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The use of free-energy landscapes rat ionalizes a wide range of aspects
of protein behavior by providing a clear illustration of the different
states accessible to these molecules, as well as of their populations and
pathways of interconversion. The determination of the free-energy
landscapes of proteins by computational methods is, however, very
challenging as it requires an extensive sampling of their conforma-
tional spaces. We describe here a technique to achieve this goal with
relatively limited computational resources by incorporating nuclear
magnetic resonance (NMR) chemica l shifts as collective variables in
metadynamics simulations. As in this approach the chemical shifts are
not used as structural restraints, the resulting free-energy landscapes
correspond to the force fields used in the simulations. We illustrate this
approach in the case of the third Ig-binding domain of protein G from
streptococcal bacteria (GB3). Our ca lculations reveal the existence of
a folding intermediate of GB3 with nonnative structural elements.
Furthermore, the availability of the free-energy landscape enables
the folding mechanism of GB3 to be elucidated by analyzing the
conformational ensembles corresponding to the native, intermedi-
ate, and unfolded states, as well as the transition states between
them. Taken together, these results show that, by incorporating
experimental data as collective variables in metadynamics simula-
tions, it is possible to enhance the sampling ef ficiency by two or
more orders of magnitude with respect to standard molecular
dynamics simulations, and thus to estimate free-energy differences
among the different states of a protein with a k BT accuracy by gen-
erating trajectories of just a few microseconds.

NMR spectroscopy | protein folding | protein structure determination |
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In the past two decades, a series of experimental and theoretical
advances has made it possible to obtain a detailed un-

derstanding of the molecular mechanisms underlying the folding
process (1–6). With the increasing power of computers (7), as
well as the improvements in forcefields (8, 9), atomistic simu-
lations are also becoming increasingly important because they
can generate highly detailed descriptions of the motions of
proteins (10–12). A supercomputer specifically designed to in-
tegrate Newton’s equations of motion of proteins (7) recently
broke the millisecond time barrier. This achievement has allowed
the direct calculation of repeated folding events for several fast-
folding proteins (13) and the characterization of molecular
mechanisms underlying protein dynamics and function (14).
Reliable descriptions of the folding process have also been
obtained by exploiting enhanced sampling techniques (15, 16),
including replica-exchange molecular dynamics (17), metady-
namics (18, 19), and distributed computing (20).

It has also been realized that by bringing together experimental
measurements and computational methods, it is possible to expand
the range of problems that may be addressed (4, 21–24). For ex-
ample, by incorporating structural information relative to transition
states (TSs;ϕ values) as structural restraints in molecular dynamics
simulations, it is possible to obtain structural models of these
transiently populated states (25, 26), as well as of native (27) and
nonnative intermediates (28) explored during the folding process.
By applying this strategy to structural parameters measured by
NMR spectroscopy, one can determine the atomic-level structures
and dynamics of proteins (29–32). In these approaches, the

experimental information is exploited to create an additional term
in the force field that penalizes the deviations from the measured
values, thus restraining the sampling of the conformational space to
regions close to those observed experimentally (25).

Here, we propose an alternative strategy to use experimental
information to aid molecular dynamics simulations. In this
approach, the measured parameters are not used as structural
restraints in the simulations but rather to build collective varia-
bles (CVs) within metadynamics calculations. In metadynamics
(18, 19), the conformational sampling is enhanced by construct-
ing a time-dependent potential that discourages the explorations
of regions already visited in terms of specific functions of the
atomic coordinates called collective variables. In this work, we
show that NMR chemical shifts may be used as collective varia-
bles to guide the sampling of conformational space in molecular
dynamics simulations.

Because the method that we discuss here enables the confor-
mational sampling to be enhanced without modifying the force
field through the introduction of structural restraints, it provides
the statistical weights corresponding to the forcefield used in the
molecular dynamics simulations. In the present implementation,
we used the bias-exchange metadynamics (BE-META) method
(33), an enhanced sampling technique that allows the recon-
struction of free energy as a simultaneous function of several
variables. By using this approach, we computed the free-energy
landscape in explicit solvent of the third Ig-binding domain of
streptococcal protein G (GB3). Our calculations predict the native
fold as the lowest free-energy minimum, also identifying the
presence of an on-pathway compact intermediate with nonnative
structural elements. In addition, we provide a detailed atomistic
picture of the structure at the folding barrier, which shares with the
native state a fraction of the secondary structure elements.

These results have been obtained using relatively limited com-
putational resources. Through the advanced sampling method
that we discuss, the total simulation time required to reach con-
vergence in the free energy estimates was 380 ns on seven repli-
cas, which is about three orders of magnitude less than the typical
timescale required to fold similar proteins (34). We thus antici-
pate that the technique introduced here will allow the determi-
nation of the free-energy landscapes of a wide range of proteins
in cases in which NMR chemical shifts are available.

Results and Discussion
We performed molecular dynamics simulations of GB3 at 330 K,
using the Gromacs 4.5.3 package (35) and the AMBER99SB-
ILDN force field (8). To enhance conformational sampling, we
used the BE-META scheme (33) with seven replicas. We started
the simulations from a structure at 5.7 Å from the reference
structure [Protein Data Bank (PDB) ID code 2OED (36)] and
ran them for a total of 380 × 7 ns. For each replica, we used
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a different metadynamics (18) history-dependent potential acting
on a different CV (Methods and SI Text). Three CVs act at the
secondary structure level by quantifying, respectively, the frac-
tion of α-helical, antiparallel, and parallelβ-sheet content of the
protein. Three other CVs act at the tertiary structure level by
biasing the number of hydrophobic contacts and the orientation
of the side-chain dihedral anglesχ1 and χ2 for hydrophobic and
polar side chains. The seventh CV, called“CamShift,” measures
the difference between the experimental and calculated chemical
shifts, which were obtained using the CamShift method (37)
(Methods and SI Text). Our results indicate that in the approach
we present here, this last variable is essential to fold GB3 and
reach convergence readily in the free-energy calculations.

Folding of GB3 Using Chemical Shifts as CVs. The method that we
introduce in this work makes it possible to visit efficiently a wide
range of structures, ranging from extended to compact. Repre-
sentative examples are shown in Fig. 1A. Native-like conformations
are visited multiple times, reaching a backbone rmsd of 0.5 Å from
the reference structure (PDB ID code 2OED). In these native-like
structures, the internal packing of hydrophobic side chains is
practically identical to that observed in the reference structure (Fig.
1C). In the calculations that we performed, this level of accuracy
could be reached only by using a bias-exchange scheme in which the
CamShift CV is included in the CV set (Methods and SI Text). To
demonstrate this point, we performed another simulation with
the same setup, using the six CVs discussed above that describe
the secondary and tertiary structures, but not the CamShift CV.
The difference between the two simulations is substantial. In the
simulation without the CamShift CV, the closest configuration to

the reference structure has an rmsd of 2.7 Å (Fig. 2,Inset B). After
50 ns, the rmsd starts increasing progressively (red line) and the
folded state is not explored at all. By contrast, the simulation with
the CamShift CV visits the folded state several times, with several
unfolding–refolding events. During thefirst 50 ns, the latter sim-
ulation not only performed better, reaching an rmsd of 2.5 Å, but it
also formed the correct secondary and tertiary contacts, particu-
larly the ones involved in forming thefirst β-hairpin (Fig. 2, Inset
A), which is critical for the folding of this protein (38, 39). The
fraction of native contacts also was systematically higher in the
simulation using the CamShift CV (Fig. 2,Inset C). These results
indicate that the folding events observed later in the simulation are
a result of the systematic bias induced by the CamShift CV toward
the correct local topology in the native state.

Thermodynamics of GB3 Folding. The molecular dynamics simu-
lations that we performed using the approach presented in this
work reached convergence after∼240 ns, because at this point
the bias potentials acting on all the replicas started to become
stationary (40). We then continued the simulations for another
140 ns to reconstruct the free-energy landscape of the protein
(Methods). In Fig. 3A, the free-energy landscape is represented
as a function of three CVs: the fraction of antiparallelβ-sheet,
the fraction of parallel β-sheet, and the coordination number
between the hydrophobic side chains (Fig. 3A). This represen-
tation reveals the organization of the free-energy landscape, with
a deep minimum corresponding to native-like structures, sepa-
rated by a relatively high barrier from other minima. The lowest
free-energy minimum (Methods) includes configurations very sim-
ilar to those of the reference structure (on average, at 1.3 Å rmsd).

Fig. 1. (A) Representation of the conformational
sampling achieved by the approach introduced in
this work. The conformations visited are shown as
a function of the CamShift collective variable (CV)
and of the backbone rmsd from the reference
structure (PDB ID code 2OED). (B) Structure with the
lowest rmsd (0.5 Å) from the reference structure. ( C)
Detail of the side chain packing of the structure in B.
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This result is confirmed by the analysis of the deviations of the
calculated chemical shifts from the corresponding experimental
values, both for the reference structure (PDB ID code 2OED) and
for the structures belonging to the free-energy minimum (Fig. S1).
The agreement is excellentin both cases, thus confirming that by our
procedure we couldfind structures very close to the X-ray structure.
These results also provide evidence of the excellent quality of the
AMBER99SB-ILDN (8) force field that we used to model GB3.

The shallow minimum immediately after the free-energy bar-
rier separating the folded state from the rest of the conforma-
tional space includes compact structures with a high secondary
structure content, but with a fold that is rather different from the
native, as is discussed below. This second minimum is separated
by another free-energy barrier from another minimum, which
includes more disordered structures with a much lower secondary
structure content. In these conformations, the native C-terminal
β-hairpin appears to be present, confirming its high stability,
whereas theα-helix and the N-terminal β-hairpin are completely
disrupted (41–43). The folded-like and unfolded-like states have
a free-energy difference of only 2.3 kJ/mol, which is comparable
with the error of our free-energy estimates (40) (Methods). The
relatively small difference in the free energies of the folded and
unfolded states reflects the conformational properties of the pro-
tein at the temperature at which the simulation was performed
(330 K), which is about 30 K below the experimental melting
temperature of GB3 (34).

An Intermediate State in the Folding of GB3. The free-energy land-
scape that we calculated illustrates explicitly the presence of three
distinct states of GB3. In addition to the native (N, in dark green in
Fig. 3A) and unfolded (U, in yellow in Fig. 3A) states, we identified
the presence of an intermediate state (I, in red in Fig. 3A) with
a free energy 3.8 kJ/mol higher than that of the N state. From the
relative free energies, we calculated the populations of the three
states at 330 K, which are 59% for N, 14% for I, and 26% for U. A
control unbiased molecular dynamics simulation of 200 ns starting
from a structure corresponding to the intermediate free-energy min-
imum remained extremely stable, with an average rmsd of 2.4 Å
from the equilibrated initial structure. These results are consistent
with the observation of the presence of an intermediate state of
GB1 (44, 45), which shares 88% of the sequence identity of GB3.
In particular, that work, which was based on the measurement
of the kinetic folding constant as a function of the pH and de-

naturant concentration, reported a folding behavior consistent
with the presence of an on-pathway intermediate and two dif-
ferent TSs (44, 45). However, the structure of the intermediate of
GB1 is likely to be more native-like than the one that wefind here.
The ensemble of conformations making up the intermediate
state characterized by our approach contains compact struc-
tures, which share specific secondary elements with the native
state, including the C-terminalβ-hairpin. The N-terminal exten-
sion is instead less structured, with only an incipient parallel
pairing of the first β-strand (44) and the N-terminal region of the
α-helix (residues 22–30). In addition, the C-terminal part of the
α-helix exhibits a nonnative configuration by forming an anti-
parallel β-strand paired with the third β-strand of the protein
(residues 41–47).

Identification and Characterization of the TSs. To better characterize
the folding mechanism of GB3, we simulated by a kinetic Monte
Carlo approach (46) the dynamics on the multidimensional free-
energy landscape reconstructed by our procedure (Methods). All
the trajectories connecting the folded and unfolded states go
through the intermediate state, confirming that it is an on-pathway
intermediate, like the one observed for GB1 (45). The black
dashed line in Fig. 3A represents the 3D projection of the tra-
jectory of highest probability connecting the folded and unfolded
states. Consistent with this topology, the trajectory crosses two
TSs: TS1 between the unfolded and intermediate states (in cyan
in Fig. 3A) and TS2 between the intermediate and native states
(in blue in Fig. 3A). The rate-limiting step is represented by TS2,
with a barrier of 19.5 kJ/mol from the native state, whereas TS1 is
at a free energy of 12 kJ/mol.

The hydrophobic solvent-accessible surface area (SASA) reveals
how the two TSs are less compact than the N and I states but still
quite structured (Fig. 3B). A similar conclusion was reached by the
experimental Tanfordβ-values for the two transition states of GB1:
βTS1 = 0.76± 0.04 andβTS2 = 0.93± 0.04 (45). These values are
consistent with those computed by the ratio of the total SASA
between N and the corresponding TS obtained in the present study
for GB3, βTS1 = 0.82± 0.03, andβTS2 = 0.91± 0.03.

We found that TS2 of GB3 is more compact than TS1 (Fig.
3A), at least in part because of the presence of a native salt
bridge between Lys-10 and Glu-56 that is missing in TS1. This
aspect also was suggested in the case of GB1 (45) to explain the
differences in the pH dependence for the unfolding rate constant
of the two TSs. Indeed, an inspection of the TS1, I, and TS2
structures reveals how this salt bridge may trigger the correct
arrangement between the C terminus and thefirst β-strand
(residues 1–10). The formation of the salt bridge, which is absent
in TS1, acts in I as an anchor that may allow the parallel pairing
of the first β-strand, increasing the fraction of native contacts
from 29% in I to 37% in TS2. On this view, the secondβ-hairpin
represents the initial native element in the folding process, fol-
lowed by the formation of the N terminus of the native helix and
the parallel pairing of the first β-strand to the C terminus
β-hairpin, to then stabilize the formation of thefirst β-hairpin.

These findings are consistent with theϕ-values measured for
GB1 (38). A comparison between the experimentalϕ-values of
GB1 and those calculated for GB3 for TS1 and TS2 is presented in
Fig. 4 through the fraction of native contacts of amino acid side
chains (25, 26). Despite the differences in sequence between GB1
and GB3, the structure of the TS2 of GB3 exhibits a pattern ap-
proximately consistent with experimentalϕ-values of the TS of GB1
(Fig. 4), especially in the twoβ-hairpin regions. These results, which
are consistent with previous conclusions (38), indicate that in the TS
the C-terminal hairpin is completely formed as well as the parallel
pairing of the first β-strand. Instead, theϕ-values in theα-helical
region show a more complex behavior compatible with a variety of
conformations in the transition ensemble.

Conclusions
We have introduced a method for calculating the free-energy
landscapes of proteins based on the incorporation of experimental

Fig. 2. Time series of the trajectories that achieve the lowest rmsd value for
the simulations with (black line) and without (red line) the CamShift CV.
(Insets A and B) Lowest rmsd structures in the two simulations. ( Inset C)
Percentage of native contacts in each conformation in the � rst 50 ns in the
two simulations.
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NMR chemical shifts as collective variables in bias-exchange me-
tadynamics simulations (18, 33). To this end, we have defined a
collective variable that measures the difference between experi-
mental and calculated chemical shifts, and helps the simulations
find a route to the folded state by exploiting the capability of the
chemical shifts to characterize in detail the local configuration of

a protein molecule. We have foundthat this procedure facilitates
the formation of the correct native contacts and, consequently, the
identification of structures effectively indistinguishable from the
native-state conformation determined experimentally.

A distinctive aspect of the approach that we have presented is
that it uses the chemical shifts only to define a reaction co-

Fig. 3. (A) Three-dimensional representation of
the free-energy landscape of GB3 as a function of
three CVs (see the main text). Along the folding
pathway (black dashed line), the most relevant
structures are reported with their relative free-
energy values: the native state N is shown in
green, the transition state TS2 in blue, the in-
termediate state I in red, the transition state TS1
in cyan, and the unfolded ensemble U in yellow.
(B) Hydrophobic SASA, relative number of native
contacts, and free energy along the folding
pathway.
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ordinate, without modifying the underlying forcefield used in
the molecular dynamics simulations. Hence, the resulting free-
energy landscape derives from the Boltzmann distribution of
the system for the forcefield used in the simulations.

This procedure allows the free-energy landscapes of proteins
to be determined with relatively limited computational resour-
ces. In the case of GB3 discussed here, only 380-ns simulations
for seven replicas were required. Our calculations have revealed
the presence of an on-pathway, partially nonnative interme-
diate state and have enabled us toestimate accurately the free-
energy differences between the different states populated by
this protein.

Because the approach that we have described is based on the
use of chemical shifts as collective variables in metadynamics
simulations, it also may be adopted if only incomplete data are
available. It thus will be interesting to explore its applicability
to larger proteins and to intrinsically disordered proteins (IDPs)
to generate ensembles of structures and free-energy landscapes
consistent with chemical shift data. Furthermore, this kind of
approach may be generalized byincorporating other experi-
mental data in a metadynamics framework, including NOEs,
J-couplings, and residual dipolar couplings, or data from other
experimental techniques, such as Small-Angle X-ray Scattering
(SAXS) or Fluorescence Resonance Energy Transfer (FRET)
methods. We anticipate that these developments will provide
molecular dynamics descriptions of the behavior of a variety of
proteins for which only sparse experimental data are available.

Methods
BE-META. Bias-exchange metadynamics (BE-META) is a technique that may be
used for enhancing the conformational search and for reconstructing the free
energy of complex biological systems. This method involves a combination of
replica exchange (17) and metadynamics (18), in which a set of CVs is chosen
and several metadynamics simulations are performed in parallel on different
replicas of the system at the same temperature, each replica biasing a dif-
ferent CV ( SI Text). Exchanges between the replicas are attempted periodi-
cally according to a replica-exchange scheme, and this process is repeated
until convergence of the free energy pro � les is obtained. As a consequence
of the effectively multidimensional nature of the bias, this procedure allows
complex free-energy landscapes to be explored with great ef � ciency, and it
may be very useful to study the folding process (33). To reach this goal, the
choice of CVs is crucial, as inappropriate CVs do not enable one to reach
convergence. Here, together with other variables for folding used in other
works (47), we introduced a CV based on experimental NMR chemical shifts
as the driving force for folding. This procedure represents an alternative way
to incorporate experimental data in molecular dynamics simulations, not as
restraints (30) but in a metadynamics framework.

CamShift CV. To predict the NMR chemical shifts corresponding to a given
structure, we used the CamShift method (37), which is based on an approx-

imation of the chemical shifts as polynomial functions of interatomic dis-
tances (SI Text). Unlike other methods for the semiempirical calculation of
protein backbone chemical shifts (48 –50), the functions used in CamShift are
differentiable, thus allowing the forces to be computed and the CV to be
de� ned as a penalty function based on the differences between the experi-
mentally measured and the calculated backbone chemical shifts ( 1Hα,

13Cα,
13Cβ,

13C’, 1HN, 15N) (SI Textand Fig. S2) (30, 32). Because the chemical shifts are
extremely sensitive to the details of the local con � guration and environment
of the atoms, the aim of this CV is to reproduce the local rearrangement of
the protein compatible with the experimental data, especially when it
approaches low values, which correspond to a better overlap between the
predicted and the experimental chemical shifts. Even if the calculation of the
chemical shifts is restricted to the backbone atoms, some contributions also
depend on the orientation of the side chains (37). Therefore, the forces ap-
plied by metadynamics to all the atoms involved in the calculation of the CV
help the slow transition of side-chain dihedral angles in � nding the correct
arrangement crucial to avoid a bad steric hindrance and to reach the correct
fold. The CamShift CV has been implemented in a modi � ed version of the
freely available plug-in PLUMED (51) for Gromacs (35).

Simulation Details. We performed a BE-META simulation of GB3 at 330 K,
using seven replicas, one for each of the CVs ( SI Text):

� CamShift (see above): This CV was used as a local folding-driving force.
Parameters: Gaussian width σ = 1.

� AlphaRMSD, ParaBetaRMSD, and AntiBetaRMSD: These CVs were used to
measure the fractions of α-helix and parallel and antiparallel β-sheet of the
protein conformation (47). Parameters: for AlphaRMSD, m = 4, n = 2, R0 =
0.08, and σ = 0.2; for ParaBetaRMSD, m = 12, n = 8, R0 = 0.08, and σ = 0.1; for
AntiBetaRMSD, m = 12, n = 8, R0 = 0.08, and σ = 0.2.

� Coordination Number: This CV was used to measure the number of hydro-
phobic contacts. Parameters: m = 8, n = 4, R0 = 0.4, and σ = 10.

� Two AlphaBeta Similarities: These CVs were applied to the dihedral angles
χ1 and χ2, respectively, for hydrophobic and polar amino acids to enhance
the side-chain packing search. Parameters: σ = 0.5 for both replicas.

The functional forms of the CVs are de � ned in ref. 51 ( SI Text).
Starting from an unfolded state at 5.7 Å from the reference structure [PDB ID

code 2OED (36)], obtained by a simulated annealing procedure, we ran 380 ns
for each replica using the Gromacs 4.5.3 package (35) with the AMBER99SB-
ILDN force � eld (8) and the TIP3P water model (52). The protein was solvated
by 6,524 water molecules in a 212-nm 3 periodic box. The particle-mesh Ewald
method (53) was used for long-range electrostatic interactions with a short-
range cutoff of 1 nm. A cutoff was used for Lennard –Jones interactions at 1.2
nm. All bond lengths were constrained to their equilibrium length with the
LINCS (LINear Costraint Solver) algorithm (54). The time step for the molecular
dynamics simulation was set at 2.0 fs, and the Nosé –Hoover thermostat (55, 56)
with a relaxation time of 1ps was used. The atomic coordinates and the energy
were saved every 1 ps. Concerning the metadynamics setup, 1D Gaussian
functions of height w = 0.30 kJ/mol were added every 4 ps, and exchanges of
the bias potentials were attempted every 20 ps.

After 120 ns of simulation, in which very wide regions of the CVs were
explored, we introduced loose upper boundaries to help the convergence of
the bias potentials (57). At this time, we also reduced to 0.5 the Gaussian width
of the CamShift CV and doubled the σ of the AlphaRMSD CV ( SI Textand Table
S1). To run the BE-META, we used a modi � ed version of the PLUMED plugin
(51) for Gromacs, which will be made publicly available in a future release. A
second BE-META simulation of 300 ns was run with six replicas, excluding the
CamShift CV, to benchmark the importance and the power of this CV in
folding the protein. Finally, a standard molecular dynamics simulation of 200
ns was performed to evaluate the stability of the intermediate state.

Free-Energy Reconstruction in the CV Space. BE-META allows the free energy
of a system to be reconstructed once the bias potentials become stable (33)
(SI Text). This happens in our case after an equilibration time t eq = 240 ns.
After selecting the CVs that are most effective in discriminating different
states of the system, the CV space is divided in hypercubes and each
simulation frame is assigned to the corresponding microstate according
to its CV value ( SI Text). The structures within each hypercube must be
consistent to de � ne a proper microstate of the system; otherwise, its size
must be reduced. Then, a free-energy value is computed for the micro-
state, according to the corresponding bias potentials and the populations
observed after the t eq. In our study, we have chosen the CamShift, Co-
ordination Number, and Anti- and Para-BetaRMSD CVs; the relative free-
energy pro� les are reported in Fig. S3. The error on the free-energy difference
of the microstates corresponding to the three local free-energy minima in

Fig. 4. Comparison of the experimental ϕ-values (blue circles) of GB1 (38)
with the ϕ-values for GB3 calculated from the TS2 (black line) and TS1 (red
line) structures determined in this work.
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Fig. 3 is approximately 3 kJ/mol. All the analyses have been performed as
previously described (40) ( SI Text), using METAGUI (58), a Visual Molecular
Dynamics (VMD) (59) interface for analyzing metadynamics and molecular
dynamics simulations.
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1. Metadynamics
Metadynamics is a computational technique aimed at enhancing
the sampling of the conformational space of complex molecular
systems (1). The enhancement is obtained through a bias that
acts on a small number of parameters, referred to as collective
variables (CVs), s(x), which provide a coarse-grained description
of the system and are explicit functions of the Cartesian coor-
dinates x. The bias takes the form of a history-dependent po-
tential constructed as a sum of Gaussian distributions centered
along the trajectory of the CVs (2):

VGðsðxÞ; tÞ=w
X

t′=τG;2τG;...
exp

 
−
�
sðxÞ− s

�
x
�
t′
���2

2σ2s

!
; [S1]

where the sum is taken for t′ < t. Three parameters enter into the
definition of VG: (i) the height w of the Gaussian distributions, (ii)
the width σs of the Gaussian distributions, and (iii) the frequency
τ−1G at which the Gaussian distributions are deposited.
These three parameters influence the accuracy and efficiency of

the free-energy reconstruction. If the Gaussian distributions are
large, the free-energy surface will be explored at a fast pace, but the
reconstructed profile will be affected by large errors. If instead
theGaussian distributions are small or are deposited infrequently,
the reconstruction will be accurate, but it will take longer. Typ-
ically, the width σs is chosen to be of the order of the standard
deviation of the CV in a preliminary unbiased simulation in
which the system explores a local minimum on the free-energy
surface (2). In time, the bias potential fills the minima on the
free-energy surface, allowing the system to efficiently explore the
space defined by the CVs. It is possible to show that in the limit
of long times, VG(s, t) � −F(s) (3). Qualitatively, as long as the
CVs are uncorrelated, the time required to reconstruct a free-
energy surface for a given accuracy scales exponentially with the
number of CVs. Therefore, the performance of the algorithm
rapidly deteriorates as the dimensionality of the CV space in-
creases. This aspect makes it impractical to obtain an accurate
calculation of the free energy when the dimensionality of the
space is large. Unfortunately, this often is the case for complex
reactions such as protein folding, in which it is very difficult to
select a priori a limited number of variables that describe the
process, at least unless the structure of the native state is not
taken into account explicitly in the CVs.

2. Bias-Exchange Metadynamics
The bias-exchange metadynamics (BE-META) method was
proposed to overcome the difficulties discussed above (4). The
BE-META method involves a combination of replica exchange
(5) and metadynamics, in which multiple metadynamics simu-
lations of the system at a given temperature are performed. Each
replica is biased with a time-dependent potential acting on
a different CV. Exchanges between the bias potentials in the
different variables are allowed periodically according to a rep-
lica-exchange scheme. If the exchange move is accepted, the
trajectory that previously was biased in the direction of the first
variable continues its evolution biased by the second, and vice
versa. In this manner, a relatively large number of different
variables can be biased, and a high-dimensional space may be
explored after a sufficient number of exchanges. The result of the
simulation, however, is not a free-energy hypersurface in several

dimensions, but several (less informative) low-dimensional pro-
jections of the free-energy surface along each of the CVs. The
high-dimensional hypersurface still can be reconstructed (6) using
the method summarized in in SI Text, section 5.

3. Choice and De� nition of CVs in the BE-META Method
Similar to other methods that reconstruct the free energy as
a function of a set of generalized coordinates, in the BE-META
method the choice of CVs plays an essential role in determining
the convergence and efficiency of the free-energy calculation.
If the chosen set of CVs does not distinguish different metastable
states of the system, the simulation will be affected by hysteresis
because not all the important regions of the conformational space
will be explored. To choose an appropriate set, one needs to
exploit some basic knowledge on the topological, chemical, and
physical properties of the system. Although there is no a priori
recipe for finding the correct set of CVs, in the BE-META
method the number of variables may be relatively large, making
the selection less critical.
To study the free-energy landscape of GB3, we used the fol-

lowing CVs:

� AlphaRMSD, ParaBetaRMSD, and AntiBetaRMSD: These
CVs count how many fragments of six residues (six in a row
for α-helices and three plus three for β-sheets) belong to an
α-helix and β-sheet, by computing their rmsd with respect to
an ideal α-helix and β-sheet conformation (7):

S=
X
α

n
�
rmsd

�fRigi∈Ωα
;
�
R0��� [S2]

nðrmsdÞ= 1− ðrmsd=0:1Þn
1− ðrmsd=0:1Þm; [S3]

where n is a function switching smoothly between 0 and 1, the
rmsd is measured in nanometers, and {Ri}i∈Ωα are the atomic
coordinates of a set Ωα of six residues of the protein, whereas
{R0} are the corresponding atomic positions of ideal α-helical
and β-sheet conformations; m, n are exponents that allow
tuning of the smoothness of the function.

� Coordination Number: This CV, which is used to quantify the
number of contacts between the side chain heavy atoms of
hydrophobic residues, is defined as

CN =
X
i;j

Cij

with

Cij =
1−
�
rij
r0

	n

1−
�
rij
r0

	m; [S4]

where rij is the distance between atoms or groups i and j, r0 is the
distance value to consider two atoms in contact, and m, n are
exponents that allow tuning of the smoothness of the function.

� AlphaBeta Similarity: We considered two CVs of this type,
corresponding to the χ1 and χ2 side-chain dihedral angles,
respectively, for hydrophobic and polar amino acids. These
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CVs are designed to enhance the side-chain packing searching,
which is crucial for protein folding. The CVs are defined as

ABSim =
X
i

1
2

h
1+ cos



χi − χrefi

�i
; [S5]

where we have chosen χrefi as the mean value of the corre-
sponding dihedral angle from a library of folded proteins
extracted from the Protein Data Bank (PDB).

� CamShift: This CV is used to enhance the conformational
sampling along a variable that takes into account the differ-
ence between experimental and calculated chemical shifts. Its
implementation is described in in SI Text, section 4.

All these CVs are implemented in PLUMED (8) for Gromacs (9).
They are available publicly and, except for CamShift, were used in
several previous protein-folding studies by metadynamics (6, 7).

Choice of Parameters. As mentioned in SI Text, section 1, the
choice of parameters w and σs influences the accuracy and effi-
ciency of the free-energy reconstruction. Artifacts tend to
arise when the free-energy landscape is highly inhomogeneous,
being characterized by the simultaneous presence of very shallow
and very narrow free-energy basins (10). The parameters of the
Gaussian distributions should be chosen so that the maximum
force introduced by a single Gaussian distribution (w/σs) is
smaller than the typical derivative of the free energy (10). To
choose these parameters, we follow a previously proposed scheme
(2). In particular, the width σs was chosen to be of the order of the
SD of the CV, performing several preliminary unbiased simu-

lations starting from different folded and unfolded config-
urations, in which the system explored a local minimum in the
free-energy surface. Following this procedure, we verified that the
choice of parameters was correct (Table S1). Indeed, the force
introduced by a single Gaussian distribution is smaller than the
typical derivative of the free energy for the different CVs. This
result is also confirmed by the shape of the free-energy projec-
tions (Fig. S3) along the CVs used in the analysis (in SI Text,
section 5): the profiles are homogeneous and smooth, with the
minima wider than the Gaussian width. All values of the param-
eters used in this work are reported in Simulation Details in the
main text.

4. Implementation of the CamShift CV
The implementation of CamShift as a CV requires the structure-
based calculations of the chemical shifts. In this work, the
chemical shift of a given atom is calculated as (11)

δcalc = δcoil + δdihedrals + δrings + δbackbone

+ δside−chains + δthrough−space;
[S6]

where, δcoil is a residue-dependent constant and δdihedrals is cal-
culated using the ϕ, ψ, and χ1 dihedral angles as

δdihedrals = p1cosð3ðθ+ p4ÞÞ+ p2cosðθ+ p5Þ+ p3; [S7]

where pi are given coefficients. The δrings term, which takes into
account the ring current contributions, is defined using the
classical point-dipole method (12). The δbackbone, δside−chains, and
δthrough−space terms are defined as

δX =
X
j;k

αjk d
βjk
jk ; [S8]

where j,k defines a pair of atoms at distance d; α and β are given
coefficients. For δbackbone, the atoms are selected from the
neighboring residues along the chain; for δside−chains, the atoms
are those of the same residue; whereas, for δthrough−space, the
atoms are selected among those within a radius of 0.5 nm and do
not belong to the current and neighboring residues.
Because all these terms are defined as differentiable functions

of the atomic coordinates, it is possible to compute their deriv-
atives and the corresponding forces in molecular dynamics sim-
ulations (13, 14). The collective variable then is defined as

CamShiftðtÞ=
XN
i= 1

X
j

Eij; [S9]

where i runs over the residues of the protein and j runs over the
different atom types (Hα, HN, N, Cα, Cβ, and C′). Eij has the
functional form (13, 14):

where δexp and δcalc are the experimental and calculated chemical
shifts, respectively. The function Eij has a flat bottom (Fig. S2) so
that the chemical shifts calculated to within a given accuracy of
the experimental value do not produce a penalty. The width of
the flat region of the potential is determined by the term n«j,
where n is a tolerance parameter and «j is the accuracy of the
CamShift predictions used for the chemical shifts of type j (11).
The penalty is harmonic until the deviation reaches a cutoff
value x0, at which point the penalty grows according to a hyper-
bolic tangent function defined to maintain a continuous de-
rivative at the point x0. The magnitude of the penalty is scaled for
each chemical shift type j by the variable βj, which is a function of
the variability of that chemical shift in folded proteins reported
in the Biological Magnetic Resonance Bank database (15). The
scaling factor βj is used to obtain relative contributions of com-
parable magnitude of each chemical shift type to the CV value.
The parameter γ determines how large the penalty can grow for
deviations beyond x0. In this investigation, the simulation was run
with n = 1 for all chemical shifts. The harmonic truncation point
x0 was set to 4.0 ppm for Hα and HN, and 20.0 ppm for N, Cα, Cβ,
and C′. The penalty truncation factor γ was set to 20 for all

Eij =

8>>>>>>>>><
>>>>>>>>>:

0 if  

���δijcalc − δijexp

���≤ nej

 ���δijcalc − δijexp

���− nej

βj

!2

if  nej <
���δijcalc − δijexp

���≤ x0

 
x0 − nej

βj

!2

+ γ tanh

 
2
�
x0 − nej

�
���δijcalc − δijexp

���− x0
�

γβ2j

!
for  x0 <

���δijcalc − δijexp

���;
(S10)
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chemical shifts. These values of x0 and γ result in an essentially
harmonic penalty for most chemical shifts, with penalties reaching
the hyperbolic tangent region of the penalty function only in the
case of very large outliers (13, 14).
The CV and the forces, which were derived analytically, have

been implemented explicitly into a modified version of PLUMED
(8) that will be made public in a future release.
In Fig. S3, we report the comparison between the structures

sampled in the free-energy minimum and the experimental ref-
erence (PDB ID code 2OED), showing the difference between the
chemical shifts calculated by the CamShift method and the cor-
responding experimental values (16) for the different atom types.

5. Free Energy Reconstruction
The BE-META method allows the free energy of the system to
be reconstructed once the bias potentials become stable (4). To
estimate the relative probability of the different states, the low-
dimensional free-energy surfaces obtained from the BE-META
calculations are exploited to estimate, by a weighted-histogram
procedure, the free energy of a finite number of structures rep-
resentative of all the configurations explored by the system. The
CV space is subdivided so that all the frames of the BE-META
trajectories are grouped in sets (microstates) whose members are
close to each other in the CV space (6). Because the scope of the
overall procedure is to construct a model to describe the ther-
modynamic and kinetic properties of the system, it is important
that the microstates be defined in such a way that they satisfy
three properties: (i) the microstates should densely cover all the
configuration space explored in BE-META, including the barrier
regions; (ii) the distance in CV space between the centers of the
nearest-neighbor microstates should not be too large; and (iii)
the population of each microstate in the BE-META trajectory
has to be significant, otherwise its free-energy estimate will be
unreliable. A set of microstates that satisfy these properties is
defined by dividing the CV space in small hypercubes forming
a regular grid. The size of the hypercube is defined by its side in
each direction: ds = (ds1, ds2, . . ., dsn), where n is the number of
CVs used in the analysis. This procedure directly determines how
far the cluster centers are in CV space. Each frame of the BE-
META trajectory is assigned to the hypercube to which it belongs,
and the set of frames contained in a hypercube defines a cluster.
The free-energy Fα of each microstate α is estimated by a

weighted-histogram analysis (WHAM) approach (17), as described

previously (6). In the WHAM approach, the effect of the bias is
removed, thus resulting in the free energy of a finite number of
microstates that are representative of all the configurations ex-
plored by the system. The free energy of a microstate α is given as

Fα = −T log
P

in
i
αP

je
1
Tðf j−Vj

αÞ; [S11]

where niα is the number of times the microstate α is observed
in the trajectory i and V i

α is the bias potential acting on micro-
state α in the trajectory i. V i

α is estimated as the time average of
the history-dependent potential acting on the trajectory i, eval-
uated in sα, the center of microstate α:

Vi
α =V i

GðsαÞ=
1

tsim − teq

Ztsim
teq

dt′V i
G

�
sα; t′

�
; [S12]

where tsim is the total simulation time and teq is the time after
which the bias potentials become stable. The normalization con-
stants f j appearing in Eq. S11 are determined self-consistently as in
the standard WHAM method (6). Corrections taking into account
the variation of the bias over different structures assigned to the
same cluster α also were described previously (6).
An important issue is how many and which CVs should be used

in the procedure. It is not necessary to use all the CVs that have
been explicitly biased in one replica, as some of these CVs might
prove to be a posteriori less relevant for the process or to be
strongly correlated with other variables. The variables used for the
analysis must provide an accurate and effective description of the
system. An accurate description entails a set of microstates in
which each member contains consistently similar structures and
thus has very similar free energy compared with kBT. If the
variables are too few, a microstate will contain structures that are
very different from one another. On the other hand, performing
the analysis in a very high-dimensional CV space will lead to
poor statistics. A graphical user interface for VMD (18) is
available that helps one make this choice by easily visualizing the
structures assigned to each microstate for different choices of
CVs (19).
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Fig. S1. Difference between the chemical shifts calculated with the CamShift method (11) and the corresponding experimental values (16) for the structures
in the free-energy minimum (black line) and for the experimental structure (PDB ID code 2OED, red line) reference. The values on the y axis are in parts
per million.

Fig. S2. Graphical representation of the functional form of Eij used to calculate the CamShift CV (adapted from ref. 13).

Fig. S3. Free-energy surfaces (FES) as function of different collective variables for GB3.
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Table S1. Comparison between the maximum force introduced
by a single Gaussian

�
w
σs

�
and the average of the derivative of

the free energy with respect to the specific CV


j∂F∂sj
�

CV (s) w/σs, kJ/mol j∂F=∂sj, kJ/mol

CamShift (σs = 1) 0.3 3.4
CamShift (σs = 0.5) 0.6 3.4
Coordination Number (σs = 10) 0.03 0.35
ParaBetaRMSD (σs = 0.1) 3.0 13.7
AntiBetaRMSD (σs = 0.2) 6.0 13.0

w = 0.3 kJ/mol.
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