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We analyze the relationship between codon usage bias and residue aggregation propensity in the

genomes of four model organisms, Escherichia coli, yeast, fly, and mouse, as well as the archaeon

Halobacterium species NRC-1. Using the Mantel–Haenszel procedure, we find that translationally

optimal codons associate with aggregation-prone residues. Our results are qualitatively and

quantitatively similar to those of an earlier study where we found an association between

translationally optimal codons and buried residues. We also combine the aggregation-propensity

data with solvent-accessibility data. Although the resulting data set is small, and hence statistical

power low, results indicate that the association between optimal codons and aggregation-prone

residues exists both at buried and at exposed sites. By comparing codon usage at different

combinations of sites (exposed, aggregation-prone sites versus buried, non-aggregation-prone

sites; buried, aggregation-prone sites versus exposed, non-aggregation-prone sites), we find that

aggregation propensity and solvent accessibility seem to have independent effects of (on average)

comparable magnitude on codon usage. Finally, in fly, we assess whether optimal codons

associate with sites at which amino acid substitutions lead to an increase in aggregation

propensity, and find only a very weak effect. These results suggest that optimal codons may be

required to reduce the frequency of translation errors at aggregation-prone sites that coincide with

certain functional sites, such as protein–protein interfaces. Alternatively, optimal codons may be

required for rapid translation of aggregation-prone regions.
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1 Introduction

Translation is an error-prone process [1]. Translation errors

occur at frequencies of several misincorporations per 10 000

codons translated; precise error rates vary over nearly an order

of magnitude among codons [2]. Selection for correct protein

structure and function should cause codons with reduced error

rates to be used more frequently at sites at which translation

errors would be particularly disruptive. This selection pressure

is called selection for translational accuracy [3].

To identify a signal of accuracy selection in a genome, one

needs a measure of how disruptive translation errors

are at specific sites. Early studies used as such measure

evolutionary conservation [3–5] and, to a very limited extent,

specific functional sites [3]. By testing for an association

between codon usage and evolutionary conservation, Akashi
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found evidence for translational accuracy selection in Droso-
phila [3]. Later, others found similar results in Escherichia coli,
yeast, worm, and mammals [4, 5]. More recently, Zhou et al.
considered solvent accessibility and change in free energy

upon mutation as measures of a site’s sensitivity to transla-

tion errors [6]. They found in E. coli, yeast, fly, and mouse that

translationally optimal codons associate both with buried

residues and with residues that are required for protein

stability. This finding supports the hypothesis that transla-

tional accuracy selection minimizes the misfolding of

mistranslated proteins [5], likely to avoid protein aggregation.

However, selection for translational accuracy is not the

only mechanism that can lead to an association of codon-

usage bias with certain structural features of the expressed

protein. Codons corresponding to rare tRNAs can stall the

ribosome, and these translational pauses may either

facilitate co-translational folding or, as in the case of

translation errors, lead to misfolding and aggregation

[7–12].

Under protein aggregation, misfolded proteins can adopt

amyloid or amorphous structure [13, 14]. Thus, aggregation

primarily arises from the improper interactions between

misfolded proteins, leading to gain-of-toxicity or loss-of-

function of the protein [15, 16]. Because protein aggregation

tends to incur fitness costs, a gene’s amino acid sequence is

under selection pressure to minimize aggregation [16–19].

Here, we investigate whether codon-usage bias is linked

to sites with specific aggregation propensity. Residue

aggregation propensities are predicted by the Zyggregator

method [20]. The Zyggregator algorithm predicts aggrega-

tion propensity on the basis of several intrinsic properties of

amino acid sequences, including amino acid scales for

secondary structure formation, hydrophobicity, and charge,

and the presence of hydrophobic patterns and of gatekeeper

residues. We consider four model organisms, E. coli,
Saccharomyces cerevisiae, Drosophila melanogaster, and Mus
musculus, as well as the archaeon Halobacterium species

NRC-1. Our analysis makes extensive use of both concepts

and data sets previously developed in [6].

We test whether translationally optimal codons associate

with aggregation-prone sites, i.e. sites that are particularly

likely to be involved in protein–protein aggregation. We also

test whether optimal codons associate with sites at which

translation errors are expected to cause an increase in the

protein’s aggregation propensity. Surprisingly, we find that

optimal codons associate much more strongly with sites of

high aggregation propensity than with sites at which

aggregation propensity is expected to increase upon amino

acid substitution. The observed association may reflect the

kinetic requirement to translate aggregation-prone regions

rapidly to avoid protein misfolding. Alternatively, the codon

usage might actually be determined by a correlation of the

aggregation propensity with other factors, such as the

propensity to form protein–protein interfaces [21, 22], rather

than by aggregation propensity itself. We elaborate on these

possibilities in Section 4.

2 Materials and methods

We obtained genomic sequences from the following sour-

ces: the Comprehensive Microbial Resource (http://cmr.

tigr.org/) for E. coli, the Saccharomyces Genome Database

(ftp://genome-ftp.stanford.edu/) for S. cerevisiae, the Eisen

Lab (http://rana.lbl.gov/drosophila/) for D. melanogaster,
Ensembl (http://www.ensembl.org/) for M. musculus, and

GenBank (accession number AE004437) for Halobacterium
species NRC-1.

We used a previously published computational algorithm

(Zyggregator method, [20]) to predict the aggregation

propensity for each residue. In the Zyggregator method, the

aggregation propensity at each site i is measured as a

Z-score Z
agg
i . This Z-score measures how likely site i is to be

involved in protein aggregation relative to a site in a

randomly generated protein sequence. We considered resi-

dues with Zagg41 as aggregation prone and others as non-

aggregation prone, unless otherwise specified.

We calculated Z
agg
i scores for all residues in organisms’

proteomes, as given by Uni-Prot (http://www.uniprot.org/).

We retained only those gene sequences for which the Uni-

Prot sequence exactly matched the translated version of the

genomic DNA sequence. Our final data set contained 2983

E. coli genes, 3253 S. cerevisiae genes, 2624 D. melanogaster
genes, 11 419 M. musculus genes, and 1604 genes for Halo-
bacterium sp. NRC-1.

We obtained optimal codons for E. coli, yeast, mouse, and

fly from [6]. In [6], codons were defined as optimal if they

showed a statistically significant increase in frequency in the

5% most highly expressed genes compared with the 5% of

genes with the lowest expression level. For Halobacterium
sp. NRC-1, we determined optimal codons on the basis of

codon usage bias as measured by the adjusted effective

number of codons (ENC0) [23]. For details, see caption to

Supporting Information Table S1.

We also obtained residue solvent accessibilities for

proteins with known 3-D structure from [6]. After combin-

ing the aggregation data with the structural data, our data

set contained 588 E. coli genes, 132 S. cerevisiae genes, 208

D. melanogaster genes, and 570 M. musculus genes. For

Halobacterium sp. NRC-1, we repeated the procedures of

[6] to match genes to protein structures but found too few

structures to carry out a meaningful analysis.

To estimate to what extent translation errors at a site

would affect aggregation propensity, we defined a sensitivity

Si. Si measures the mean change in the protein’s aggrega-

tion propensity Zagg upon mutation at site i. Zagg is defined

as [20]

Zagg ¼

PL
j¼1 Z

agg
j yðZagg

j ÞPL
j¼1 yðZagg

j Þ
ð1Þ

where L is the length of the protein and y(x) is the Heaviside

step function, y(x) 5 1 for xZ0 and y(x) 5 0 otherwise.

Upon mutation at a site i, the values Z
agg
j change at several
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sites surrounding site i. We refer to the protein’s aggrega-

tion propensity upon mutation at site i to amino acid a as

Zaggðsi ! aÞ and calculate it according to Eq. (1) but with

appropriately modified Z
agg
j values. The sensitivity Si is then

Si ¼
1

19

X

a6¼si

½Zaggðsi ! aÞ � Zagg� ð2Þ

where the sum runs over all amino acids but the one

originally at site i. Values of Si40 mean that mutations at

site i tend to increase the protein’s aggregation propensity,

whereas values Sir0 mean that mutations at site i tend to

decrease the protein’s aggregation propensity. As calculation

of Si is computationally expensive, we carried it out only for

an arbitrary selection of 845 genes from fly.

Statistical analysis was done as described previously [6].

In brief, we stratified the data by gene and synonymous

codon family within each gene and constructed a separate

2� 2 contingency table for each stratum. We then combined

either the tables for all genes and a given codon family or

the tables for all genes and all codon families into an overall

analysis, using the Mantel–Haenszel procedure [24, 25]. We

excluded contingency tables whose sum of all four entries

was 0 or 1.

We carried out all statistical analyses using the software R

[26]. In the analyses of individual amino acids, we corrected

for multiple testing using the false-discovery rate method of

Benjamini and Hochberg [27], as implemented in the R

function p.adjust().

3 Results

3.1 Association between codon optimality and

aggregation propensity

We first tested for an association between codon usage and

protein aggregation propensity. Our analysis was based on

the contingency tables. For all amino acids with more than

one codon, we classified the corresponding codons into

optimal and not optimal (Section 2; in some cases, we could

not identify optimal codons for specific amino acids; we

excluded those amino acids from the analysis). Similarly, we

classified all sites in a genome at which a particular amino

acid occurred as either aggregation prone or not aggregation

prone (Section 2). For each amino acid in each gene, we

then constructed a 2� 2 contingency table, counting how

often optimal or non-optimal codons coincided with either

aggregation-prone or non-aggregation-prone sites (Table 1).

For each amino acid, we then combined the individual

tables for each gene into an overall analysis, using the

Mantel–Haenszel procedure, and calculated a joint odds

ratio (Ojoint). A value of Ojoint greater than 1 signifies a

preference for optimal codons at aggregation-prone sites.

We found that 16 of 18 amino acids showed, in at least

one species, a significant preference for optimal codons at

aggregation-prone residues (Table 2 and Fig. 1). (Support-

ing Information Table S1) One amino acid (Val) in E. coli,
one (Lys) in yeast, three (Leu, Pro, and Val) in mouse, and

two (Asp, Lys) in Halobacterium sp. NRC-1 showed a

significant preference for optimal codons at non-aggrega-

tion-prone sites. Of a total of 84 association tests, 42 showed

a significant preference for aggregation-prone optimal

codons, whereas only 7 showed a significant preference for

non-aggregation-prone optimal codons.

For each species, we also used the Mantel–Haenszel

procedure to combine all 2� 2 contingency tables for all

genes and all amino acids into a single overall odds ratio.

We found a statistically significant association between

optimal codons and aggregation-prone sites in all species

(odds ratio 1.07, P 5 5.9� 10�29 for E. coli; 1.03,

P 5 5.3� 10�14 for S. cerevisiae; 1.17, Po10�100 for D.
melanogaster; 1.08, Po10�100 for M. musculus; 1.22,

P 5 1.2� 10�43 for Halobacterium sp. NRC-1; see also Table

2 and Supporting Information Table S1).

Table 1. Example of a 2� 2 contingency table for amino acid Gly
in one particular gene of E. coli

Codon Aggregation-
prone sites

Non-aggrega-
tion-prone sites

Optimal GGU, GGC 6 23
Non-optimal GGA, GGG 3 14

Note: Codons GGU and GGC are optimal codons for amino acid
Gly in E. coli. The odds ratio of optimal codon usage between
aggregation-prone and non-aggregation-prone sites is 6=23

3=14 ¼ 1:22

for this contigency table. Because there is one table of Gly per
one gene, we applied the Mantel–Haenszel procedure to
calculate the joint odds ratio for all tables of Gly across all genes.

0.5 

1.0 

2.0 

N C Q G S T Y R D E H K F I V L P A AllO
dd
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E. coli S. cerevisiae D. melanogaster M. musculus

Figure 1. Joint odds ratio of optimal codon usage between

aggregation-prone and non-aggregation-prone sites for

each amino acid. The odds ratios were calculated by the

Mantel–Haenszel procedure. The y-axis represents odds ratio

and the axis was transformed into the log-2 scale. The x-axis

represents amino acids that are ordered according to the amino

acid property (Hydrophilic: N, C, Q, G, S, T, Y; Charged: R, D, E, H,

K; Hydrophobic: F, I, V, L, P, A) [56].
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3.2 Relative importance of aggregation propensity

and solvent accessibility

Tartaglia et al. [20, 21] suggested that although particular

regions in a protein may have a high aggregation propen-

sity, these regions are unlikely to be promote aggregation

from the folded state if they are buried after protein folding.

That is, the effective aggregation propensity is altered

depending on the protein structure. In line of this reason-

ing, we asked whether the association between optimal

codons and aggregation-prone sites was affected by solvent

accessibility.

First, we investigated exposed sites and buried sites

separately. The exposed sites were divided into two groups,

aggregation-prone and non-aggregation-prone (Fig. 2). We

found that although the significance for most amino acids

disappeared using the Mantel–Haenszel procedure, the joint

odds ratio of optimal codon usage between aggregation-

prone and non-aggregation-prone sites remained larger than

1 for more than half of the amino acids (Table 3). We

repeated the same analysis for buried sites and found

similar results (Table 3). It seems that the loss of statistical

significance for most amino acids was primarily due to the

reduction in data-set size when incorporating protein

structural information. By incorporating solvent accessibility

data, gene numbers decreased from 2983 to 588 in E. coli,
from 3253 to 132 in yeast, from 2624 to 208 in fly, and from

11 419 to 570 in mouse. We found that the odds ratios for

data sets with structural information were quantitatively

similar to odds ratios in data sets of similar size obtained by

randomly sampling from the data sets without structural

information (data not shown).

Second, we assessed whether solvent accessibility or

aggregation propensity exerted the stronger selection pres-

sure on codon usage. We considered the odds ratio of

optimal codon usage between exposed-aggregation-prone

and buried-non-aggregation-prone sites (Fig. 2D). Assum-

ing that optimal codons associate with both buried and

aggregation-prone sites, an odds ratio 41 in this test indi-

cates that aggregation propensity dominates, whereas an

Table 2. Odds ratio of optimal codon usage between aggregation-prone and non-aggregation-prone sites for each amino acid

AA E. coli S. cerevisiae D. melanogaster M. musculus

Ala 0.99 0.99 1.43��� �

Arg 1.11(�) 1.06 1.37��� 1.26���

Asn 1.10��(�) 1.05�(�) 1.20��� 1.10���

Asp 1.09�� 0.98 1.31��� 1.17���

Cys 1.04 0.94(�) 1.17��� �

Gln 1.04 1.04 0.95 1.13���

Glu 1.06 1.00 1.01 1.02
Gly 1.24��� 1.10��� 1.20��� 1.20���

His 1.18��� 1.04 1.34��� 1.10���

Ile 1.07��� 1.03 1.08��� 1.14���

Leu 0.98 1.00 1.05�� 0.91���

Lys � 0.90��� 0.94 0.99
Phe 1.03 1.02 1.06�� 1.15���

Pro 1.10 1.20 1.71��� 0.89�

Ser 1.17��� 1.10��� 1.20��� 1.23���

Thr 1.29��� 1.06��� 1.35��� 1.19���

Tyr 1.22��� 1.03 1.18��� �

Val 0.86��� 1.08��� 1.04� 0.96���

Overall 1.07��� 1.03��� 1.17��� 1.08���

Note. AA, amino acid; –, no optimal codon. Significance levels. ���po0.001; ��po0.01; �po0.05. Significance levels in parentheses
disappear after correction for multiple testing.

Figure 2. Venn diagram illustrating the various analyses

summarized in Table 3. (A) We classify all sites in an organism’s

coding sequences as either aggregation prone (A) or non-

aggregation prone (N). For a subset of sites, we have structural

information. We classify these sites as either buried (B) or

exposed (E). (B) Analysis of codon usage by aggregation

propensity for exposed sites only. (C) Analysis of codon usage

by aggregation propensity for buried sites only. (D) Comparison

of codon usage among exposed, aggregation-prone and buried,

non-aggregation-prone sites. (E) Comparison of codon usage

among buried, aggregation-prone and exposed, non-aggrega-

tion-prone sites.
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odds ratio o1 indicates that solvent accessibility dominates.

Our results indicated that either factor can be more

important, depending on species and amino acid (Table 3,

columns labeled ‘‘EA-BN’’, i.e. exposed and aggregation-

prone versus buried and non-aggregation-prone). Consider-

ing all odds ratios, regardless of significance level, we

found that the odds ratios of at least six amino acids in each

species were smaller than 1, whereas the odds ratios of at

least eight amino acids in each species were larger than 1

(Table 3). Therefore, neither factor clearly dominated in all

species.

Finally, we asked to what extent aggregation propensity

and solvent accessibility independently shape codon usage.

To address this question, we computed the odds ratio of

optimal codon usage between buried-aggregation-prone and

exposed-non-aggregation-prone sites (Fig. 2E). We found

that the overall odds ratio in each species is larger than 1

and statistically significant (odds ratio 1.13, P 5 7.0� 10�9

for E. coli; 1.15, P 5 7.1� 10�4 for S. cerevisiae; 1.15,

P 5 2.5� 10�5 for D. melanogaster; 1.19, P 5 1.8� 10�15 for

M. musculus; see also Table 3, columns labeled ‘‘BA-EN’’, i.e.
buried and aggregation-prone versus exposed and non-

aggregation-prone). More importantly, when comparing the

odds ratios for individual amino acids to those where we

considered aggregation propensity or solvent accessibility

individually (Supporting Information Table S2), we found

that the BA-EN odds ratios minus 1 are roughly the sum of

the individual odds ratios minus 1. For example, in E. coli,
for Asn, A-N odds are 1.21, B-E odds are 1.34, BA-EN odds

are 1.46. Similarly, for Ser, A-N odds are 1.26, B-E odds are

1.42, BA-EN odds are 1.70; for Thr, A-N odds are 1.26, B-E

odds are 1.22, BA-EN odds are 1.55. Consistent with this

pattern, for Val, A-N odds are 0.85, B-E odds are 0.88, BA-EN

odds are 0.75. Similar patterns exist in the other species.

Thus, residue aggregation propensity and solvent accessi-

bility seem to affect synonymous codon usage indepen-

dently of each other.

All results reported so far were carried out with a cutoff of

Zagg41 to classify aggregation-prone sites. We also consid-

ered a cutoff of Zagg40, which is more lenient but at the

same time provides for a more powerful statistical analysis

because aggregation-prone sites are more common under

this definition. We found that our results were not strongly

sensitive to the specific cutoff used (Supporting Information

Tables S3 and S4).

3.3 Sensitivity to translation errors

If selection for codon usage is driven by the cost of trans-

lation errors, then we might assume that the change in

aggregation propensity upon amino acid substitution at a

site i is more strongly correlated with codon usage than the

site’s aggregation propensity itself. To evaluate this

hypothesis, we defined a sensitivity Si to amino acid

substitution at site i. Si is the mean change between the

aggregation propensity of a mutated protein and the one of

the wild-type protein (Section 2).

We calculated Si for all sites in an arbitrary selection of

845 fly genes. We defined sites with Si40 as sensitive to

amino acid substitution and all other sites as not sensitive.

We constructed 2� 2 contingency tables of the number of

optimal/non-optimal codons coinciding with sensitive or

non-sensitive sites. We stratified by gene and amino acid, as

before, and used the Mantel–Haenszel procedure to calcu-

late joint odds ratios. An odds ratio41 means that optimal

codons associate with sensitive sites.

We found very little evidence for an association between

optimal codons and sensitive sites (Supporting Information

Table S5). The overall odds ratio was 1.03 (p 5 0.03). Over

half of the amino acids tested showed no significant asso-

ciation whatsoever. Only Ala, Arg, and Pro showed a positive

association between optimal codons and sensitive sites,

whereas Lys and Thr showed a negative association (after

correction for multiple testing). This result is in stark

contrast to the association between optimal codons and the

raw aggregation propensity, which for fly was positive and

highly significant for nearly all amino acids (Table 2). Thus,

we conclude that, at least for fly, the raw aggregation

propensity rather than the sensitivity to amino acid substi-

tutions drives codon usage. We provide some potential

explanations for this result in the next section.

4 Discussion

We have found that translationally optimal codons

associate with aggregation-prone sites in a bacterium, an

archaeon, and three eukaryotes. With the exception

of the archaeon, where we had insufficient data, we have

found that this association occurs both at buried and at

exposed sites. We have also found that our results are not

merely caused by the tendency of optimal codons to

associate with buried sites. Instead, buriedness and aggre-

gation propensity seem to influence codon usage indepen-

dently of each other. Finally, for fly we have found that

sensitivity, a measure of how much the aggregation

propensity of a protein increases upon mutation of a site,

associates much more weakly with optimal codons than the

aggregation propensity itself does.

Our results add to a growing list of mechanisms by which

synonymous codons are under selective pressure. Selection

on synonymous sites has been found to be linked to tran-

scription [28], splicing [29–31], thermodynamic stability of

DNA and RNA secondary structure [32–37], efficient and

accurate translation [3–6, 12, 38–49], protein co-translational

folding [7–11, 50], and translation initiation [51–53].

We obtained translationally optimal codons from [6]. In

that study, optimal codons were identified as those codons

that were significantly more frequent in highly expressed

genes than in genes with low expression level. (For Halo-
bacterium sp. NRC-1, we determined optimal codons using a
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similar method as in [6] but comparing genes with high and

low codon bias instead of expression level.). This method of

identifying optimal codons can go wrong in specific cases. If

there are speed-accuracy tradeoffs so that the faster codon is

less accurate and vice versa, the method of [6] may identify

the faster rather than the more accurate codon. If an

organism experiences both selection for translation speed

and translational accuracy, then it is possible that the most

rapidly translated codon is the most abundant one in highly

expressed genes but that the most accurately translated

codon is preferred at sites at which translation errors need to

be avoided. As an example, the odds ratios for Val in E. coli
are always significantly below 1, regardless of whether we

correlate codon usage with aggregation propensity or with

solvent accessibility. We used as optimal codons for Val in

E. coli the two codons GUA and GUU. On the basis of

tRNA-abundance measurements [54] and modeling of the

translation process [55], we expect that these two codons are

optimal for translation speed. Therefore, we suspect that the

codons for Val that are the most rapidly translated in E. coli
are not the most accurately translated ones for Val in this

species.

As we had seen in the previous study [6], there is no

consistent pattern among organisms of which amino acids

show a significant signal of translational accuracy selection.

We could not identify any specific biophysical property of

amino acids (such as volume, hydrophobicity, or charge)

that would explain either the observed odds ratios or the

associated P-values. In the previous study [6], the best

predictor for P-values was amino acid frequency, indicating

that much of the variation in the observed results may

simply be due to lack of statistical power for rarer amino

acids. It is also possible that different amino acids are under

selection for translational accuracy in different protein

structures, so that the Mantel–Haenszel results for a given

organism may be partially driven by the specific composi-

tion of that organism’s proteome.

It is intriguing to discuss possible mechanisms that

cause optimal codons to associate with aggregation-prone

sites but not with sites that show an increase of aggregation

propensity upon mutation. A first possibility is that since the

Zyggregator aggregation propensities are correlated with

other physico-chemical properties [20], the features that we

use to predict aggregation propensity do not only identify

regions that have a high tendency to form aberrant inter-

molecular contacts but also predict segments that are

involved in the formation of functional contacts [21, 22].

Indeed, the location of interfaces in molecular complexes

correlates strongly with the presence of peaks in the

aggregation profiles [22]. Thus, optimal codons may be

protecting protein–protein interfaces rather than aggrega-

tion-prone sites per se. Moreover, we have found that

aggregation-prone sites tend to evolve slower than sites that

are not aggregation prone (Zhou, unpublished). Thus, the

same mechanism that selects against genetic mutations at

aggregation prone sites – this mechanism may or may not

be related to functional contacts – may also be sensitive to

translation errors and thus select for optimal codons at

aggregation-prone sites.

An alternative possibility is that optimal codons might be

selected for rapid rather than accurate translation, because

slow-folding regions could be particularly susceptible to

misfolding in case the ribosome stalls. In favor of this type

of explanation, we have found that regions characterized by

high aggregation propensities are associated with slow

folding rates (Tartaglia and Vendruscolo, unpublished).

Aggregation-prone regions of the nascent chain already

outside the ribosome would remain available for a prolon-

ged time to form dysfunctional inter-molecular interactions,

since they would not be protected from aggregation by the

folding process. In this case, it would be the necessity to

prevent aggregation during the co-translational folding

process, rather than the protection in the native state that

would primarily cause the selective pressure. This view is

consistent with the very weak correlation that we found

between optimal codon usage and solvent exposure of

aggregation-prone regions. On the other hand, if translation

speed rather than accuracy was under selection, we would

expect the rapidly translated codons for Val in E. coli to

associate with aggregation-prone sites, not with sites that are

not aggregation prone. In this context, it would be inter-

esting to investigate whether aggregation-prone regions are

more frequent in C-terminal regions rather than in

N-terminal regions, which are the first to emerge during

biosynthesis. Future studies will have to disentangle these

various possibilities to determine why optimal codons

associate with aggregation-prone sites.
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