
HQ theropods are separated from each other by
branches subtending taxa from other continental
faunas, indicating that dispersal between these ge-
ographical regions probably occurred during the
Carnian-Norian. Other contemporaneous theropod
assemblages from Europe (22) and South America
contain only members of Neotheropoda and do
not match the diversity of theropods at the HQ.

Both parsimony (23) and likelihood-based
(24) biogeographic methods for ancestral range
reconstruction reject scenarios of an endemic
North American theropod radiation (10). Analy-
ses differ slightly in support for range recon-
structions at individual nodes, but provide high
relative support for inferring the South American
protocontinent as the ancestral range through the
spine of the basal dinosaur tree (10). In most
analyses, the distributions of the three HQ the-
ropods are explained by either dispersal to North
America from South America or allopatric and/or
vicariant speciation from an ancestral widespread
range encompassing North and South America
(10). This pattern is apparent in many other clades
during the Late Triassic, including aetosaurs (25),
crocodylomorphs (26), shuvosaurids (27), and
“traversodont” cynodonts (28). The ubiquity of
this phylogenetic pattern in clades encompassing
markedly different ecomorphotypes argues
against the presence of physiographic barriers
isolating the Norian faunas of North America.
Thus, the conspicuous absence of sauropodo-
morphs in the Norian of North America (3, 12)
cannot be attributed to their inability to disperse
to these areas but rather to their inability to be-
come established in areas sampled byLate Triassic
terrestrial sedimentary outcrops. Latitudinal differ-
entiation of Norian faunas attributable to climatic

differences and climatic tolerances remains an
intriguing explanation for the global ubiquity of
basal theropod taxa such as Tawa and the North
American absence of sauropodomorphs. Indeed,
recent paleoclimate models and proxy data for the
Late Triassic reveal a marked dichotomy between
low and high paleolatitudes (29). Alternative
explanations, including smaller-scale ecological dif-
ferences, community-level interactions, or facies-
dependent sampling biases, cannot be ruled out,
nor are these explanations mutually exclusive
(12). Explaining these patterns remains an out-
standing problem in early dinosaur evolution at
the nexus of phylogenetic, geologic, and paleo-
climatic studies of the Late Triassic.
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An Analytical Solution to the Kinetics
of Breakable Filament Assembly
Tuomas P. J. Knowles,1,2 Christopher A. Waudby,3 Glyn L. Devlin,3 Samuel I. A. Cohen,3
Adriano Aguzzi,4 Michele Vendruscolo,3 Eugene M. Terentjev,1
Mark E. Welland,2* Christopher M. Dobson3*

We present an analytical treatment of a set of coupled kinetic equations that governs the
self-assembly of filamentous molecular structures. Application to the case of protein aggregation
demonstrates that the kinetics of amyloid growth can often be dominated by secondary rather
than by primary nucleation events. Our results further reveal a range of general features of the
growth kinetics of fragmenting filamentous structures, including the existence of generic
scaling laws that provide mechanistic information in contexts ranging from in vitro amyloid
growth to the in vivo development of mammalian prion diseases.

Molecular self-assembly is the basis of
phenomena ranging from the construc-
tion of materials for nanotechnology

(1) to the formation of molecular machineries
within living cells (2). The assembly of these
frequently complex and highly intricate struc-
tures typically depends on a series of individual
steps that are inherently simple and are therefore
amenable in principle to a quantitative analysis

based on physical principles. An important class
of molecular structures that emerges from the
self-assembly of simpler components is that of
filamentous assemblies of biological macromol-
ecules. Many proteinaceous aggregates of this
type, which are increasingly linked with normal
and aberrant biological processes (2), form
through a nucleation mechanism followed by a
self-templated growth where the ends of exist-

ing filaments recruit soluble molecules into ag-
gregates that can themselves multiply through
secondary nucleation processes such as frag-
mentation (Fig. 1A).

One of the key questions in molecular self-
assembly phenomena is to determine the relative
importance of different microscopic processes
and their contribution to the overall reaction (3, 4).
Master equation approaches are particularly
powerful in this context as they enable the ex-
plicit description of microscopic processes and
have thus offered a series of insights (5–10) into
phenomena including the formation of amyloid
fibrils, species that are of increasing interest par-
ticularly because of their association with clin-
ical disorders ranging from Alzheimer’s disease
to type II diabetes (2). The lack of analytical
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solutions to such master equations has, however,
represented a challenge in the quest to establish
general principles and laws governing filamentous
growth. Scaling laws, also known in biology as
allometric laws, define the relationships between
different properties of a given system, and such laws
have enabled a variety of fundamental principles to
be revealed in fields ranging from condensed mat-
ter physics to ecology and from sociology to eco-
nomics (11, 12). In this work, we illustrate how the
availability of an analytical treatment of a master
equation (Eq. 1) enables the rationalization of a
wide range of experimental results relating to the
self-assembly processes of peptides and proteins
based on scaling laws and increases the predictive
power of the analysis of such phenomena.

The basic processes that enter the master
equation describing filamentous protein aggrega-
tion have been established previously. Amyloid
formation has almost universally been shown to
involve a nucleation-dependent polymerization
reaction (13), where the formation of growth
nuclei from soluble proteins is slower than the
elongation of preformed nuclei. In addition, sec-
ondary nucleation mechanisms (3) have been
identified (5, 7, 14) that lead to the formation of
additional nuclei from preexisting filaments; we
include here a common type of such mechanism,
namely filament fragmentation (5), and other
types can also readily be considered within the
same scheme [see Supporting Online Material
(SOM)]. These molecular processes lead to a
master equation describing the time evolution
of the concentration f(t, j) of filaments of length
j in the system as an infinite set of coupled non-
linear differential equations of the form (6–10)

∂f (t, j)
∂t

¼ 2m(t)kþ f (t, j − 1)

− 2m(t)kþ f (t, j) − k−( j − 1) f (t, j)

þ 2k− ∑
∞

i¼jþ1

f (t, i)þ knm(t)
ncdj,nc ð1Þ

where m(t) is the concentration of monomers.
The different terms in Eq. 1 represent the ele-
mentary microscopic processes. The first term
2m(t)k+ f (t, j–1) accounts for the increase in the
number of filaments of length j due to the ad-
dition of monomers to either end of a filament
of length j–1. The term –2m(t)k+ f (t, j) describes
the decrease in their number due to filaments of
length j growing further to length j+1, the term
–k− ( j–1) f (t, j) reflects the possibility of a fila-
ment of length j breaking at any of its j–1 internal
links, and the term2k−∑∞

i¼jþ1 f (t, i) accounts for
the fact that there are two links in any filament
of length i > j where breakage leads to a fila-
ment of length j. The last term represents the
spontaneous formation of growth nuclei of size
nc as a polynomial form in m(t), which we shall
see has the property that it allows the conclusions
from the classical theory of homogeneous nucle-

ated growth to be recovered as the limit of our
results when setting the fragmentation rate to zero.

Using analytical techniques based on fixed-
point mappings (15), we extend linearized early
time solutions to describe the full time course
of the reaction and reveal [see details in (16)] that
the time evolution of the most important exper-
imentally accessible observables, the principal
moments of the distribution f (t, j) (the number
P ¼ ∑∞

j¼nc
f (t, j) and massM ¼ ∑∞

j¼nc
j� f (t, j)

concentrations of filaments) can be written in
closed form to a very good approximation (Fig.
1 B) as the integrated rate laws

P(t) ¼ mtot

2nc−1
− mtotk−e−(2nc−1)k−tEi(−Cþekt)

k

þ e−(2nc−1)k−tB2 ð2aÞ

M (t) ¼ mtot½1 − exp(−Cþekt þ C−e
−kt

þ knm
nc−1
tot k−1− )� ð2bÞ

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mtotkþk−

p
represents the rate of mul-

tiplication of the filament population, mtot = M(t) +
m(t) is the total protein concentration,EiðxÞ ¼ −∫∞−x
(e−y/y)dy denotes the exponential integral function,
CT ¼ kþP (0)/k TMð0Þ /(2mtot) T (knm

nc−1
tot )/(2k−),

and the constant B2 is fixed by the initial condition
P(0). We note that the form of the rate of filament
multiplication k—which, as discussed below, is a
key parameter in our description of filamentous
growth—is consistent with the idea that both the
elongation rate mtot k+ and the fragmentation rate
k− have to double for the overall rate of production
of new filaments to double. We point out that we
have assumed that the fragmentation rate is inde-
pendent of the length of the filaments; this as-
sumption was primarily made because of the
current difficulty of obtaining reliable experimental
estimates of length-dependent fragmentation rates.
The approach that we describe, however, can be

in principle modified to take this effect, and in-
deed others, into consideration when more ac-
curate measurements become available.

In the following, we demonstrate that the the-
oretical framework provided by Eqs. 2a and 2b
has the capacity both to account for and to pre-
dict the outcome of protein aggregation reactions
of the type associated with protein misfolding
diseases. As a first example, we consider the
case of a representative protein, insulin; the data
in Fig. 2A show that a comprehensive series of
reactions performed in vitro with different initial
conditions, and resulting in differently shaped ki-
netic curves ranging from sigmoidal to convex,
can be completely accounted for by the solution
Eqs. 2a and 2b, with the same values of the two
global parameters corresponding to the micro-
scopic elongation and breakage rate constants.
According to our treatment, the sigmoidal growth
kinetics can be observed as a result of second-
ary nucleation, here fibril fragmentation, even
in the absence of rate-limiting primary nuclea-
tion events. This result contrasts with the classical
theories of nucleated growth, where homoge-
neous nucleation is the only source of additional
filaments and where such nucleation processes
are consequently crucial for determining the du-
ration of the lag phase (13)—the characteristic
time of nucleated polymerization reactions during
which the initial growth rate is small, and in some
cases not measurable using bulk techniques (17).

The filament number concentration P(t) can
be reconstructed experimentally (7) from measure-
ments of the free monomer concentrationm(t) =
mtot – M(t) and from the measurement of the
rate of change ṀðtÞin the mass concentration of
polymers:P(t) ¼ Ṁ (t)/f2kþ½mtot −M (t)�g. Com-
parison of the results of this reconstruction with
the analytical expression for P(t) from Eqs. 2a
and 2b demonstrates that in this case also the
use of the same values of k+ and k− yields good
agreement with the measurements (Fig. 2B, inset).

0

1

2

3

4

5

0 5 10 15 20 25 30
Time (h)

P
ol

ym
er

 m
as

s 
co

nc
en

tr
at

io
n 

(µ
M

)

B
Nucleation

A

nc

j -1

j

j

Elongation

j - i i

Secondary
nucleation/

fragmentation

Fig. 1. Kinetics of self-templated aggregation. (A) Growth through nucleation (1), elongation (2), and
fragmentation (3) leads to sigmoidal kinetic curves (B) for the mass concentration of fibrils as a function
of time. Dashed blue line, first moment M(t) computed from the numerical solution of the master
equation, Eq. 1; solid blue curve, analytical solution given in Eqs. 2a and 2b, obtained through fixed-
point iteration of the early time limit (dotted curve). The parameters are k+ = 5 × 104 M−1 s−1, k− = 2 ×
10−8 s−1, mtot = 5 × 10−6 M, kn = 2 × 10−5 M−1 s−1, nc = 2, and M(0) = P(0) = 0. The definitions of the
lag phase tlag and the maximal growth rate vmax are shown.
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The importance of fibril fragmentation for the
phenomenon of amyloid growth can be illustrated
with the very high sensitivity of the growth ki-
netics to mechanical shear. We examine in this
context the polymerization of b-lactoglobulin
(18) under a series of different controlled rates
of shearing that promote breakage. We consid-
ered a constant primary nucleation rate, kn, for
the entire data set, and a one-parameter fit to
each kinetic curve to allow the breakage rate to
vary through different values of k. As shown in
Fig. 2C, the variation of this single parameter
can account explicitly for the observed differences
in both the lag time and the growth rate under
different shear conditions. This result shows that
even a moderate increase in fracture rate can have
very important consequences for the number of
protein molecules incorporated into the aggregates;
hence, fragmentation emerges as possessing fun-
damental importance for determining key observ-
ables such as the lag phase. This result is also
likely to lie at the heart of the well-known high
sensitivity of the kinetics of fibril growth to agita-
tion or sonication, processes known to introduce
enhanced fragmentation but likely to leave largely
unaffected other rate constants for the system.

Based on knowledge gained from the analysis
of the rates of the individual processes underlying
the growth of protein fibrils, we can now predict

quantitatively how the course of this reaction is af-
fected by changes in system parameters such as
protein concentration. To illustrate this idea, we con-
sider data from (19) for the amyloid growth rates
of the WW domain in vitro as the concentration of
the monomeric protein is varied over an order of
magnitude. We extract the microscopic rates through
a fit to one of the kinetic curves (Fig. 2D, blue
line), and then quantitatively predict as a function
of time, with no free parameters, the behavior of
the system for a different set of initial conditions
(Fig. 2D, gray line) simply through the scaling of
the microscopic rates with concentration accord-
ing to Eqs. 2a and 2b.

Our analytical theory further reveals general
features of the growth of fragmenting filaments.
First, considering the normalized maximal growth
rate, given as the steepest slope of the sigmoidal
kinetic trace (Fig. 1A) divided by the initial soluble
protein concentration vmax = mtot

−1 maxt [Ṁ(t)] ≈
mtot
−1 [Ṁ(t)]t=tmax

= k/e, where tmax = k−1log(1/C+)
and we have kept the leading C+ term in Eqs. 2a
and 2b over constant and decaying terms, our
results show that this maximal rate depends on
the nature of the aggregates and the environ-
ment in which they are formed only through the
single parameter k, and not on other system
parameters such as the number of nuclei present
initially or on the primary nucleation rate. This re-

sult is in contrast to classical linear growth theories
(20), where the growth rate and lag phase have
strong dependencies on the specific details of
the homogeneous nucleation process.

A closer examination of the role of the pa-
rameter k reveals that it also essentially defines
the lag phase. The lag phase exists only if the
growth rate mtotk/e is maximal at the inflection
point tmax = log(1/C+)k

–1, or equivalently for
M(0) < MC = kL0/(2k+e), where MC represents a
critical seed concentration which, if exceeded,
results in a reaction proceeding without a lag
phase. This prediction for the existence of such
a threshold can be verified experimentally as
shown in Fig. 2B. The conditions used result in
a threshold of MC = 0.9 mM, and it can be seen
that the reaction starting with M(0) = 0.21 mM
proceeds with a marked time lag, whereas for
M(0) = 2.4 mM the rate profile is convex. If we
define the lag time as shown in Fig. 1A by extra-
polation from the maximal growth rate, we obtain
the expression tlag = [log(1/C+) – e+1]k

–1.
It is well known that primary nucleation is

an essential step in the phenomenon of amyloid
growth in the absence of seeds, and a contribu-
tion to the duration of the lag phase can indeed
result from such a nucleation process. Our re-
sults show, however, that the nucleation rate en-
ters only as a logarithmic correction through C+

Fig. 2. Experimental measurements of
the polymer mass concentration M(t)
of fibrillar insulin in (A) and (B) are ex-
plained using Eqs. 2a and 2b with the
two parameters k+ = 2.9 × 104 M−1 s−1

and k− = 2.1 × 10−9 s−1. In (A), the
total monomer concentration was (from
top to bottom) mtot = 149 mM, 98 mM,
and 49 mM, and the seed mass concen-
tration used was M(0) = 0.21 mM. In (D),
for a constantmtot = 98 mM, the seed con-
centration was (from left to right) M(0) =
2.4 mM, 0.8 mM, 0.21 mM, and 0 mM, and
the average polymerization number of
the seed fibrils L0 = M(0)/P(0) = 1380
was estimated from AFM measurements
(see SOM). The inset in (B) shows the
polymer number concentration P(t) de-
termined simultaneously for the data in
(A) and (B) for the same values of k+
and k−. The effect of fragmentation is
shown in (C); the polymerization of b-
lactoglobulin was measured by Hill et al.
(18) for increasing shear rates (right to
left: 0, 25, 50, 100, and 200 s−1) and
was scaled here between 0%and 100%.
The values nc = 2, kn/k− = 22.8 were held
constant in all the data sets, andk =1.2×
10−4 s−1, 4.3 × 10−5 s−1, 2.6 × 10−5 s−1,
3.7 × 10−6 s−1, and 0 s−1. (D) Experimen-
tal measurements from Ferguson et al.
(19) for the polymerization of the WW
domain. The two parameters in Eqs. 2a and 2b were derived from the data at
mtot = 50 mM (blue curve); using the resulting values of k+k− = 1.7 × 10−4 M−1 s−2,
kn/k− = 13.2 M−1 to predict the polymerization time course formtot = 100 mM,
200 mM, and 500 mM is shown in gray, whereby the parameter nc = 2 is fixed.

The comparison between this prediction (green curves) and the experimental
measurements (green circles) demonstrates that both the maximal rate and
the time at which this rate occurs are predicted accurately. Data not considered
in the fits are shown with filled gray squares.
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in the expression for tlag; therefore, when sec-
ondary nucleation pathways are active, we con-
clude that the experimental lag time is primarily
determined by the exponential growth regime that
takes place in the initial phase of the reaction.
Under these circumstances, the formation of oligo-
meric species, a process that has been observed
concomitantly with fibril formation and linked

with cellular toxicity (2), is likely to contribute to
such logarithmic terms and may therefore have a
limited influence on the overall growth kinetics of
fibrillar species. These results reveal that, although
the kinetic curves for processes dominated by
primary nucleation (20) and by secondary nucle-
ation give rise to apparently similar kinetic traces,
their origin is fundamentally different.

Our theory also provides a general demon-
stration of the validity of a conjecture about
amyloid fibril growth (21, 22) that the lag time
is commonly highly correlated with the inverse
maximal growth rate. Indeed, for fragmentation-
assisted growth, we have shown that both the
lag phase and the maximal growth rate depend
primarily on k. Therefore, the correlation emerges
naturally without the requirement for the re-
sponses of the processes of nucleation and growth
to changes in system parameters to be identical, a
situation generally likely to be incompatible with
structural and mechanistic information but re-
quired to enforce this correlation under the as-
sumption that the lag phase is defined by
primary nucleation processes and the growth
phase solely by fibril elongation. Although the
coefficient [log(1/C+) – e+1] linking the lag time
to the maximal growth rate is variable for
different proteins and different experimental
conditions, the fact that these differences only
enter as logarithmic corrections implies that the
general inverse correlation between lag time and
growth rate remains valid. In Fig. 3, this idea is
illustrated with a red band that shows that the
overall correlation is maintained, even when the
factor C+ has been artificially varied by a factor
of 1020, a value chosen to exceed greatly the
range of variability accessible experimentally.

More generally, the parameter k, which cor-
responds to the rate of multiplication of the
population of filaments, emerges as the most im-
portant quantity describing the overall properties
of systems that self-assemble by processes that
involve elongation and fragmentation. Our results
show that in the regime where secondary nuclea-
tion through fragmentation of aggregates is a
more effective source of additional structures
than primary nucleation [ k−=ðknmnc−1

tot Þ >> 1],
observables such as the lag time and maximal
growth rate depend primarily on just the single
parameter k.

A particularly striking result that follows
from the dominance of a single kinetic param-
eter in this regime of elongation-fragmentation
growth is that generic scaling laws emerge for
the behavior of the system. For instance, the
lag time is predicted to scale weakly with an ex-
ponent g = –0.5 with respect to the monomer
concentration (because tlag ∼ k−1 ≈ mg

totwith g =
–0.5). We have analyzed experimental results for
eight unrelated systems, including short peptides,
proteins such as insulin and b2-microglobulin,
and different types of yeast prions, and find that
five of them exhibit this type of weak scaling with
high accuracy (Fig. 4). Interestingly, in absolute
value, this exponent, 0.5, is crucially smaller than
the value of 1.0 or greater required by traditional
models (20) in which primary nucleation is a
dominant effect determining the duration of the
lag phase. In these latter models, the lag time
scales with an exponent g = –(nc+1)/2, which is
always |g| ≥ 1 for a nucleus nc ≥ 1 (20), a result
that is clearly inconsistent with the experimental
observations for the majority of systems we have

Fig. 3. Analysis of the lag
phase tlag. A strong cor-
relation exists (blue crosses)
between the inverse lag
time and the normalized
growth rate for 2000 ran-
domly generated kinetic
curves on the basis of a
uniform probability dis-
tribution, with 50 repre-
sentative examples shown
in the inset, and all rate
constants were varied over
2 orders of magnitude:
k+ = 5 × 103 to 5 × 105

M−1 s−1, k− = 5 × 10−8

to 5 × 10−10 s−1, mtot =
5 to 500 mM, kn = 10−11

to 10−9 M−1 s−1, nc = 2,
and, in the absence of
added seed, M(0) = 0.
The red open circles are
experimental data from (21). The red band results from a variation of a factor of 1020 in C+.
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evaluated (Fig. 4). Furthermore, in the case of
the aggregation of glutamine-rich peptides, nu-
cleus sizes of less than 0 appear to emerge (23)
when using classical theories of homogeneous
nucleated growth, whereas this type of low con-
centration dependence emerges naturally from
our less-than-linear scaling laws and suggests
that breakage is likely to be a key factor in the
aggregation of polyglutamine peptides and hence
potentially an important contributor to the de-
velopment of disorders such as Huntington’s
disease (2).

It is interesting to note that in the limit of a
vanishing breakage rate, k−→ 0, an expansion
of the exponentials in Eqs. 2a and 2b up to
quadratic order in k yields a polynomial growth
formM(t) ≈M(0) + k+knmtot

nc+1t2 + 2k+mtotP(0)t +
ncknmtott at the early stages of the reaction. Our
result therefore contains in the appropriate limit
the behavior characteristic of classical nucleated
growth theories (3, 20). It is likely, therefore, that
filamentous growth reactions that deviate signifi-
cantly from the g = –0.5 exponent, such as those
shown in red in Fig. 4, are limited by complex
primary or secondary nucleation processes rather
than by simple breakage. For instance, application
of the schema described in this paper to growth
phenomena where secondary nucleation processes
produce additional seeds at a rate that depends on
the presence of both filaments and monomer (14)
dPðtÞ=dt ¼ k2MðtÞmðtÞn2yields a filament mul-

tiplication rate k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþk2mn2þ1

tot

q
and therefore a

scaling exponent |g| = (n2 + 1)/2 ≥ 1 (see SOM),
where k2 represents a rate constant for monomer-
dependent secondary nucleation and n2 is the re-
action order of the secondary nucleation.

Finally, we investigate the applicability of the
analytical results derived in the present work to in
vivo systems. We examine the phenomenon of
mammalian prion transmission that is characteristic
of disorders such as bovine spongiform encepha-
lopathy and its human analog Creutzfeldt-Jacob
disease. The protein-only hypothesis for the
propagation of prions describes the conversion of
cellular prion proteins (PrPC) into a pathologically
aggregated form (PrPSc) in a manner that can be
transmissible (24). In such cases, PrPSc aggregates
are thought to elongate through the addition of
further PrP molecules, and it has been suggested
that they multiply rapidly enough through frag-
mentation of existing structures (5, 25) to allow for
transmissibility; these mechanisms are equivalent
to the microscopic processes described to the
lowest order in Eq. 1. In agreement with this idea,
we observe in Fig. 4 that the time for disease onset
scales with an exponent g = –0.52 T 0.07 as a
function of the expression level (26) of the prion
protein that determines its concentration in vivo;
this exponent is fully consistent with the value of
–0.5 observed for a range of in vitro systems (Fig.
4) and expected from the analysis developed in
this paper for fragmentation-assisted growth, at
least when other in vivo limiting factors, such as

cellular clearance mechanisms, have been over-
whelmed.

In conclusion, we have provided a unified
theoretical framework to address complex bio-
molecular self-assembly processes that involve
primary and secondary nucleation events coupled
to linear growth, and demonstrated its value for
predicting the kinetics and mechanisms of the
proliferation of amyloid fibrils, an example of
filamentous growth that is increasingly important
in the context of understanding and managing
some of the most common and debilitating
diseases of the modern era.
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