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The use of animal models in medical research provides insights into molecular and cellular

mechanisms of human disease, and helps identify and test novel therapeutic strategies.

Drosophila melanogaster—the common fruit fly—is one of the most well-established model

organisms, as its study can be performed more readily and with far less expense than for other

model animal systems, such as mice, fish, or primates. In the case of fruit flies, standard assays

are based on the analysis of longevity and basic locomotor functions. Here we present the iFly

tracking system, which enables to increase the amount of quantitative information that can be

extracted from these studies, and to reduce significantly the duration and costs associated with

them. The iFly system uses a single camera to simultaneously track the trajectories of up to

20 individual flies with about 100 mm spatial and 33 ms temporal resolution. The statistical

analysis of fly movements recorded with such accuracy makes it possible to perform a rapid and

fully automated quantitative analysis of locomotor changes in response to a range of different

stimuli. We anticipate that the iFly method will reduce very considerably the costs and the

duration of the testing of genetic and pharmacological interventions in Drosophila models,

including an earlier detection of behavioural changes and a large increase in throughput

compared to current longevity and locomotor assays.

Introduction

Since Drosophila melanogaster has been for over a century one

of the most commonly used animal models, a vast array of

physiological, cytological and genetic tools is available for its

study.1–5 One particularly attractive feature of the use of

Drosophila as a model organism is that it has a brain composed

of functionally specialised cell types, which is capable of

learning and memory, and underpins a range of complex

behaviours. Furthermore, it has been established that more

than two-thirds of genes associated with human disease have

orthologs in Drosophila,6,7 which is particularly relevant con-

sidering that biochemical pathways are conserved across

eukaryotes.6,8

The detailed study of fruit flies allows the observation of the

various developmental stages of this organism, and of the

progression of abnormal behavioural patterns associated to

disease. Measurements on various disease-related phenotypes

are performed by a variety of behavioural, locomotor and

cognitive assays.9–24 Considerable advances have been made

during the last ten years to improve the sensitivity and accuracy
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Insight, innovation, integration

We introduce a highly quantitative method of analysing

the motion of Drosophila melanogaster (the fruit fly),

which is one of the most widely used animal models of

human disease. Our approach, called iFly, is based on the

fully automated combination of a three-dimensional track-

ing system with a computational analysis of the statistical

properties of the trajectories of the fruit flies, which enables

the rapid and accurate detection of their specific patterns of

behaviour. Since the iFly method is designed to reduce very

significantly the costs and the duration of assays to test

genetic and pharmacological interventions in Drosophila

models, while increasing their quantitative significance, we

expect it to help increase even further the scope of

Drosophila studies.
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of these assays, with the goal of increasing the reliability of

the assessment of the efficacy of genetic or pharmacological

interventions. In one of the first locomotor assays that have been

introduced to measure a phenotype in Drosophila models,9 the

fraction of a population of flies capable of climbing past a

particular height in a tube within a set time was considered. This

assay provides an overall performance index, but it does not give

a detailed description of the features of the locomotor behaviour

that the fly employed in climbing, or failing to climb, up the tube.

More recently, computer vision technology has been employed to

track flies both while moving along surfaces18,20,21,23,25 and in

flight.10 These studies have allowed the investigation of questions

such as the analysis of social behaviour20,21 or the rate of gene

expression with respect to fly activity using GFP fluorescence.17

While the tracking of locomotion on a flat surface only requires a

single camera,18,20,21 three-dimensional tracking is commonly

performed by the use of at least two cameras. For example, the

tracking of fly locomotion over a cylindrical surface has been

achieved using a three-camera approach and a sophisticated

software to calibrate and synchronize the video streams.18

We here present a method, called iFly, for the three-

dimensional tracking of fly trajectories that works with a

single camera. This approach delivers three different time-

synchronous perspectives by using two appropriately placed

mirrors in place of additional cameras (Fig. 1). As an example

of the application of the iFly method, we demonstrate that this

approach greatly facilitates quantitative studies of the ageing

process in Drosophila.

Materials and methods

Design of the tracking hardware

The iFly basic hardware is composed of an inexpensive off-

the-shelf fixed-focus digital webcam linked to a standard

Microsoft Windows personal computer by a USB interface.

The tube of flies is placed in a chamber that is lit either through

a frosted-plastic lid or by internal illumination. To enable

three-dimensional tracking, two mirrors are placed at equal

angles behind the tube of flies that allow side images of the flies

to be captured by the camera (Fig. 1a). In the configuration

used in this study, the mirrors were placed at an angle of

d = 39 degrees to the wall of the chamber. A webcam with a

horizontal field of view of 50 degrees and VGA resolution was

placed at 95 mm distance from the centre of the tube and at

equal distance from the mirrors. The three captured images are

thus taken from perspectives at close to 120 degree angles of

one another. To allow placement on any lab bench and easy

portability, the chamber is kept light and compact in size,

taking up less area than a small laptop (Fig. 1b).

Design of the tracking software

The iFly software in its current implementation is a Java

application that uses the Java Media Framework to capture

individual frames either from a pre-recorded video file or a

video stream from the webcam. An image segmentation

algorithm is used for background subtraction and to identify

pixels that can be assigned to flies. To rapidly cluster

these pixels into fly representations, a multi-step hierarchical

clustering algorithm was developed. The first step consists in a

row-based single-pass traversing of the image data and joining

pairs of adjacent ‘fly-pixels’ into clusters. In the second step,

spatial decomposition, these initial clusters are then assigned

to quadratic tiles spread across the image with a side length

that corresponds to the adjustable fly size in pixels. The third

step is bottom-up hierarchical clustering with distances

calculated only between pixels in adjacent tiles, thus greatly

reducing computational cost. Finally, on-screen positions of

flies are derived from clusters fulfilling minimum requirements

such as the required number of pixels per fly (Fig. 1d).

For simplicity, we treat the cluster centre, computed as the

average x- and y-coordinates of all pixels assigned to a

qualifying cluster, as the location of the fly’s projection onto

the screen.

A virtual representation of the fly chamber, camera,

mirrors, and tube is generated as a module of the iFly

software. Geometric parameters are defined in a configuration

file and can easily be adjusted to fit a variety of different

layouts for the fly chamber and objects therein. This virtual

representation is used by an image registration algorithm to

spatially integrate the three different perspectives captured by

the camera. Triangulation is used to compute the fly positions

as 3D coordinates. To achieve this result, all on-screen

positions of flies are converted into rays by assuming that

the image seen on screen is equivalent to the image projected

onto the lens of the camera. Rays are then defined as running

from the pixel-equivalent position on the lens of the camera to

the camera’s fixed focal point, as defined by its technical

specifications. The rays are then traced back in the virtual

representation, where they either intersect directly with the

position of the fly in the virtual tube, or after reflection on

one of the mirrors. To allow easy conversion, Cartesian

coordinates in the virtual representation are defined to correspond

in scale 1 : 1 to the physical world, with the focal point of the

camera set as the origin. Depending on which part of the

screen they map to, the rays are split into three different

regions (regions I, II, and III in Fig. 1a, which are computed

from the virtual geometry). The software then tests for inter-

sections between all possible combinations of three rays, where

each of the three rays is taken from a different region.

Intersection in this case is defined as rays passing within a

chosen cut-off distance of one another.

We used two parameters to control size and velocity of the

tracked insects. The fly size is a user-defined parameter that

defines the maximal intra-cluster distance between any two

pixels in the individual clusters formed during hierarchical

clustering. This parameter can be used to define an arbitrary

size of the object to be tracked. In the case that not just the size

of the objects tracked, but the layout of the chamber changes,

a range of parameters such as the distances between camera

and tube and between tube and mirrors, mirror angles, camera

tilt, and fly tube radius are available and can easily be

adjusted. Tracking of animals of different velocity is a

parameter of the temporal resolution of the camera hardware

used—in off-line mode iFly is capable of analyzing a

pre-recorded video stream frame by frame regardless of the

number of frames per second. The time-stamp (in milliseconds

since frame 0) associated with each frame as provided by the
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Java Media Framework automatically translates into correct

computation of all derived parameters including velocity.

Typical performance permits 10–15 frames per second (fps)

for a group of 10 flies on a PC with a 2.0 GHz Intel Dual Core

processor. Faster analysis is possible with fewer flies or a faster

CPU. The software can be used in one of two modes: in

real-time mode, which allows processing a live video stream at

a frame rate determined by the speed of the hardware, or in

offline-mode, which allows frame by frame processing of a

previously acquired video file at a typical time resolution of

30 fps or above. This latter option allows the acquisition of

detailed fly trajectories even on slow machines.

Calibration of the virtual representation to the physical world

To adjust for discrepancies between the ideal virtual

representation of the fly chamber and the real-world geometry,

as for example slight inaccuracies during manufacturing of the

chamber, tilted mirrors, or inaccurate placement of the

camera, parameters such as normal vectors to the mirror

planes and distances between mirrors, tube, and camera are

optimized by a steepest descend algorithm as follows. First,

either a short video of a well-occupied fly tube (e.g. with

10 flies) in its current configuration is taken, or a video from a

previous experiment is selected. The user is then given the

choice of a number of sample frames from the video

stream. Based on the frame chosen, ideally one where flies

occupy various parts of the tube, the software then iterates

over computing fly positions and adjusting geometric para-

meters for a preset number of times. Visual clues are provided

in the GUI to allow an observer to monitor the progress

(Fig. 1e). A scoring function that is based on the minimum

distance between traced rays, i.e. the accuracy with which

flies are detected, serves to automatically decide which

set of parameters to use for the next iteration. Initial para-

meters and parameters for the steepest descend algorithm are

taken from the configuration file in the directory of the

experiment. The set of optimized parameters is appended

to the file and henceforth applies to all video files stored in

that directory. The optimization can be refined by repetition

with additional frames and only has to be performed once for a

given experiment. Configuration files can be shared among

Fig. 1 Scheme of the iFly apparatus. (a) Design of the fly chamber with test tube, camera, and mirrors placed at an angle d; the three perspectives
(I, II, and III) are projected onto the camera lens. (b) Image of the fly chamber, showing how a test tube with flies can be inserted through a hole in

the frosted plastic lid. (c) Snapshot from the graphical user interface (GUI) showing live video stream. The GUI contains components that

allow the user to adjust parameters for the iFly chamber, camera, and image segmentation algorithm. (d) Example of a captured frame with results

from the image segmentation algorithm overlaid; trajectories (black lines) and current fly positions (green circles and blue corners), from which the

Cartesian coordinates of the trajectories of the flies are extracted, are shown together with red lines that connect fly images predicted

to be projections originating from the same fly. (e) Real-time three-dimensional reconstruction of the ray tracing calculations for visual

control during image analysis. Images reflected by two mirrors are triangulated with the direct image to accurately locate the flies in the tube; camera

(black box), tube (blue cylinder), mirrors, and fly positions (black dots) are shown, with direct rays drawn in blue, and those reflected on mirrors in red.
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experiments unless the physical configuration of the fly chamber

changes, e.g. by replacing the camera with a different model.

To reduce the occurrence of false positives in the detection

of flies, the distance between passing rays in the virtual

representation is subjected to a cut-off value. This maximal

permitted distance is set by the user and was kept at 1 mm for

this study. Furthermore, flies had to occur in at least five

consecutive frames without having travelled more than 7 mm

between any two consecutive frames to be included in velocity

computations. This speed may sometimes be exceeded by a fly

while flying of falling, but the use of a faster camera enables to

reduce this effect to the required level.

Application to Drosophila senescence

To demonstrate the potential of the iFly method in assisting

locomotor analysis of Drosophila we examined ageing flies at

various stages of their lives. Sets of 10 flies were placed in test

tubes of 1 cm radius and 10 cm height. Videos were taken on

days 2, 9, 16, 23, 30, and 35. Test tubes were dropped into the

iFly apparatus at time t0 and videos recorded for 90s, with the

tube briefly lifted and dropped back into the apparatus after

t1 = t0 + 30s and t2 = t0 + 60s. All videos were processed

with the iFly software. A pre-processing step was added to the

software to automatically detect t0, t1, and t2 by analysing

changes in image brightness levels caused by shadows cast by

the hand of the experimenter. Dropping of the test tubes

resulted in flies dropping to the bottom of the tube on impact

and immediate initiation of upwards movement triggered by

innate negative geotaxis. Three trajectories were recorded on

hard disk for 15 s each in form of time-stamped Cartesian

coordinates of the derived fly positions in space.

Reconstruction of fly trajectories

Fly trajectories were reconstructed in MatLab from the data

provided by the iFly software (Fig. 2). The combined use of

time-stamp information, Cartesian coordinates, and fly ID,

which is provided by iFly as a first approximation based on the

distance between fly locations in subsequent frames, allows a

clear separation of location data into individual trajectories

with high spatial resolution, as indicated in the magnified

section in Fig. 2. From the individual locations and their

trajectories over time, velocity vectors were interpolated

and included in the plot as three-dimensional vectors. The

resulting resolution allows detecting even minute directional

changes and variations in the locomotion behaviour of each

individual fly.

In the 3D tracking strategy implemented in the iFly method

a particular attention is given to lost and gained fly tracks.

The built-in iFly software is currently capable of merging

effectively these tracks on the basis of the temporal and spatial

proximity between end and start points of tracks. This

approach fails rarely, for example when there is a sudden

dropping of multiple flies to the bottom of the tube. For a

more sophisticated analysis, iFly does not relying on this

built-in module, but imports the recorded location data into

MatLab, where analysis and plotting are facilitated by the

already available functionality and new detection algorithms

can be developed much more efficiently. In the velocity

analysis presented in this work, interrupted fly tracks were

treated as if originating from different flies and new trajectory

IDs were assigned, which had no implication on the validity of

the statistical analysis (velocity/time).

Statistical analysis of the trajectories

The Cartesian coordinates for the locomotion behaviour are

analysed to extract statistical descriptors of the fly populations

(Fig. 3). The statistical properties of these parameters are

useful to discriminate flies at various stages of their lives with

a very high level of confidence provided by the large amount of

data made available through the automated data acquisition

and analysis procedure.

Fig. 2 Demonstration of the spatial resolution of the iFly method. Trajectories are from healthy flies at day 1 after hatching and reconstructed from

fly locations determined by the iFly software over a short 7.5 s video segment. The fly tube has a radius of 10 mm with flies traveling up to 55 mm

vertically. A section is magnified to provide a close-up on various intersecting fly trajectories. Velocity vectors indicate direction and amplitude of

fly locomotion. Fly locations are shown as small colored dots indicating clear separation and a sub-millimetre spatial resolution. For comparison,

the length of a fly body is approximately 1.5–2 mm.
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Discussion

There has recently been a great interest in the development of

automated methods for detecting behavioural changes in

Drosophila models in order to decrease the duration and costs

of the current standard assays, which require the manual

assessment of the number, speed and lifespan of flies.9–24

One of the most important aspects of the iFly approach is

that it enables the detection of subtle changes in phenotypes

very early in the lifespan of flies, thus reducing the experi-

mental time required for these studies by an order of magnitude,

i.e. from weeks to just days. The panels in Fig. 3 indicate that

clear changes in fly behaviour can be detected as early as in the

first week, whilst lifespan data require about four weeks to be

collected.

By restricting the flies to a confined space the method

achieves high spatial resolution with a relatively low-resolution

camera. Despite the reduction in camera resolution by dividing

the field of view into three distinct regions we are still able to

obtain sub-millimetre resolution as evidenced by contiguous

trajectories as shown in Fig. 2. The current layout of the

system makes it highly portable, with a simple setup consisting

in connecting the hardware to a suitable computer via the

camera’s USB cable and installing the software. The flexible

design of the software also allows analysis of videos captured

by cameras with high spatial and temporal resolution. By

design, the software is suitable for use with a wide-variety of

different fly chamber layouts, including much larger-scale

environments necessary for the study of free-flying flies. While

not required for this study, the tree graph created by the iFly

software during hierarchical clustering with individual pixels

represented as leaves, and flies identified at intermediate

nodes, contains all the information necessary to compute more

elaborate descriptors such as fly contours or visual hulls.

A major benefit of the iFly system over related approaches

is its low cost and portability. Where typically multiple

cameras and computers are employed to capture multiple

perspectives, a single camera in combination with two mirrors

achieves the same effect, using a single computer for storage

and analysis of the video data. For high-throughput fly video

analysis, the iFly software accepts command line arguments

and can be controlled in batch mode without the need of

additional user input and thus enables the use in a fully

automated environment, which would enable data acquisition

Fig. 3 Change in distribution of fly velocities over ageing. The six panels show velocity distributions for 10 flies in a test tube at different stages of

their lives. At each measurement, the test tube was dropped three times during continuous video capture followed by analysis of the first 15 s of

each of the three segments for a total of 45 s. Velocities were assigned to bins of width 3 mm s�1 with the first bin starting at 0 mm/s. A decline in

motility in flies is quantitatively expressed by a progressive left shift of the distributions and a decline in the mean velocity. Error bars indicate the

bin-wise standard deviation over three replicas of 10 flies each.
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over prolonged period of times, if required to answer specific

questions about fly behaviour. While the current JMF-based

version has a bottleneck in the extraction of individual pixels

from a video stream, early tests with a version of the software

using Visual C++ and Intel’s OpenCV computer vision

library have shown that a significant speed up is possible, to

the point of real-time analysis of video streams at much higher

temporal and spatial resolution. Our recently completed

prototype of a Visual C++/OpenCV-based version of the

software is capable of performing the most time-consuming

task of the process, the grabbing of 640 by 480-pixel resolution

video frames and extraction of pixel colors as byte arrays, at a

rate of 100 frames per second on a low-end Intel E5200 Dual

Core PC at 2.5 GHz, leading to a factor of five speed-up when

compared to the original Java version. Furthermore, the iFly

method allows quantitative comparisons to be made between

experiments carried out at different times, as long as the

original video and configuration files are retained. In particular,

this method promises to reveal sophisticated manifestations

of responses to tested novel drug compounds, and can be

extended to a variety of organisms.

Conclusions

We have introduced the iFly method, which is designed to

increase the sensitivity and throughput of Drosophila locomotor

assays. We have demonstrated that this method allows a

quantitative analysis of fly locomotion over time, which makes

it possible to detect and describe behavioural changes typical of

ageing flies. These results indicate that the iFly method has

the potential to increase very considerably the accuracy and

reproducibility of locomotor and behaviouralDrosophila studies.

We expect that the availability of the iFly method will enable

identification of novel behavioural patterns, through which it will

be possible to cut down significantly the duration and cost of fly

assays. This result can be achieved by replacing time consuming

survival assays through detailed early-stage analysis with the iFly

method. We thus anticipate that the automated and quantitative

nature of the iFly method will facilitate large-scale screening

studies of genetic or pharmacological interventions Drosophila

models by enabling detection of locomotor and behavioural

anomalies at early stages of development.

iFly availability

The iFly apparatus (hardware and software) is available from

the authors upon request.
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