regions in the membrane-bound aSA30P and aSE46K

variants, we used paramagnetic relaxation enhancement
experiments28. By doping the SUVs with low levels (2%) of a
lipid carrying an unpaired electron on the head group, namely the
gadolinium salt of PE-DTPA (1,2-dimyristoyl-sn-glycero-3-
phosphoethanolamine-N-diethylenetriaminepentaacetic acid),
we could observe selective line broadening of individual
resonances in the INEPT spectrum of both variants
(Supplementary Fig. 5), revealing those residues that interact
transiently with the membrane surface. The resulting broadening
patterns of hydrophobic (including L100, A107, P108, I112, L113,
P117, V118 and P120) and positively charged (K97 and K102)
residues were found to be similar to those observed in aSWT. The
selective broadening of the INEPT peaks of the C-terminal
residues in these paramagnetic relaxation enhancement
experiments is in agreement with the modest levels of
saturation transfer that are detected for this region using CEST
experiments performed with a bandwidth of 350 Hz and offset
frequencies of ±1.5 kHz (Supplementary Fig. 4a), which also
provide evidence for transient tethering of the C-terminal region
of aS onto the membrane surface.

Mechanism of vesicle assembly promoted by aS. The solution-
state and solid-state NMR measurements described above reveal a
striking degree of independence between the membrane-binding
properties of the N-terminal membrane-anchor region of aS,
which is significantly affected by the A30P and E46K mutations,
and of the region spanning residues 65–97, which instead
shows negligible differences as a result of these mutations
(Supplementary Figs 3 and 4). These independent membrane-
binding modes suggest that, in addition to interacting with the
membrane surface of the same SUV, these two regions are
sufficiently independent to bind simultaneously two different
SUVs. Indeed, our modelling studies show that a single aS
molecule could bind and bridge two vesicles that are as much as
150 Å apart (Fig. 3a), with both the N-terminal anchor region
(the N-terminal 25 residues) and the central region of aS
(residues 65–97) adopting the conformations of amphipathic
a-helices. These data, therefore, provide the structural basis of the
mechanism by which aS promotes the interaction between
vesicles that has been observed experimentally both in vitro14,15

and in vivo13,16.
To obtain further evidence of this ‘double-anchor’ mechanism

(Fig. 3a), we used our findings to design a further variant of aS
having structural properties that we anticipated should enhance
the probability of aS binding simultaneously to two different
vesicles in such a way as to mediate their interaction. In
particular, to favour the double-anchor mechanism (Fig. 3a), this
variant was designed to enhance the detachment of the region
65–97 from the membrane surface when aS is bound to the SUVs
via its N-terminal anchor region. We identified for this purpose a
swapped sequence (aSSw) incorporating the E46K and K80E
mutations (Supplementary Fig. 6). In particular, by replacing the
lysine at position 80 with a glutamic acid (K80E), the local
binding to negatively charged vesicles is disfavoured, hence

shifting the conformational equilibrium of the fragment 65–97
towards a state where this region is less strongly bound to the
SUV surface. By contrast, because the K80E mutation also affects
the overall membrane affinity of aS, a second mutation in which
the glutamic acid at position 46 is replaced by a lysine (E46K) was
selected to increase the interaction between the N-terminal
anchor region and the SUV surface, as probed in aSE46K (Figs 1
and 2), thereby restoring an overall KD comparable to that of the
wild-type protein.

We tested experimentally whether or not aSSw possessed
the anticipated structural and thermodynamical properties
characteristic of its membrane-bound state. In agreement with
our design, we found the binding affinity of aSSw for SUVs,
measured by circular dichroism28, to be similar to that of
aSWT (Supplementary Fig. 7a–c). By contrast the structural
properties of the aSSw variant, as probed by CEST
(Supplementary Fig. 7d–f), showed a significant reduction in
the membrane interaction of the central region (residues 65–97)
of the variant than in aSWT. These data indicate that aSSw binds
SUVs with essentially the same overall affinity as aSWT but
assumes different structural and dynamical properties in its
bound state that promote an enhanced exposure of the segment
65–97. CEST also confirmed the stronger interaction of the
anchor region of aSSw compared with that of aSWT, which in the
designed variant is extended to residue 42 as a consequence of
the E46K mutation (Supplementary Fig. 7e). As aSSw and aSE46K

have the same sequence except at position 80, we plotted the
differences in the CEST profiles of these two variants; this
comparison reveals clearly that the binding properties of these
two variants to the SUVs are indistinguishable except in the
region 65–97 (Supplementary Fig. 8) thereby providing additional
evidence for the independence of the membrane-binding
properties of the N-terminal and central regions in aS.

Synaptic vesicle assembly induced by aSWT and aSSw. We
compared the efficiency with which aSSw and aSWT promote the
interaction and assembly of vesicles by monitoring, using
cryo-EM, the ability of the two variants to promote coalescence
and fusion of synaptic-like SUVs in vitro16. As a control,
cryo-EM images of 0.05% DOPE:DOPS:DOPC SUVs incubated
for 12 h in the absence of aS showed spherical vesicles of
diameters ranging between 30 and 60 nm, with negligible
evidence of vesicle fusion over the period of incubation (Fig. 3b
and Supplementary Fig. 9a), showing that in the absence of aS the
spontaneous fusion of SUVs occurs with extremely slow kinetics.
In the presence of aS, however, the SUVs experience a
considerable number of fusion events, with cryo-EM images
revealing the presence of elongated fused vesicles having long
axes of up to 200 nm under the conditions used in this study
(Fig. 3d and Supplementary Fig. 9b). Incubating SUVs with aSSw,
however, resulted in a very significant increase in the extent of
vesicle fusion, with cryo-EM images clearly indicating that this
variant is significantly more active in promoting the interaction of
SUVs ultimately leading to very large vesicle assemblies (Fig. 3f
and Supplementary Fig. 9c).

To generate a quantitative analysis of the sizes of the SUVs in
the presence and absence of the aS variants, we used STED
microscopy, which enabled us to sample rapidly the
sizes of thousands of vesicles to achieve statistically significant
differences in the distributions. STED imaging was carried out by
fluorescently labelling the DOPE:DOPS:DOPC SUVs with 2% of
DOPE labelled with the ATTO 647N fluorophore. Images of
isolated vesicles resulted in a size distribution centred at
55±11 nm (Fig. 3c and Supplementary Fig. 10a–b), within the
range anticipated from the preparation protocol28. However,
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STED images of vesicles incubated with aSWT clearly revealed the
presence of numerous clusters of fused lipids, whose sizes were
quantified by using an algorithm that fits annular shapes to the
lipid vesicles, rather than the 2D Gaussian fitting used in the case
of isolated vesicles (Methods section and Supplementary Fig. 10).
The resulting distributions indicate that SUVs incubated with
aSWT give rise to two populations of vesicles, one with properties
similar to those of vesicles imaged in the absence of aS and
another attributable to fused vesicles, with a distribution centred
at 115±30 nm and with a relative population of 16% of the
imaged vesicles (Fig. 3e and Supplementary Fig. 10c–d).

Following incubation with aSSw, however, both the sizes and
relative populations of the fused vesicles increased markedly, with
the size distribution of fused vesicles now centred at 181±48 nm
and with a relative population of 32% of the imaged vesicles
(Fig. 3g and Supplementary Fig. 10e–f). Similar conclusions to
those obtained from STED analysis were obtained from
measurements of dynamic light scattering (DLS), which showed
that the average size of the SUVs increases in the presence of aS
and that this effect is considerably greater with aSSw than with
aSWT (Supplementary Fig. 11). Overall, the cryo-EM, STED and
DLS data show that the engineered aSSw variant has a very
significantly enhanced activity in promoting the interactions
between SUVs. As aSSw and aSWT have the same amino acid
composition and net charge, and bind SUVs with similar
thermodynamic affinity, the enhanced interactions between
vesicles on incubation with aSSw can be attributed to the higher
population of conformations with an enhanced exposure of the
region 65–97 from the membrane surface, which increases the
probability of associating with a different vesicle and to mediate
the vesicle assembly via a double-anchor mechanism (Fig. 3a),
as probed by the fusion of DOPE:DOPS:DOPC SUVs on
incubation with the protein (Fig. 4).

To assess the role of the double-anchor mechanism in the
clustering of synaptic vesicles (SVs) induced by aS, we incubated
SVs purified from rat brain44,45 for 48 h at 37 �C in the presence
or absence of aS samples (aSWT or aSSw). The distribution of the
sizes of the clusters of SVs on incubation were quantified using

direct stochastic optical reconstruction microscopy (dSTORM)46

to acquire images on poly-L-lysine-coated glass plates. To
visualize SVs, we used a primary antibody that is specific for
the synaptic protein synaptotagmin 1 and therefore binds
selectively to SVs, and a secondary antibody fluorescently
labelled with ATTO 647N. The resulting dSTORM images
(Fig. 5a–c) were analysed by identifying the centres of mass of
each of the SVs and then by applying a clustering approach47 to
identify groups of SVs that, according to a distance cutoff of
60 nm, belong to the same cluster. The resulting distribution of
sizes of SV clusters (Fig. 5d) showed that 93% of the vesicles
remain isolated after incubation for 48 h at 37 �C in the absence
of aS, with the remaining 6% and 1% assembled in clusters
consisting of two and three SVs, respectively. After incubation
under the same conditions but in the presence of 85mM of aSWT,
up to 17% of the vesicles were clustered, some including
assemblies composed up to five SVs (1%). In the presence of
aSSw, however, over 29% of the vesicles were observed to be
clustered up to six SVs (2%). Cryo-EM images of the assembled
structures (Fig. 5d) revealed that the surfaces of the SVs
composing the clusters are separated by distances that extend
up to 15 nm, in agreement with the double-anchor mechanism
(Fig. 3a).

Discussion
It is widely recognized that the physiological activity of aS is
associated with its ability to bind to a variety of lipid
membranes48. A number of studies support an emerging view
that a key biological role of aS is to mediate the interactions and
assembly of synaptic vesicles14,16. Vesicle clustering by aS has
been shown to be a vital step in many functional processes,
including endoplasmic reticulum-to-Golgi vesicle trafficking13,49

and recycling of the SVs within the mechanism of neuronal
communication11. In the present study, we have examined the
structural principles underlying the aS-induced interactions and
assembly of SVs by characterizing the membrane-binding
properties of two mutational variants of aS linked with familial
PD. This analysis reveals that two key regions of the protein,

a b c

e

g

d
100 nm

100 nm

100 nm 250 nm

250 nm

250 nm

f

Figure 3 | Vesicle assembly induced by aS. (a) Molecular details of the double-anchor mechanism described in this work. SUVs of 50 nm in diameter were

modelled to mimic as closely as possible the experimental conditions in this study (see Methods section). aS was modelled with the N-terminal anchor in

an amphipathic a-helical conformation (red) and bound to the lower vesicle. The region 65–97 (cyan) of aS was modelled in an amphipathic a-helical

conformation bound to the upper vesicle. The C-terminal fragment (residues 98–140) and the linker region 26–59 are shown in pink and grey colours,

respectively. With this topology the modelling reveals that a single aS molecule could simultaneously bind two vesicles that are up to 150 Å apart.

(b,c) Cryo-EM (b) and STED (c) images acquired on SUVs at a concentration of 0.5 mg ml� 1. (d,e) Cryo-EM (d) and STED (e) images measured on SUVs

following a 12 h incubation with 200mM aSWT. (f,g) Cryo-EM (f) and STED (g) images acquired on SUVs following a 12 h incubation with 200mM aSSw.
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namely the N-terminal membrane-anchor (residues 1 to 25)
and the central segment of the sequence (residues 65–97, having
significant overlap with the NAC region), have independent

membrane-binding properties and therefore are not only able to
interact with a single SV, but can also simultaneously bind to two
different vesicles (Fig. 3a) thereby promoting their interaction

•••

Figure 4 | Stepwise representation of SUV interactions and fusion promoted by aS. The scheme shows the stepwise mechanism of vesicles assembly as

probed from images obtained in vitro by cryo-EM, which are also shown. Disordered cytoplasmatic aS (red) binds dynamically to the surface of SUVs

(green), as described in this study. SUVs coated with aS assemble with fast kinetics as a consequence of the double-anchor mechanism promoted by the

aS molecules decorating their surfaces. The tethered SUVs, which are initially assembled together in dimeric, trimeric, tetrameric and higher order states,

eventually fuse to form larger vesicles. With the increasing size of the fused vesicle, we observed preferential fusion events at the termini of the aggregated

vesicles. This observation can be explained by the higher affinity of aS for significantly curved membrane surfaces19, which increases the concentration of

bound aS at the termini of the elongated vesicles thereby promoting a stronger double-anchor mechanism in these loci.
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Figure 5 | Clustering of synaptic vesicles promoted by aS. SVs purified from rat brain were incubated for 48 h at 37 �C. The concentrations during

the incubation were 0.5 mg ml� 1 and 85mM for the SVs and the aS variants, respectively. (a–c) dSTORM imaging of SVs alone (a) and SVs incubated

with aSWT (b) and with aSSw (c). The images were collected using a previously described protocol46. Scale bars, 1mm. To generate fluorescent SVs, we used

a primary antibody that is specific for synaptotagmin 1 and a secondary antibody that is covalently linked to an ATTO 647 N dye. 10,000 fluorescence

frames with an exposure time of 10 ms were recorded. The field of view imaged covered 1,997� 1,997 camera pixels, corresponding to an area on the

sample of B20� 20mm2. (d) To assess the level of clustering of the SVs, we adapted an approach that has previously been successfully employed to

analyse protein self-assembly.47 For each dSTORM image, clusters of SVs were identified on the basis of the distances between the centres of mass of the

SVs. In particular two or more vesicles were associated with a specific cluster if their distances apart are less than 60 nm. The distribution of SVs in clusters

of different sizes is reported using orange, green and blue histograms for SVs, SVs in the presence of aSWT and SVs in the presence of aSSw, respectively.

Cryo-EM images (scale bar, 50 nm) show representative clusters of different size.
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and assembly as shown in vitro and in vivo14–16. The resulting
double-anchor mechanism explains why the deletion of the
segment 71–82 in the NAC region of aS or the impairment of the
membrane affinity of the N-terminal anchor region of the protein
severely affects in vivo vesicle clustering as shown in
Saccharomyces cerevisiae16. This mechanism also provides a
structural explanation for the suggested loss of function caused by
A30P, which is associated with an impairment of vesicle
clustering by aSA30P as observed both in vitro and in vivo14,16,
as well as for the functional regulation proposed to occur via the
phosphorylation of serine 87 (ref. 50). In particular, by
introducing a negative charge in the region 65–97, the
phosphorylation of S87, which has been identified both in
functional contexts and in the case of synucleinopathies, has
similar effects to those of the K80E mutation in aSSw.

We tested this molecular mechanism by engineering the
mutational variant aSSw, which was designed to enhance the
probability of aS binding simultaneously to two different vesicles.
Our studies of this variant have provided strong evidence in
support of the proposed mechanism by showing that enhanced
exposure of the central region, spanning residues 65–97 in the
membrane-bound state of aS, promotes more strongly the
clustering of SVs purified from rat brain (Fig. 5) and the
assembly and fusion of DOPE:DOPS:DOPC SUVs (Fig. 4). It has
previously been suggested that a broken a-helix structural
topology of aS22,51, which is a conformation that aS adopts on
binding to detergent micelles, could play a role in vesicle-vesicle
interactions stimulated by aS48,52. The present study, however,
shows experimentally that the underlying mechanism by which
aS mediates the interactions between lipid vesicles relies on the
balance between ordered (membrane-bound) and disordered
(membrane-detached) conformational states of the region
spanning residues 65–97 of the protein. Perturbing this balance,
as we have done rationally with aSSw, or on alteration of the
expression levels of aS, can dramatically affect its ability to
promote the vesicle assembly in vivo leading to defects in the
regulation of vesicle trafficking11,13,49,53–57.

Other studies also suggest that aS could act as a molecular
chaperone for the formation of SNARE complexes, which appears
to result from the direct interaction between aS and synapto-
brevin 2 at the surface of SVs14,58. Such an interaction was shown
to be independent of the NAC region, suggesting that this region
has no direct functional role in this particular process59. The
present data, however, reveal that the NAC region is not only
involved in aS aggregation, as extensive evidence has previously
indicated4,60,61, but also has a specific role in a key molecular
mechanism associated with the normal function of aS. This study
provides evidence that the membrane affinity of the NAC region
of aS is finely tuned to ensure an optimal degree of local
detachment from the membrane surface to enable binding to

occur between different vesicles. The present finding that,
by perturbing this fine tuning through the design of the aSSw

variant, it is possible to promote stronger interactions between
vesicles (Figs 3 and 5) indicates that the exposure of the region
65–97 in the vesicle-bound state of aS is crucial for the
physiological mechanism of SVs clustering and, at least in the
case of aSSw, has more relevance than the local membrane-
binding affinity of this region, which in this variant is reduced as
a result of the K80E mutation. The selection toward sequence
properties of aS that enable the detachment of the amyloidogenic
NAC region from the vesicle surface to favour the functional
mechanism described in this study, however, can also lead to
aberrant behaviour, as these conformational states
are particularly vulnerable to self-association leading to aS
aggregation at membrane surfaces11,62–65. Taken together, these
findings provide therefore a new mechanistic link between
functional and pathological roles of aS.

Methods
aS purification. aSWT was expressed and purified in Escerichia coli using a pT7-7
plasmid in which aS gene is under the control of the phage T7 RNA polymerase
promoter. BL21 (DE3)-gold competent cells (Agilent Technologies, Santa Clara,
USA) were transformed with this plasmid using heat-shock and subsequently
grown in an isotope-enriched M9 minimal medium containing 1 g l� 1 of 15N
ammonium chloride, 2 g l� 1 of 13C-glucose and 100mg ml� 1 ampicillin
(Sigma-Aldrich, St Louis, USA) to produce uniformly 15N and/or 13C labelled aS
samples. Cell growth was carried out at 37 �C under constant shaking at 250 rpm to
an OD600 of 0.6. Subsequently the expression of the protein was induced with
1 mM isopropyl b-D-1-thiogalactopyranoside at 37 �C for 4 h and cells were then
harvested by centrifugation at 6,200g (Beckman Coulter, Brea, USA). The cell
pellets were resuspended in lysis buffer (10 mM Tris-HCl pH 8, 1 mM EDTA and
EDTA-free complete protease inhibitor cocktail tablets obtained from Roche, Basel,
Switzerland) and lysed by sonication. The cell lysate was centrifuged at 22,000g for
30 min to remove cell debris and the supernatant was then heated for 20 min at
70 �C and subsequently centrifuged at 22,000g to precipitate the heat-sensitive
proteins. Subsequently streptomycin sulfate was added to the supernatant to a final
concentration of 10 mg ml� 1 to stimulate DNA precipitation. The mixture was
stirred for 15 min at 4 �C followed by centrifugation at 22,000g. Then, ammonium
sulfate was added to the supernatant to a concentration of 360 mg ml� 1 to
precipitate the protein. The solution was stirred for 30 min at 4 �C and centrifuged
again at 22,000g. The resulting pellet was resuspended in 25 mM Tris-HCl, pH 7.7
and dialyzed against the same buffer to remove salts. The dialyzed solutions were
then loaded onto an anion exchange column (26/10 Q sepharose high performance,
GE Healthcare, Little Chalfont, UK) and eluted with a 0 to 1 M NaCl step gradient.
aS was eluted at B300 mM NaCl and then further purified by loading onto a size-
exclusion column (Hiload 26/60 Superdex 75 preparation grade, GE Healthcare,
Little Chalfont, UK). All the fractions containing the monomeric protein were
pooled together and concentrated by using Vivaspin filter devices (Sartorius Stedim
Biotech, Göttingen, Germany). The purity of the aliquots after each step was
analysed by SDS–PAGE and the protein concentration was determined from the
absorbance at 275 nm using an extinction coefficient of 5,600 M� 1 cm� 1.

To express and purify the mutational variants of aS (aSA30P, aSE46K and aSSw),
we employed the same experimental procedure as used in the case of aSWT. Single
point mutations of the aSWT plasmid were obtained using the Q5 Site-Directed
Mutagenesis Kit (New England Biolabs, Inc., Ipswich, USA). Table 1 reports the
primers employed to obtain the plasmids of aSA30P, aSE46K and aSSw.

Preparation of synaptic-like SUVs. SUVs containing a molar ratio of 5:3:2 of
DOPE:DOPS:DOPC (Avanti Polar Lipids, Inc., Alabaster, USA) were prepared
from chloroform solutions of the lipids as described previously15,28. Briefly, the
lipid mixture was evaporated under a stream of nitrogen gas and then dried
thoroughly under vacuum to yield a thin lipid film. The dried thin film was
re-hydrated by adding aqueous buffer (20 mM sodium phosphate, pH 6.0) at a
concentration of 15 mg ml� 1 (1.5%) and subjected to vortex mixing. In all NMR
experiments described in this paper SUVs were obtained by using several cycles of
freeze-thawing and sonication until the mixture became clear15,28. In the particular
case of CEST experiments, SUVs at a concentration of 0.06% (0.6 mg ml� 1) were
mixed with aS samples after sonication. For ssNMR studies aS was added to the
SUV mixtures up to a molar ratio of 1:65 protein:lipid. The mixtures were then
pelleted at 300,000g for 30 min at 4 �C (Beckman Coulter Optima TLX Inc. Brea,
USA) by using a TLA 100.3 rotor. Subsequently the SUV-aS samples were
transferred into 3.2 mm Zirconia XC thin-walled MAS rotors for ssNMR
experiments. For STED and cryo-EM imaging experiments, as well as for DLS,
DOPE:DOPS:DOPC SUVs were prepared by extrusion through membranes with a
50 nm pore diameter (Avanti Polar Lipids, Inc) after re-hydration in 20 mM
sodium phosphate (pH 6.0) at a concentration of 1.0 mg ml� 1 (0.1%).

Table 1 | Primers used in this study.

Primer
Name

Variant Sequence Tm
(�C)

K80E_F aSSw 50-AGTAGCCCAGGAGACAGTGGAG-30 65
K80E_R* aSSw 50-GCTGTCACACCCGTCACC-30 66
A30P_F aSA30P 50-GGCAGAAGCACCTGGAAAGACAA

AAG-30
56

A30P_R* aSA30P 50-ACACCCTGTTTGGTTTTC-30 57
E46K_F aSE46K,

aSSw

50-CAAAACCAAGAAGGGAGTGGTG-30 60

E46K_R* aSE46K,
aSSw

50-GAGCCTACATAGAGAACAC-30 57

*Reverse primer.
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Purification of SVs from rat brain. SVs composed of phospholipid molecules
(amounting to 30% of their composition), proteins (58%) and cholesterol
(12%)44,45 were purified from brains of rat provided by Charles River Laboratories
(Animal work was approved by the Named Animal Care and Welfare Officer
(NACWO) and the Ethics Review Committee of the University of Cambridge).
Rat brains were homogenized in 4 mM HEPES and 320 mM sucrose buffer using
protease inhibitors via ten strokes at 900 r.p.m. in a glass-Teflon homogenizer
(Wheaton, Millville, USA)44,45. All steps were carried out at 4 �C or in ice. The
homogenates were centrifuged at 1,000g for 10 min and the supernatants were
collected and further centrifuged at 15,000g for 15 min. The supernatants from the
second centrifugation (Sup-2) were stored at 4 �C. The pellets from the second
centrifugation, which contained the synaptosomes, were lysed using ice-cold water
by applying three strokes at 2,000 r.p.m. Subsequently, HEPES buffer solutions
containing protease inhibitors were added to the lysates and the resulting solutions
were centrifuged at 17,000 g for 15 min, and the supernatant was combined with
the Sup-2 supernatants. The resulting mixtures were centrifuged at 48,000g for
25 min and the supernatants were loaded onto a 0.7 M sucrose cushion and
centrifuged at 133,000g for 1 h. The bottom half of the sucrose cushion was pooled
and centrifuged at 300,000g for 2 h. The pellets were resuspended in buffer
(100 mM Tris-HCl, pH 7.4, 100 mM KCl) and loaded onto a Sephacryl S-1000 size-
exclusion chromatography column (100� 1 cm) resulting in a distinctive peak of
the SVs44,45. The SVs were then stained against specific SV antibodies, including
synaptotagmin 1, synaptobrevin 2, by western blot44,45. To perform dSTORM
analyses, the SVs were incubated with a primary antibody (dilution 1:1000) that
specifically recognizes synaptotagmin 1 (105103, Synaptic Systems, Göttingen,
Germany) and a secondary antibody (dilution 1:100) fluorescently labelled with
Atto 647N (40839, Sigma-Aldrich, St Louis, USA).

CEST experiments. We employed CEST measurements28,36–38,40 to gain a deeper
understanding of the equilibrium between membrane unbound and membrane-
bound states of aS. In the study of aS–SUV interactions, CEST shows enhanced
characteristics compared to standard heteronuclear correlation spectroscopy,
including a significantly higher sensitivity at low lipid:protein ratios, conditions
under which protein or lipid aggregation can be minimized64. The resulting NMR
signals enable the interaction between aS and the membrane surface to be probed
without interference from additional factors that may influence the transverse
relaxation rates of the protein resonances36–38,40. In the CEST experiments
employed here, a continuous weak radiofrequency field (either 350 or 170 Hz) was
applied off-resonance (up to ±28 kHz) in the 15N channel, thereby saturating the
broad spectroscopic transitions in the bound (undetectable) state but leaving the
resonances of the free (detectable) state virtually unperturbed36–38,40. The
saturation of the bound state was then transferred to the free state via chemical
exchange, resulting in the attenuation of the intensities of the observable
resonances in the visible unbound state. By carrying out a series of experiments at
various offsets, it was possible to obtain a map of the strength of the interactions
between the low (unbound aS) and high (SUV-bound aS) molecular weight species
at a residue specific resolution.

Solution-state NMR experiments were carried out at 10 �C on Bruker
spectrometers operating at 1H frequencies of 700 MHz equipped with triple
resonance HCN cryo-probes. CEST experiments were based on 1H–15N HSQC
experiments by applying constant wave saturation in the 15N channel. Since we
aimed at probing the exchange between monomeric aS (having sharp resonances)
and aS bound to SUVs (having significantly broader resonances), a series of large
offsets was employed (� 28, � 21, � 14, � 9, � 5, � 3, � 1.5, 0, 1.5, 3, 5, 9, 14, 21
and 28 kHz), resulting in CEST profiles of symmetrical shapes (Supplementary
Fig. 1)28,36,37. An additional spectrum, saturated at � 100 kHz, was recorded as a
reference. The CEST experiments were recorded using a data matrix consisting of
2,048 (t2, 1H)� 220 (t1, 15N) complex points. Assignments of the resonances in
1H–15N HSQC spectra of aSWT were derived from our previous studies28 whereas
assignments of the mutational variants employed in this work were obtained by a
standard combination of triple resonance solution NMR spectra66.

MAS measurements. MAS provides complementary information to CEST as it
allows the protein resonances in the vesicle-bound state, which is inaccessible to
solution-state NMR, to be probed directly. MAS experiments were carried out on a
16.85 T Bruker Spectrometer with a 3.2 mm EFree probe. DARR experiments42 were
performed at a MAS rate of 10 kHz using a series of different mixing times (20, 50,
100, 200 and 500 ms), and the spectra were acquired at � 19 and 4 �C (the latter for
control experiments only) using a 1 ms contact time. INEPT spectra41 were
measured at 4 �C using a MAS rate of 10 kHz. Pulse widths were 2.5 ms for 1H and
5.5 ms for 13C, and 1H TPPM decoupling was applied at oRF/(2p)¼ 71.4–100 kHz
(ref. 28).

Cryo-EM measurements. All samples used in cryo-EM measurements were
incubated, with or without aS (200 mM), for 12 h at 298 K using fresh preparations
of DOPE:DOPS:DOPC SUVs at a concentration of 0.05%. After incubation
cryo-EM grids were prepared by vitrifying the sample solutions using aliquots of
2 ml and a Vitrobot Mark IV (FEI, Hillsboro, USA) at a relative humidity of 100%.
The samples were loaded on a glow-discharged Quantifoil Copper 300 mesh R2/2

grids (Quantifoil Micro Tools GmbH, Germany) and blotted with filter paper for
2.5 s to leave a thin film of solution. The blotted samples were plunged into
liquid ethane and stored under liquid nitrogen before imaging. Samples were
examined using a Philips CM200 FEG electron microscope operating at 200 kV
(FEI, Hillsboro, USA), using a Gatan 626 cryo-holder (Gatan, Pleasantos, USA)
cooled with liquid nitrogen to temperatures below � 180 �C. Digital images were
acquired on a TVIPS FC415 CCD camera using the EMMENU 4 software package
(TVIPS, Munich, Germany).

STED microscopy. STED imaging67,68 was carried out by fluorescently labelling
the DOPE:DOPS:DOPC SUVs with 2% of fluorescently labelled DOPE (ATTO
647N DOPE, ATTO-TECH, USA). STED microscopy allows the diffraction limit
in optical microscopy (B200 nm) to be overcome69 and imaging was performed on
a home-built pulsed STED microscope69 using a single titanium-sapphire oscillator
centred at lSTED¼ 765 nm (Ti:S, Mai Tai HP, Spectra-physics, Santa Clara, USA)
to generate the STED beam, which was subsequently split into two using a
half-plate and a polarization beam splitter. Of these two beams, the one transmitted
was focused onto a photonic crystal fibre (FemtoWhite, NKT Photonics, Cologne,
Germany) to produce white light radiation. From this light, an excitation beam,
centred at lExc¼ 640 nm, was extracted using a bandpass filter (637/7 BrightLine
HC, Semrock, NY, USA) and coupled into a 30 m long polarization maintaining
single-mode fibre (PM630-HP, Thorlabs, Newton, UK). The reflected STED beam
was passed through a 50 cm long glass block of SF66 and a 100 m long polarization
maintaining single-mode fibre (PM-S630-HP, Thorlabs, Newton, UK) to stretch
the pulse duration to B100–200 ps. In addition, the STED beam was converted
into a so called donut beam by a spatial light modulator (X10468� 02, Hamamatsu
Photonics, Hamamatsu City, Japan). The excitation and STED beams were
recombined with a dichroic mirror (T735spxr, Chroma, Bellow Falls, USA) and
detected using a commercial point-scanning microscope (Abberior Instruments,
Göttingen, Germany) comprising of a microscope frame (IX83, Olympus,
Shinjiuku, Japan), a set of galvanometer mirrors (Quad scanner, Abberior
Instruments, Göttingen,, Germany) and a detection unit. The beams were focused
onto the sample by a � 100/1.4 NA oil immersion objective lens (UPLSAPO
100XO, Olympus, Göttingen, Germany) and images were acquired by raster
scanning the beams across the sample using the Inspector software (Andreas
Schönle, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany).
We used a field of view of 30� 30mm2 with a pixel size of 15� 15 nm2 and a pixel
dwell time of 20ms. Fluorescence photons emerging from the sample were collected
by the microscope objective lens, de-scanned by the galvanometer mirrors, focused
onto a pinhole and detected using an avalanche photodiode (SPCM-AQRH,
Excelitas Technologies. Waltham, USA). The laser powers, measured at the
objective back aperture, were ca. 20 mW and 150 mW for the excitation beam and
for the STED beam, respectively.

Analysis of STED images for vesicle size measurement. Vesicle sizes were
estimated from STED images by using in-house Matlab scripts (Supplementary
data 1). First, images of isolated vesicles were identified and analysed using a fitting
based on a 2D Gaussian function, by convolving the images with a Gaussian filter
whose dimensions match the extension of the expected STED point spread func-
tion. The centres of the vesicles were identified by finding local maxima of the
convolved images, excluding the local maxima corresponding to fused vesicles by
means of a threshold applied on the peak intensities. A different fitting procedure
was optimized in the case of assembled vesicles that appear as hollow shapes in the
STED images, as for a vesicle larger than the lateral resolution of the STED
microscope the number of dye molecules probed increases on the edge of the shell.
To estimate the size of the clusters and their relative number compared to the
non-fused vesicles, all the vesicles appearing as fused were fitted by annular
functions having a Gaussian radial profile (amplitude, position, radius and offset)
using a nonlinear least squares approach.

Direct stochastic optical reconstruction microscopy. Super-resolution imaging
was performed using dSTORM microscopy with a Nikon Eclipse TE 300
inverted wide-field microscope using a � 100, 1.49-N.A total internal reflection
fluorescence46 objective lens (Nikon Ltd., Kingston upon Thames, UK). The vesicle
and aS samples were adhered to a glass coverslip coated in poly-L-lysine (P4707,
Sigma-Aldrich, St Louis, USA) before photoswitching buffer solution was added,
consisting of 100 mM mercaptoethylamine (MEA) in phosphate buffered saline
(PBS, pH 8.2). For imaging, a laser emitting at a wavelength of 640 nm was used
(Toptica Photonics AG, Graefelfing, Germany) for excitation of the Atto 647N dye.
A 405 nm laser (Mitsubishi S3 Electronics Corp., Tokyo, Japan) was used as the
reactivation source, which was only turned on when the number of active
fluorophores in the field of view was visibly reduced. Imaging was performed under
total internal reflection fluorescence illumination conditions, ensuring that the
exact centre of the field of view was illuminated. The field of view covered
1,997� 1,997 camera pixels, corresponding to an area on the sample of
B20� 20 mm2. 10,000 fluorescence frames were recorded, each corresponding to
an exposure time of 10 ms; the latter was matched to be in the range of the average
‘on’ time of the fluorescent dyes. The fluorescence light in the detection path was
filtered and imaged with an Ixon DV887 ECS-BV EM-CCD camera (Andor,
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Belfast, UK). The image analysis was performed using frames 1000 to 10 000 in
each sequence. From each image stack, a reconstructed dSTORM image was
generated using the open-source rapidSTORM software (Supplementary Data 2)
developed in house using MATLAB (The MathWorks, Inc.).

Dynamic light scatterning. DLS measurements of vesicle size distributions were
performed using a Zetasizer Nano ZSP instrument (Malvern Instruments, Malvern,
UK) with backscatter detection at a scattering angle of 173�. The viscosity (0.8882
cP) and the refractive index (1.330) of water were used as parameters for the buffer
solution, and the material properties of the analyte were set to those of the lipids
(absorption coefficient of 0.001 and refractive index of 1.440). SUVs were used
at a concentration of 0.05% in these measurements and the experiments were
performed at 25 �C. The acquisition time for the collection of each dataset was 10 s
and accumulation of the correlation curves was obtained using 10 repetitions. Each
measurement was repeated 10 times to estimate standard deviations and average
values of the centres of the size distributions (Supplementary Fig. 11).

Modelling. Schematic representations of aS bound to SUVs were obtained by
using molecular dynamics (MD) simulations in implicit solvent. The structure of
aS in the double-anchor mechanism (Fig. 3a) were obtained by starting from the
model of membrane-bound conformation aS characterized by an elongated helix
(residues 1 to 97) with a disordered C-terminal region (residues 98–140) which was
part of the ensemble characterized previously28. Atomic coordinates (in Cartesian
space) of the N-terminal anchor were harmonically restrained to maintain a fixed
position whereas the region spanning residues 65–97 was restrained in the alpha-
helical conformation. A constant force along the membrane normal was applied to
this region to extend it toward the second vesicle (up in the Fig. 3a). The reminder
of the protein (residues 26–59 and 98–140) was allowed to relax under the
Newtonian laws of motions during the MD simulations. Curved vesicle surfaces
were generated by starting from atomic models of DOPE:DOPS:DOPC bilayers
and by generating roto-translations that imposed a spherical symmetry with a
radius of 25 nm.

Data availability. Data supporting the findings of this study are available within
the article and its Supplementary Information Files and from the corresponding
author on request.
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