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Alzheimer’s disease is the most common cause of dementia. A hallmark
of this disease is the presence of aberrant deposits containing by the Aβ
peptide (amyloid plaques) and the tau protein (neurofibrillary tangles) in
the brains of affected individuals. Increasing evidence suggests that the
formation of these deposits is closely associated with the age-related
dysregulation of a large set of highly expressed and aggregation-prone
proteins, which make up a metastable subproteome. To understand in
more detail the origins of such dysregulation, we identify specific com-
ponents of the protein homeostasis system associated with these meta-
stable proteins by using a gene coexpression analysis. Our results reveal
the particular importance of the protein trafficking and clearance mech-
anisms, including specific branches of the endosomal–lysosomal and
ubiquitin–proteasome systems, in maintaining the homeostasis of the
metastable subproteome associated with Alzheimer’s disease.
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Neurodegenerative diseases are highly complex disorders charac-
terized by extensive neuronal dysfunction, which is typically as-

sociated with protein misfolding and aggregation (1–9). A feature
common to essentially all of these conditions is the presence of
abnormal protein deposits, including amyloid plaques and neu-
rofibrillary tangles in Alzheimer’s disease (AD) and Lewy bodies
in Parkinson’s disease (PD) (1–9). It is increasingly recognized that
the formation of such deposits, rather than being an unusual process
involving only a small number of proteins, may represent a wide-
spread phenomenon (1), with hundreds of different proteins found to
aggregate under stress conditions, in aging, or in disease (5, 10–15).
To rationalize these observations, it has been recently shown that a

large number of proteins are inherently supersaturated in the cellular
environment (16, 17), as they are expressed at concentrations higher
than their solubilities (18, 19) and therefore constitute a metastable
subproteome potentially susceptible to aggregation (14–17). It has also
been observed that proteins that have been reported to coaggregate
with plaques, tangles, and Lewy bodies tend to be supersaturated (16,
17). Therefore, despite their heterogeneous and multifactorial nature,
neurodegenerative conditions, including AD, PD, Huntington’s dis-
ease (HD), and amyotrophic lateral sclerosis (ALS), share the im-
portant common attribute of protein supersaturation (16, 17, 20).
Given the intrinsic propensity of proteins to aggregate, it is not

surprising that we are endowed with a powerful array of defense
mechanisms whose role is to preserve protein homeostasis by
helping to maintain proteins in their soluble states and to pro-
mote the degradation of those that misfold and aggregate (3–6,
21–25). This protein homeostasis system is comprised of a variety
of components, including molecular chaperones, the proteolytic,
ubiquitin–proteasome and autophagic degradation pathways,
cellular trafficking, and other elements of the cellular stress re-
sponse (3–6, 21–26). The progressive decline of the efficacy of
these regulatory processes upon aging is likely to contribute to
the increased susceptibility of the elderly population to age-
associated neurodegenerative disorders (3–6, 21–28).
As the proteins within the metastable subproteome that are also

transcriptionally down-regulated in AD may be particularly significant

for the pathology of this disorder (29), it is important to determine the
detailed mechanisms of their regulation by the protein homeostasis
system. Our goal here, therefore, is to identify the specific components
of this system that control a recently identified metastable sub-
proteome associated with AD (29). To achieve this goal, we adopted
the strategy of determining the association between groups of genes
by probing their genetic interactions, an approach that is based on the
observation that many functionally related genes are coexpressed (30,
31). For example, genes encoding for the various different compo-
nents of protein complexes tend to have similar expression patterns
(30, 32), and if groups of genes are regulated by common mecha-
nisms, then they may be expected to be coexpressed (32).
We have therefore constructed a weighted gene correlation net-

work (33, 34) of this metastable subproteome and of the overall
protein homeostasis system (23) to gain a systems-level understand-
ing of the transcriptional relationship between these two sets of
proteins. By following this approach, we have identified the protein
homeostasis components corresponding to the metastable subpro-
teome specifically associated with AD (29). Our results show that
the genes corresponding to this metastable subproteome are tightly
coexpressed with specific components of the ubiquitin–proteasome
and the endosomal–lysosomal pathways, thereby suggesting that
metastable proteins with a high risk of aggregation tend to be
closely regulated by the trafficking and degradation machineries.

Results
Protein Homeostasis of a Metastable Subproteome Associated with
AD. AD is associated with widespread transcriptional changes
(27, 28, 35–38), which can be rationalized in part by the presence
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of a set of aggregation-prone proteins in the proteome (29).
Many of the proteins involved in this metastable subproteome
are components of the mitochondrial respiratory chain, an ob-
servation consistent with the well-characterized mitochondrial
disruption associated with neurodegenerative disorders and spe-
cifically with AD (39). We refer to the proteins expressed by this
subset of genes as the “AD metastable subproteome.” The pri-
mary aim of the present study is to understand the different ways
in which these metastable proteins are controlled, as illustrated
schematically in Fig. 1. Our goal is thus to identify the specific
components of the protein homeostasis system that are most closely
involved in the regulation of the AD metastable subproteome.

Coexpression Analysis of the AD Metastable Subproteome and Its
Associated Protein Homeostasis Components. Because the proteins
in the AD metastable subproteome are intrinsically aggregation-
prone, we searched for the specific protein homeostasis compo-
nents that maintain the solubility and folding of these proteins. We
therefore set out to identify an “AD metastable network” as a
network of genes that encode for the AD metastable subproteome
and its associated protein homeostasis components and that are
correlated with the disease status (Materials and Methods).
To find the AD metastable network, we first carried out a

weighted gene correlation network analysis (WGCNA) (33, 34)
of the set of metastable proteins that we previously identified
(29) and of the known components of the overall protein homeo-
stasis system (23) (Materials and Methods). WGCNA is a robust
method of performing gene coexpression analysis that has been
shown to be particularly effective when large transcriptional datasets
are available (33). As our aim was to study how metastable proteins
are regulated across health and disease, we pooled together exten-
sive microarray data obtained from postmortem brain tissues of
patients diagnosed with late-onset AD (LOAD) and of matched
controls (40) (Dataset S1, Table S1 and Materials and Methods).
WGCNA uses the Pearson’s coefficient of correlation between
each pair of genes and their “topological overlap,” which is a
measure of their connectivity based on their shared neighbors, to
identify biologically meaningful groups of coexpressed genes;
these groups are called “modules” and labeled by different colors
(34) (Dataset S1, Tables S2 and S3 and Materials and Methods).
As WGCNA captures the underlying network structure in

large-scale gene expression studies, it has been used to study the
global changes associated with a range of disease states, with the
preservation of groups of coexpressed genes across species, and
with the identification of hub genes associated with particular
traits (28, 38, 41–44). We observed that the genes encoding for
metastable proteins and for certain components of the protein
homeostasis network are organized into well-defined modules
(Fig. 2A, with the genes encoding for proteins in the metastable
subproteome shown in pink in each module), where each module
consists of tightly coexpressed genes. We found that the majority

of metastable proteins belong to four specific modules, and we
refer to them as “modules enriched in metastable proteins”
(MEMPs)—MEMP-1 (blue), MEMP-2 (turquoise), MEMP-3
(green–yellow), and MEMP-4 (black) (Fig. 2A)—which consist of
659, 688, 35, and 74 genes, with 220, 91, 10, and 10 of these genes
corresponding to metastable proteins, respectively (Dataset S1,
Table S3).

Identification of an AD Metastable Network. As the next step to
identify an AD metastable network, we performed an analysis to
identify a module eigengene (ME) for each module, which is the
first principal component (PC) of the expression values across
genes in each module (Materials and Methods). The ME there-
fore provides a representative value for the expression of a group
of genes in a particular module (34). This approach offers a
significant advantage in correlating pairs of modules, as it elimi-
nates the problem of multiple testing and noise by reducing the
number of comparisons to just one instead of several hundreds.
The higher the value of the Pearson’s coefficient of correlation
between two MEs, the more closely the two modules are related
(Materials and Methods).
We therefore identified which of these modules showed the

most significant relationship to the disease status by looking at
the correlation between the MEs and disease status (Materials
and Methods). We found six modules (Fig. 2B) to be significantly
correlated with disease status, of which three modules (magenta,
pink, and red) had very few metastable genes (4, 1, and 1, re-
spectively). We excluded these modules from further analysis, as
they mostly contained components of the protein homeostasis
machinery whose expression levels do not correlate well with the
metastable genes. The other three modules (MEMP-1, MEMP-
2, and MEMP-3) were those most enriched for metastable genes
that we described in the previous section (Fig. 2B).
As these three MEMPs were the only modules both signifi-

cantly correlated with disease status and significantly enriched in
the genes encoding for metastable proteins (Fig. 2B), we chose
them for further analysis. They are also, in fact, closely related to
each other based on the correlation of their MEs with a Pearson’s
correlation coefficient of 0.78 between MEMP-1 and MEMP-2 and
0.68 between MEMP-2 and MEMP-3 (Dataset S1, Table S4).
To control for possible biases of the modules because of the use
of a particular dataset, we cross-validated the results of module
detection with a hippocampal gene expression dataset, as the
hippocampus is among the regions typically most affected in
AD (35). We observed that the MEMPs, along with most of the
other modules, were well preserved between the two datasets
(Fig. S1).
We then performed a gene ontology enrichment analysis to

characterize these modules, finding that protein ubiquitination
was the most enriched GO term for MEMP-1, MEMP-2, and
MEMP-3 (Fig. S2). We also asked if the genes contained in these
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Metastable Network
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Fig. 1. Protein homeostasis of a metastable subproteome associated with AD. In the healthy state, this metastable subproteome (AD Metastable Sub-
proteome) is effectively regulated by a series of protein homeostasis mechanisms (Associated Protein Homeostasis Components). In a disease state, this
balance is compromised, and protein misfolding and aggregation results in the widespread formation of aberrant deposits.
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modules are overrepresented in any biochemical pathway. To
this end, by analyzing the KEGG biochemical pathways (45), we
found that they are strongly overrepresented in the pathways as-
sociated with the AD metastable subproteome and the ubiquitin–
proteasome and endosomal–lysosomal systems (Fig. S3).
Based on these results, we identified the AD metastable net-

work as the set of genes in MEMP-1, MEMP-2, and MEMP-3
(Dataset S1, Table S2).

Identification of the Hub Genes and of Their Roles in the AD Metastable
Network. Because any given module is comprised of a large number
of genes, it is helpful to identify the most highly connected genes
within a particular module, as these “hub” genes are likely to reveal
the main processes carried out by the AD metastable network, even
if individually they may not be crucial for the disease itself. To
achieve this goal, we defined the “module membership” (MM)
score by using the intramodular connectivity (kME; Materials
and Methods), which is a measure of how strongly connected—
that is, coexpressed—a given gene is to all of the other genes in a
module (34). Hub genes were defined as those genes having an
absolute kME value greater than 0.8.
The hub genes in the AD metastable network were found to

be highly enriched in the KEGG biochemical pathways of cellular
degradation (proteasome and ubiquitin-mediated proteolysis) and
trafficking in addition to those previously associated with metastable
proteins such as oxidative phosphorylation, AD, PD, and HD
(Fig. 3A). These results are fully consistent with those reported
above for the full list of genes in the AD metastable network
(Fig. S3). In any given module, a high mean MM value indicates
how tightly coexpressed the genes are within that module. We
observed that the genes encoding for the AD metastable sub-
proteome in the AD metastable network have a significantly high
mean MM value that is significantly greater than that of other
genes in that module (Fig. 3B). In addition, more than two thirds
of the genes encoding for metastable proteins in these modules
are hub genes, indicating their central importance in their re-
spective modules.

Test of Module Generality Using a Consensus Network Analysis with a
Visual Cortex Dataset. We next sought to determine whether the
modules that we identified are general or instead specific to the
dataset or brain region that we analyzed. To check the robust-
ness of the modules identified in this study, we constructed a

consensus network (Materials and Methods) using WGCNA on
another dataset from the visual cortex (VC) of AD patients and
healthy controls (40), along with the dataset for the dorsolateral
prefrontal cortex (PFC) used previously (Materials and Methods),
to examine whether or not our network is preserved. To assess the
level of preservation, we used the “consensus network” construc-
tion, which identifies groups of genes that are tightly coexpressed
across multiple studies (46). The consensus MEs (consMEs) re-
present modules in each of the two sets (46) (Materials and
Methods). Each gene is assigned to a single consensus module,
but there are two sets of consMEs for each module as a given
module can have a different expression profile in the two data-
sets. We found that all of the modules identified in our study
have a consensus counterpart in the VC dataset, indicating that
the module structure in the two datasets is similar (Fig. S4).
We then constructed the two sets of eigengene dendrograms

and eigengene heatmaps based on the consMEs (one for each
study), and the results indicate that the overall modular structure
in the two sets is quite similar. The preservation heatmap shows
the preservation network, defined as one minus the absolute
difference of the eigengene networks in the two datasets (Fig.
S5A). The overall degree of preservation between the two net-
works is 0.87, and the mean preservation of relationships for
each eigengene is consistently high for all of the modules except
the “red” one, as shown by the preservation heatmap and bar
plot (Fig. S5B), thus indicating that the modules identified in the
analysis detailed in the study are highly robust.
These results suggest that the difference between a healthy

state and a disease state does not involve a reorganization of the
modules but rather a variation in the expression levels of specific
genes within the modules. In the following, we therefore carried
out further investigations to identify such genes.

Protein Homeostasis of the AD Metastable Subproteome. We next
asked the central question of this work—How is the AD metastable
subproteome regulated? To answer this question, we analyzed
which components of the protein homeostasis system are coex-
pressed with the ADmetastable subproteome in the ADmetastable
network, as we expect that the knowledge of such components
could offer insight into the regulation of these metastable proteins
(Fig. 4 and Fig. S6). To this end, we identified the most important
hub genes, among those described above, by visualizing them within
the AD metastable network; we used the Cytoscape software for
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Fig. 2. Identification of the AD metastable network by a coexpression analysis of the AD metastable subproteome and its associated protein homeostasis
components. (A) By using WGCNA, we carried out a hierarchical clustering of genes on the basis of their topological overlap. Modules of coexpressed genes
are labeled by numbers and shown in different colors, with the size of the circles corresponding to the number of genes in the module. The number of genes
encoding for the metastable subproteome is highlighted in pink within each module (Dataset S1, Table S3). The vast majority of metastable proteins are
found in three specific MEMPs, which are referred to as MEMP-1 (blue, 220 metastable proteins), MEMP-2 (turquoise, 91 metastable proteins), MEMP-3
(green–yellow, 10 metastable proteins), and MEMP-4 (black, 10 metastable proteins); each of the other modules had between 0 and 4 metastable proteins.
(B) Analysis of MEs. Each module is represented by a circle, which is labeled by number and shown in color, as in A. The x axis is the percentage of metastable
(MS) genes in each module and the y axis the negative log10 of the P values for the correlation of each module with the disease status (Materials and
Methods). The horizontal dashed line marks a P value of 0.05, and the vertical dashed line marks the 10% value. Hence, we identify the three modules, shown
also in A—MEMP-1, MEMP-2, and MEMP-3—as the only modules that have a high percentage of metastable proteins and significant correlation to disease status.
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this purpose (47). The top 10% of all hub gene interactions based
on their topological overlap were visualized, with those involved in
at least 50 of these interactions shown in the center (Fig. 4A, inner
and middle rings). We observed 10 hub genes related to trafficking
(Fig. 4A, middle ring, green circles) and 5 hub genes related to the
ubiquitin–proteasome pathway (Fig. 4A, middle ring, red circles)
as the most connected hub genes (Table 1). These results are
consistent with experimental evidence that protein trafficking and
degradation are components of the protein homeostasis system
closely linked with AD (48–54). Our analysis also identifies other
components (autophagy, metabolism, signaling, and protein syn-
thesis; Fig. 4B), although more extensive data will be needed to
clarify their association with the metastable subproteome in greater
detail.

Endosomal–Lysosomal System. Although the present analysis of
the hub genes is aimed primarily at identifying the main pro-
cesses within the AD metastable network, it could also be in-
formative to consider the possible specific roles of these genes in
AD. Among the hub genes associated with trafficking, we found
RAB6A, a small GTPase that helps mediate retrograde trans-
port from the Golgi apparatus to the endoplasmic reticulum
(ER), which has an increased expression level in AD brains (55).
To explain this finding, it has been suggested that this protein is
involved in a regulatory mechanism that responds to increased
protein accumulation (55). In addition, overexpression of RAB1,
another small GTPase closely related to RAB6A, has been shown
to alleviate ER stress in yeast models of PD (56). Hence, RAB6A,

which is a central gene in the AD metastable network described in
this work, could play an important role in the regulation of the
metastable proteins by directing them toward the endosomal–
lysosomal degradation machinery, thereby preventing their accu-
mulation in the cytoplasm. Another two genes in the group that we
found are ATP6V1H, which encodes a protein subunit of a vac-
uolar ATPase involved in clathrin-mediated endocytosis (57, 58)
and whose role in regulating lysosomal pH has been recently been
linked to neurodegeneration (59), and ATL1, which is involved in
ER trafficking (60, 61). In fact, all 10 genes that we found to be
related to trafficking are part of the endosomal–lysosomal system.
Specifically, SH3GL2, SLC9A6, and CLTA are localized in the
endocytic vesicle membrane (62, 63), and NSF is involved in vesicle-
mediated transport and acts as a fusion protein through the
SNARE proteins (64). Our results, therefore, indicate the impor-
tance of the endosomal–lysosomal system in controlling the
metastable subproteome. These findings extend the well-known
role of this system in the processing of Aβ (65) to the regulation
of a broader range of aggregation-prone proteins.

Ubiquitin–Proteasome System. Among the genes associated with the
ubiquitin–proteasome system, we found ENC1, which is an actin
binding protein that has been reported to modulate the aggregation
of mutant huntingtin under ER stress (66). MYCBP2, FBXL2, and
RNF128 are E3 ubiquitin ligases and are essential components of
the ubiquitin-dependent degradation of proteins (67–69). These
results indicate that metastable proteins are likely to be regulated
upstream of the proteasomes at the ubiquitin ligase stage.

Molecular Chaperones.We also found a number of components of
molecular chaperone networks coexpressed with the AD meta-
stable subproteome (Dataset S1, Table S5). Such components
include co-Hsp70/Hsp90 species, which are known to assist the
Hsp70/Hsp90 system to degrade protein aggregates (70, 71).
Among such molecular chaperones, we found DNAJC6, a
J-domain cochaperone with a role in HSC70-mediated un-
coating of the clathrin-coated vesicles in neurons by recruiting
HSC70. Also seen as hub genes were TOR1A, with chaperone
activity and a member of the AAA family of ATPases, and
ERLEC1, which has a role in ER quality control (72, 73).
Taken together, these results indicate that the components of

the AD metastable subproteome, which consists of proteins in-
herently at risk of aggregation, tend to be highly coexpressed
with multiple components of the protein homeostasis system.
These findings illustrate how during the course of AD, when a
dysregulation and collapse of these systems is increasingly likely
to occur, these metastable proteins are likely to represent an
enhanced risk due to the dysfunction of the regulatory mecha-
nisms associated with their folding, transport, and degradation.

Relationship with Genome-Wide Association Studies (GWASs). To
further assess the significance of our analysis, we compared our
results with genetic loci identified by GWAS. These studies have
reported that several genes associated with the trafficking and
degradation systems are closely associated with AD (74, 75). In
particular, seven GWAS genes (PICALM, SORL1, CD33, BIN1,
CD2AP, ABCA7, and RIN3) are associated with the endosomal–
lysosomal system, and two GWAS genes (CLU and PTK2B) are
associated with the ubiquitin–proteasome pathway (74, 75). These
results are highly consistent with the conclusions of the present
study, as 17 GWAS genes (among the 28 that we considered) are
present in the AD metastable network identified in this work
(Fig. 5). This consistency is remarkable, as the GWAS strategy,
where genes are typically associated with disease on the basis of
single nucleotide polymorphism (SNP) statistics, is independent
from the one that we have used here to associate genes with
disease through the combination of their coexpression and the
metastability to aggregation of their products. These two approaches
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Fig. 3. Identification of KEGG biochemical pathways enriched in hub genes
in the AD metastable network. (A) KEGG biochemical pathways (45) enriched
in hub genes (jkMej >0.8) in the AD metastable network; the dotted line in-
dicates P = 0.05. (B) A comparison of the mean MM values of the metastable
proteome (MS, blue) and of all genes (red) shows that genes corresponding to
metastable proteins are highly coexpressed.
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are therefore complementary, as a coexpression analysis can identify
a large number of genes and therefore reveal the biochemical
pathways involved in the disease and help rationalize the specific
roles of the GWAS genes but may not capture important relation-
ships, such as in the present case the role of ADAM10, PSEN1, and
PSEN2 in the processing and regulation of APP (Fig. 5).

Consensus Network Analysis of AD, PD, and HD.As noted above, the
phenomenon of protein misfolding and aggregation is a common
feature of many neurodegenerative disorders, including AD, PD,
HD, and ALS. Although these diseases are characterized by a
variety of different clinical manifestations and features, there is
increasing interest in understanding the extent to which they
share common molecular origins (1–9). To address this question
in the present context, we investigated whether or not the reg-
ulation of the metastable proteins, in terms of their coexpression

with specific protein homeostasis components, is similar across
AD, PD, and HD.
Because oxidative phosphorylation is the most significantly

enriched pathway among the metastable genes, we analyzed the
coexpression of genes involved in this specific pathway and in the
protein homeostasis components. We built a consensus network
for gene expression data (Dataset S1, Table S6) from hippo-
campal tissue (35), substantia nigra (76), and PFC (73), obtained
postmortem from patients diagnosed with AD, PD, and HD,
respectively, and from age-matched controls. The network
heatmaps indicate the correlation of various eigengenes within
the AD, PD, and HD networks (Fig. S7) and the preservation
heatmaps (Fig. 6) reveal that the overall preservation of the
three networks is highly significant (shown in red). The mean
preservation of the three networks exceeds 0.7 in all three cases
(Fig. S7), indicating that the global structures of the coexpression

Table 1. List of hub genes used to identify the components of the protein homeostasis system associated with the AD
metastable subproteome

Hub genes Proteins Known functions

ATP6V1H V-type proton ATPase subunit H Clathrin coated endocytosis, formation of endosomes
SH3GL2 Endophilin-A1 Synaptic vesicle endocytosis
SLC9A6 Sodium/hydrogen exchanger 6 Exchange of protons across the membrane of early and recycling endosome
RAB6A Ras-related protein Rab-6A Retrograde transport from Golgi to ER, transport from endosome to plasma

membrane
CDH13 Cadherin-13 Regulation of endocytosis
RBFOX1 RNA binding protein fox-1 homolog 1 RNA binding protein, regulation of alternative splicing events
CLTA Clathrin light chain A Major protein of the polyhedral coat of coated pits and vesicles
NSF Vesicle-fusing ATPase SNARE binding, regulation of exocytosis
CNK2 Connector enhancer of kinase suppressor of ras 2 Adaptor protein, regulation of signal transduction
ATL1 Atlastin-1 ER to Golgi vesicle transfer
ENC1 Ectoderm-neural cortex protein 1 Proteasomal ubiquitin-independent protein catabolic process
MYCBP2 E3 ubiquitin-protein ligase MYCBP2 Ubiquitin ligase, protein ubiquitination
FBXL2 F-box/LRR-repeat protein 2 Ubiquitin ligase, protein ubiquitination
RFPL1 Ret finger protein-like 1 Zinc ion binding
RNF128 E3 ubiquitin-protein ligase RNF128 Ubiquitin ligase, ubiquitin-dependent protein catabolic process
TUSC3 Tumor suppressor candidate 3 Magnesium transporter

These hub genes are shown in Fig. 4 and are reported here together with their corresponding proteins and their known functions. The list of hub genes
corresponding to the AD metastable subproteome is reported in Dataset S1, Table S7.
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Fig. 4. Identification of the major components of the protein homeostasis system associated with the AD metastable subproteome. (A) Network repre-
sentation of the AD metastable network showing the hub genes of the protein homeostasis system (green, red, and dark red circles, middle ring; Table 1) and
the hub genes of the AD metastable subproteome (blue circles, inner ring). This analysis reveals in particular the importance of the ubiquitin–proteasome
(red) and trafficking (green) systems in the regulation of aggregation-prone proteins in AD. We visualized the top 10% of the hub gene interactions, with
those genes involved in at least 50 interactions shown in the inner and middle rings (see also Fig. S6). The sizes of the nodes correspond to their degrees of
connectivity. (B) Protein homeostasis components within the hub genes of the AD metastable network. The major components in A are shown in the same
color code; additional components (autophagy, metabolism, signaling, and protein synthesis) are also shown.
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networks are similar for the three diseases. These results thus sug-
gest that the differences between these diseases may be found in the
dysregulation of specific genes within the consensus network (Fig. 6
and Fig. S7).

Discussion
Specific Components of the Protein Homeostasis System That Regulate
Protein Aggregation. In this work, we have taken the view that a
major hallmark of aging and neurodegeneration is the progressive
impairment of the balance between protein aggregation and its
control by the protein homeostasis system, which leads to the
characteristic accumulation of aberrant protein aggregates (1–17,
21–29) (Fig. 1). In this context, we have previously reported that
large numbers of proteins are inherently metastable to aggregation
because of their elevated expression levels relative to their solu-
bilities (16, 17). We have also observed a specific transcriptional
down-regulation of genes encoding these proteins in AD (29) as
well as a tissue-specific vulnerability to AD caused by an imbalance
between aggregation-prone proteins and their protein homeostasis
regulators (22).
To identify the protein homeostasis mechanisms that control

the metastable proteins associated with AD, in this study we have
analyzed together a set of proteins inherently prone to aggregation
(29) and a set of proteins that make up the overall protein ho-

meostasis system (23). Our analysis started from a metastable sub-
proteome corresponding to the overlap between genes encoding for
proteins that are supersaturated and transcriptionally down-
regulated in AD but not in aging (29). We then constructed an
AD metastable network composed of genes encoding this set of
metastable proteins together with the corresponding components
of the protein homeostasis system. We have found that this
specific AD metastable network consists of well-defined modules
of coexpressed genes (Fig. 2), enabling us to identify key players
of the ubiquitin–proteasome and endosomal–lysosomal systems,
along with some specific molecular chaperones (Fig. 4).
The systems-level approach that we have adopted in this work

provides an understanding of the regulation of the AD meta-
stable subproteome as a whole, as opposed to the regulation of
individual proteins by specific components of the protein ho-
meostasis system. Our results show that, from a list of about
2,000 components of the protein homeostasis system (23), just a
relatively small number of specific proteins in the degradation
and trafficking machinery along with specific molecular chaper-
ones are primarily responsible for handling the metastable pro-
teins with a high propensity to misfold and aggregate (Fig. 7).

Endosomal–Lysosomal and Ubiquitin–Proteasome Regulation of the
Proteins Involved in Oxidative Phosphorylation. The expression levels
of most of the components of the protein homeostasis system iden-
tified in this study have been previously seen to decrease with aging
(29). Hence, during aging and disease, with the suppression of the
protein homeostasis system, these proteins could become particu-
larly vulnerable to aggregation because of their inherent meta-
stability. Because these proteins perform fundamental functions,
including in particular energy metabolism through oxidative phos-
phorylation (29), their aggregation could result in triggering a cas-
cade of events contributing to disease pathology and ultimately to
neuronal death. In addition, such dysregulation poses a pronounced
threat to neurons due to their postmitotic state and increased de-
pendence on mitochondria for energy production. Indeed, there is a
substantial overlap in the genes involved in the pathways associated
with oxidative phosphorylation and AD, HD, and PD (Dataset S1,
Table S6), indicating again that the proteins encoded by these genes
are highly metastable and hence are significant in the context of
disease pathology. Mitochondria play a central role in aging and in
regulating cell death (39, 77) as well as in the overall maintenance
of cellular health. Whether mitochondrial dysfunction is the cause
or effect of the disease pathology is still, however, unclear. Mito-
chondria have been shown to interact with aggregation-prone pro-
teins, including α-synuclein and Aβ. More specifically, Aβ has been
shown to be localized on the mitochondrial membrane in a trans-
membrane arrested form, possibly disrupting protein import into
the mitochondria (78, 79).
Our results also point to a possible dependence of the proteins

in the respiratory chain complex on the endosomal–lysosomal
system, which we identified using the hub genes RAB6A, ATP6V1H,
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Fig. 5. The majority of GWAS genes are found in the AD metastable net-
work. Shown are the number of genes identified by GWAS (74, 75) that are
present in the AD metastable network or in the other modules described in
this work. Seventeen out of 28 genes identified by GWAS are present in the
AD metastable network. The names of the genes are shown in their re-
spective modules. The genes shown in red belong to the ubiquitin–protea-
some system, and those in green belong to the trafficking system.
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Fig. 6. Consensus network analysis of AD, PD, and HD. Network preservation heatmaps for AD–PD (A), AD–HD (B), and HD–PD (C). The rows and columns
represent the ME for different modules in each network. Preservation is defined as one minus the absolute difference of the eigengene networks in the two
datasets. Red denotes high preservation, and white denotes low preservation.
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ATL1, SH3GL2, SLC9A6, and CLTA, and on the ubiquitin–
proteasome system, where the hub genes are the E3 ubiquitin
ligases MYCBP2, FBXL2, and RNF128 (Fig. 4). These indica-
tions are consistent with the observation in yeast that accumulation
of mitochondrial proteins in the cytoplasm leads to activation of the
unfolded protein response (80). Furthermore, recent studies have
reported the presence of polyubiquitinated mitochondrial proteins,
suggesting that they are substrates of the ubiquitin proteasome
system (81, 82) and that in yeast the expression of the proteasome is
up-regulated upon cytoplasmic accumulation of mitochondrial pro-
teins (80, 83). If mitochondrial import is disrupted and these meta-
stable proteins therefore accumulate in the cytoplasm, the cell
responds by clearing them through degradation. When, however, this
disruption happens in an environment where protein homeostasis is
compromised, these proteins would be particularly at danger of ag-
gregation. We observed, in addition, a similar pattern of coexpression
of genes encoding for mitochondrial membrane proteins across AD,
PD, and HD, indicating that even though the initial cause of dysre-
gulation might be different, these diseases are likely to share common
molecular mechanisms at a later stage of progression, with regulation
of mitochondrial membrane proteins playing an important role.
The finding that a metastable subproteome that is specifically

associated with AD is primarily regulated by the protein traf-
ficking and degradation systems provides important insights
into the control of protein misfolding in this disease. These
results suggest that in a setting of compromised protein
folding, the maintenance of proteins in their soluble states may

move away from regulating conformations and toward regulating
concentrations.
Overall, the results that we have reported suggest an extension

of the view that AD is associated with an age-related protein ho-
meostasis failure that results in the aggregation of Aβ and tau—
thus, neuronal dysfunction appears to be a consequence of a loss
of ability of major branches of the protein homeostasis system
to regulate a much wider group of aggregation-prone proteins
making up a metastable subproteome.

Conclusions
We have described specific components of the protein homeostasis
system that regulates a metastable subproteome associated with
AD. This analysis has revealed the central roles of the ubiquitin–
proteasome and endosomal–lysosomal degradation pathways, whose
relevance to AD is well known (48–54), in the maintenance of a pool
of metastable proteins prone to aggregation. By identifying a series of
regulatory pathways associated with AD, these findings also help to
rationalize the roles in the disease of the individual genes resulting
from GWASs. We anticipate that an increasingly detailed under-
standing of the mechanisms of regulation of the metastable sub-
proteome will contribute to the development of therapeutic strategies
against neurodegenerative diseases aimed at promoting the main-
tenance of aggregation-prone proteins in their soluble states.

Materials and Methods
Dataset Acquisition. Microarray data for brain tissues from postmortem AD
patients and healthy controls were downloaded from the Gene Expression

Fig. 7. Schematic representation of the main pathways involved in the homeostasis of the proteins metastable to aggregation in AD. Our results identify the
key role of protein degradation, in particular the ubiquitin–proteasome system and the endosomal–lysosomal system, in the homeostasis of the metastable
subproteome associated with AD.
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Omnibus (GEO) database (84). The following datasets were used for analysis
(Dataset S1, Table S1): GSE44770, containing tissues derived through autopsy
from the dorsolateral PFC region obtained from LOAD patients and from
healthy controls; GSE44771, containing tissues derived through autopsy
from the VC region obtained from LOAD patients and from healthy controls;
GSE1297, containing hippocampal gene expression data from LOAD patients
and from healthy controls; GSE33000, containing dorsolateral PFC tissue
from HD patients and from healthy controls obtained from the Harvard Brain
Tissue Resource Center (HBTRC); and GSE20292, containing postmortem brain
tissue from the substantia niagra of PD patients and from healthy controls.
Using the GEOquery package, data were downloaded into R and checked for
missing values (33).

Sample Clustering. Samples in each dataset were hierarchically clustered
within GEOquery to detect outliers. One sample from GSE44771 (GSM1090949)
and one sample from GSE20292 (GSM508732) were found to be outliers and
hence removed from further analysis.

Generation of a “Weighted Gene Correlation Network”. A distance measure
commonly used for coexpression analysis is based on the Pearson’s coefficient
of correlation; in this approach, gene pairs with a coefficient of correlation
below a given cutoff value (e.g., 0.8) are considered as not correlated.
However, this kind of “hard thresholding” may be insensitive to subtle and
yet important expression patterns (85). We therefore used the WGCNA
method (33, 34), which uses a “soft thresholding” and the concept of to-
pological overlap or shared neighbors to identify clusters of coexpressed
genes. The soft thresholding method assigns a weight to each pair of
interacting genes and uses such weights, along with the topological overlap,
to identify modules of coexpressed genes in the expression data (33, 34).

The construction of aWeighted Gene Correlation Network was performed
using the R package for WGCNA (33). Absolute values of Pearson’s coefficient
of correlation were calculated for the expression values of each gene pair
across all microarray samples. WGCNA uses a power function to transform
the coexpression similarities (given by a similarity matrix S = [sij]) into con-
nection strengths (given by an adjacency matrix A = [aij]):

aij = jsijjβ, [1]

where β is the soft thresholding power. In unweighted networks, the entries
aij of the adjacency matrix are either 1 or 0, indicating whether or not a pair
of nodes is connected. In weighted networks, the values are real numbers
ranging from 0 to 1. Due to the noise in microarray data and the limited
number of samples, we weighted the Pearson’s coefficients of correlation by
taking their absolute values and raising them to the power β. To choose the
value of β, we observed that many biological networks, especially gene ex-
pression networks, have been found to exhibit approximate scale-free topology
(86)—that is, the connectivity distribution p(k) for each node k follows a power
law, p(k) = k-γ, with exponent γ. This “scale-free” relationship indicates that
there are a few nodes that are highly connected, whereas others have much
fewer connections. Through these considerations, we chose β = 6 (34). This
procedure results in a weighted network in which the continuous nature of
the gene expression values is preserved (as opposed to unweighted net-
works); the results are robust with respect to the choice of β, as opposed to
the high sensitivity to the cutoff value of unweighted networks.

Identification of Modules in the Weighted Gene Correlation Network. Modules
were defined as groups of genes having high correlation and high topological
overlap (34). The topological overlap of two nodes refers to their intercon-
nectedness, which is measured as the number of shared neighbors between

two nodes. It provides a similarity measure that has been shown to be very
useful in biological networks (87) and was used here as the basis for average
linking hierarchical clustering to identify modules of coexpressed genes.

MEs. The ME, which is defined as the first PC of a given module, can be
considered as a representative of the gene expression profiles in a module (33).
The connectivity of a gene i with a module k [MMk(i)] is defined as the Pearson’s
coefficient of correlation of the expression value of that gene with theME of the
module. It is a measure of MM for a particular gene. Specifically:

MMkðiÞ= corðeðiÞ, EkÞ, [2]

whereMMk(i) is a measure of MM for gene i with respect to module k, e(i) is the
expression profile of gene I, and Ek is the eigengene of module k. The intra-
modular connectivity (kME) is defined as the connectivity of a gene within its
own module. The ME is also used to calculate the Pearson’s coefficient of cor-
relation and the associated student P value of each module with disease status;
the disease status is encoded as binary information for disease or healthy.

Module Preservation and Consensus Analysis. WGCNA provides various mea-
sures of module preservation statistics, which assess whether or not the in-
terconnections among the genes within a module and connectivity patterns
of individual modules (for example, intramodular hub gene status) are
preserved between two datasets. To assess the preservation of our disease-
associated modules found in the PFC dataset (the network that we analyzed)
and in a hippocampal gene expression dataset (test network), we used the
modulePreservation function in the WGCNA R package (46). In brief, this
function provides an average measure of several preservation statistics
generated through many permutations of the data, the Zsummary value. In
general, modules with Zsummary scores > 10 are interpreted as strongly pre-
served (that is, densely connected, distinct, and reproducible modules),
Zsummary scores between 2 and 10 are weak to moderately preserved, and
Zsummary scores < 2 are not preserved (46). Another way to look at module
preservation is to rank the modules by their overall preservation in the test
set, which gives a relative measure of module preservation. Median rank is a
measure that relies on observed preservation statistics rather than the per-
mutation Z statistics (46). It is calculated as described previously (46).

Consensus analysis is a way to identify modules present in several in-
dependent datasets. Consensus modules group together genes densely
connected in all conditions and are defined from the clustering of consensus
similarity:

Modulesconsensus =minðNetwork  1, Network  2Þ. [3]

Consensus modules are by construction present (i.e., preserved) in all input
datasets. If a module identified in a reference dataset is strongly preserved in
test datasets, it would also be a consensus module among the reference and
test datasets. Each consensus module has one eigengene per dataset. Eigengene
correlation helps to visualize the overall network structure and also to
compare a given network between different datasets. An eigengene network
(Aij) is defined as a signed network with a soft thresholding power of 1. A
preservation network (Presij) measures the correlation of eigengene corre-
lation among different networks (88):

Presð1,2...Þij = 1−
h
max

�
Að1Þ

ij , Að2Þ
ij , . . .

�
−min

�
Að1Þ

ij ,Að2Þ
ij , . . .

�i
, [4]

where Presð1,2...Þij is the preservation network for any networks 1 and 2. The
overall mean preservation of eigengene networks is given by (88):

Dð1,2...Þ =meani<jP
ð1,2...Þ
i,j . [5]
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Fig. S1. Module preservation across different datasets. (A) Preservation median rank and (B) preservation Zsummary scores of various modules.
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Fig. S2. GO enrichment analysis for the genes in the AD metastable network. This analysis identifies specific components of the ubiquitin–proteasome and
endosomal–lysosomal systems in the regulation of the metastable subproteome.
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Fig. S3. KEGG pathways enriched in the AD metastable network.

Fig. S4. Correspondence between the modules of the VC dataset (GSE44771) and the consensus modules. Each row of the table corresponds to one of the
modules of the VC dataset (labeled by color as well as text), and each column corresponds to one consensus module. Numbers in the table indicate the gene
counts in the intersections of the corresponding modules. Coloring of the table encodes −log(p), with p being the Fisher’s exact test P value for the overlap of
the two modules. The table indicates that most of the modules of the VC dataset have a consensus counterpart.

Cyan
Purple
Green

Pink

Black

MidnightBlue

Red

Tan

Blue
Brown

Magenta

Salmon

Yellow

Turquoise
GreenYellow

C
ya

n

P
u

rp
le

G
re

e
n

P
in

k

B
la

ck

M
id

n
ig

h
tB

lu
e

R
e

d

Ta
n

B
lu

e

B
ro

w
n

M
a

g
e

n
ta

S
a

lm
o

n

Ye
llo

w

Tu
rq

u
o

is
e

G
re

e
n

Ye
llo

w

C
ya

n

P
u

rp
le

G
re

e
n

P
in

k

B
la

ck

M
id

n
ig

h
tB

lu
e

R
e

d

Ta
n

B
lu

e

B
ro

w
n

M
a

g
e

n
ta

S
a

lm
o

n

Ye
llo

w

Tu
rq

u
o

is
e

G
re

e
n

Ye
llo

w

(a) (b)

Fig. S5. Consensus eigengene networks for the dorsolateral PFC and the VC. (A) Heatmap of the preservation network, defined as one minus the absolute
difference of the eigengene networks in the two datasets. (B) Mean preservation of adjacency for each of the eigengenes to all other eigengenes. D denotes
the mean preservation of eigengene networks among the datasets. Dð1,2...Þ =meani<jP

ð1,2...Þ
i,j (Materials and Methods).
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Fig. S6. Network representation of the AD metastable network showing the hub genes and the main components of the protein homeostasis system linked
with the AD metastable subproteome. This analysis reveals in particular the importance of the ubiquitin–proteasome (red) and trafficking (green) systems in
the regulation of aggregation-prone proteins in AD. The top 10% of the hub gene interactions are visualized, with those genes involved in at least 50 in-
teractions shown in the center. The sizes of the nodes correspond to their degrees of connectivity. The metastable genes are shown in blue. Dataset S1,
Table S7 reports the names of the metastable genes according to the numerical labels shown here.
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Fig. S7. Consensus eigengene networks and their differential analysis. (A–C) Dendrograms (clustering trees) of the consensus MEs in the three datasets. (D, H,
and L) Eigengene network heatmaps. Red denotes high adjacency (positive correlation), and blue denotes low adjacency. (G, J, and K) Heatmaps of the
preservation network, defined as one minus the absolute difference of the eigengene networks in the two datasets. (E, F, and I) Mean preservation of ad-
jacency for each of the eigengenes to all other eigengenes.
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