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Abstract

Motivation: Antibodies play essential roles in the immune system of vertebrates and are powerful
tools in research and diagnostics. While hypervariable regions of antibodies, which are responsible
for binding, can be readily identified from their amino acid sequence, it remains challenging to ac-
curately pinpoint which amino acids will be in contact with the antigen (the paratope).

Results: In this work, we present a sequence-based probabilistic machine learning algorithm for
paratope prediction, named Parapred. Parapred uses a deep-learning architecture to leverage fea-
tures from both local residue neighbourhoods and across the entire sequence. The method signifi-
cantly improves on the current state-of-the-art methodology, and only requires a stretch of amino
acid sequence corresponding to a hypervariable region as an input, without any information about
the antigen. We further show that our predictions can be used to improve both speed and accuracy
of a rigid docking algorithm.

Availability and implementation: The Parapred method is freely available as a webserver at http://

www-myvsoftware.ch.cam.ac.uk/and for download at https://github.com/eliberis/parapred.

Contact: el398@cam.ac.uk or psb89@cam.ac.uk

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction

Antibodies are a special class of proteins produced by the immune
system of vertebrates to neutralize pathogens, such as bacteria or
viruses. They act by binding tightly to a unique molecule of the for-
eign agent, called the antigen. Antibody binding can mark it for fu-
ture destruction by the immune system or, in some instances,
neutralize it directly (e.g. by blocking a part of a virus essential for
cell invasion). Typical antibodies are tetrameric—made of two im-
munoglobulin (Ig) heavy chains and two Ig light chains—and have a
Y-shaped structure, where each of the two identical tips contains a
binding site (paratope). The base of the Y mediates the ability of an
antibody to communicate with other components of the immune
system.

The paratope is typically contained within the hypervariable
regions of the antibody which are also referred to as complementarity

determining regions (CDRs). In the structure of an antibody, CDRs
are located within binding loops, three on each heavy chain (H1, H2,
H3) and three on each light chain (L1, L2, L3). The variability of the
CDR sequences allows antibodies to form complexes with virtually
any antigen. This binding malleability of antibodies is increasingly
harnessed by the biotechnological and biopharmaceutical industry; in-
deed, monoclonal antibodies are currently the fastest growing class of
therapeutics on the market (Ecker et al., 2015; Reichert, 2017).

Novel antibodies that bind a target of interest can be obtained
using well-established methods based on animal immunization or on
in vitro technologies for screening large laboratory-constructed
libraries (Leavy, 2010). However, for applications in research, diag-
nostics and therapeutics, some degree of engineering is required to
optimize certain properties, such as binding affinity, stability, solu-
bility or expression yield (Chiu and Gilliland, 2016). Rational engin-
eering decisions become easier if detailed knowledge about an
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Fig. 1. An example of an antibody—antigen complex (PDB ID 2VXQ) where the
antibody CDR loops are shaded according to the binding probabilities calcu-
lated by Parapred. Docking was performed using PatchDock with binding site
constraints supplied by Parapred

antibody under scrutiny is obtained (Chiu and Gilliland, 2016;
Sormanni et al., 2017). However, especially at the early stages of an
antibody discovery campaign, only the sequence and an estimate of
the binding affinity are usually available. Therefore, computational
methods that can accurately predict molecular traits using just the
amino acid sequence have a great potential for accelerating antibody
discovery by assisting lead selection or facilitating property
engineering.

For instance, hypervariable regions contain 40-50 amino acid
residues, whereas typically less than 20 actually participate in bind-
ing (Esmaielbeiki et al., 2016), and some may even fall outside of
the traditional definition of the CDRs (Kunik et al., 2012). The abil-
ity to accurately map the paratope would enable to pinpoint residues
that are involved in binding, leaving others as candidate mutation
sites that can be exploited to optimize other molecular traits, such as
solubility or stability, without compromising the binding activity. In
addition, as we show in this work, accurate paratope prediction can
improve accuracy and speed of docking simulations, making struc-
tural models more reliable and easier to obtain (see Fig. 1 for an
example).

In this work, we introduce the Parapred method for sequence-
based prediction of paratope residues. Parapred improves on earlier
methods for paratope prediction (Krawczyk er al., 2013; Kunik
et al., 2012; Olimpieri et al., 2013; Peng et al., 2014; Tsuchiya and
Mizuguchi, 2016) by using deep-learning methods and larger anti-
body datasets. In particular, we compared Parapred against the fol-
lowing two methods:

* ProABC. Olimpieri ez al. (2013) designed a method for process-
ing antibodies as amino acid residue sequences, obviating the
need for a 3D structure. A random forest classifier consisting of
1500 trees was used to predict the probability of a residue being
in the paratope. This is the most accurate paratope classifier up
to date.

* Antibody i-Patch. Krawczyk et al. (2013) present a general pro-
tein—protein interaction algorithm adapted to cope with anti-
body-antigen binding specifics. The method computes binding
statistics for different areas (patches) of a protein and uses this
information to predict the likelihood of each amino acid residue
participating in binding.

Our method only requires the amino acid sequence of a CDR
and four adjacent residues as its input, which, in contrast to struc-
tural data, can be readily obtained experimentally. For simplicity,
we only consider antigens that are themselves proteins, which are
the vast majority of known antibody targets.

‘Deep learning’ specifically refers to the process of building ma-
chine learning models consisting of multiple layers of non-linear
operations, where each successive layer automatically learns more
abstract representations (features) of the data using the features
extracted by the previous layer (Goodfellow er al., 2016, p. 1).
A key advantage of deep learning over traditional machine learning
methods is that it can perform automated feature extraction directly
from raw input data, thus eliminating the need for a domain expert
to manually engineer features (Goodfellow et al., 2016, p. 4).
Automatically learned features are often found to be superior to
manually engineered ones, contributing to the widespread success of
deep learning in a range of fields. In particular, Parapred builds
upon convolutional and recurrent neural networks (RNNs), which
achieved state-of-the-art results in many difficult tasks, such as ob-
ject recognition (He et al., 2015). Deep learning has already been
successfully applied to address problems in protein science, includ-
ing the prediction of structure (Li et al., 2016), function (Tavanaei
et al., 2016) or binding sites (Alipanahi ez al., 2015). To the best of
our knowledge, this work is the first application of modern deep
learning to antibody—antigen interactions.

2 System and methods

2.1 Data acquisition and preprocessing

To train and test our models, we used a subset of the Structural
Antibody Database (SAbDab) (Dunbar ez al., 2014), which contains
antibody and antigen crystal structures. Entries in SAbDab were fil-
tered to obtain a non-redundant set of antibody—antigen complexes
with the following properties: (i) antibodies have variable domains
of the heavy (Vy) and light (V1) chains, (ii) structure resolution is
better than 3A, (iii) no two antibody sequences have >95% se-
quence identity and (iv) each antibody has at least five residues in
contact with the antigen. The final dataset contains 277 bound com-
plexes (Supplementary Material, Section A). Residues in the anti-
body sequence with missing electron density (i.e. non-resolved in the
structure) were assumed to be non-binding, as missing electron dens-
ity is typically associated with highly dynamic regions.

To construct the input, we identify the CDRs within the se-
quence of each antibody using the Chothia numbering scheme (Al-
Lazikani et al., 1997). We extend the CDR sequences with two extra
residues at both ends, as these residues are also known to sometimes
engage in binding (Krawczyk et al., 2013; Kunik ez al., 2012). These
extended CDR sequences are the input of the Parapred method and
are processed individually. As our initial dataset of antibody—anti-
gen complexes was assembled using a sequence identity cut-off
applied to the full antibody sequence, we carried out a sequence
identity analysis on the individual CDRs. The results in
Supplementary Figure S1 (Supplementary Material, Section B) show
that the sequence identity is always below 80% (median ~ 40%)
when comparing whole hypervariable regions and below 90% at the
individual loop type level (median across loops of the same type ~
30-45%, median across all loop types <20%).

Amino acid sequences have to be encoded as tensors prior to
being processed by the model (Fig. 2):

* Each amino acid sequence is encoded as a ‘row’ in a 3D matrix.
As CDR sequences are usually of different length, during training
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Fig. 2. An example of encoded amino acid sequences. An amino acid residue
is represented by a feature vector which consists of one-hot encoding and
some extra features. To efficiently process multiple sequences of different
lengths during training, each sequence is padded to the length of the longest
one. In general, Parapred can process arbitrarily long sequences

they are padded with zero vectors to the length of the longest se-
quence. This is necessary for fast batch tensor processing pro-
vided by deep-learning frameworks. Padding is not required
when the model is used for prediction, as the architecture of our
neural network does not impose an upper limit on the number of
residues in the input sequence. This enables Parapred to process

CDRs of arbitrary length, including ones longer than CDRs of

sequences from the training set.

* FEach element in a matrix encodes an amino acid residue and is it-
self a vector consisting of two concatenated parts:

*  One-hot encoding of the type of the residue (20 possible
amino acid types + 1 extra, representing an unknown type).
The type is encoded using a 21D vector, where all elements
are set to 0 and one element, corresponding to the actual type
of the amino acid, is set to 1.

* Seven additional features, summarized by Meiler et al.
(2001), which represent physical, chemical and structural
properties of each type of amino acid residue (Supplementary
Material, Section C).

The final dataset contains 1662 sequences for the algorithm to
learn from (277 antibody/antigen complexes x 6 CDRs each).

2.2 Building a deep-learning model
The paratope prediction problem can be formalized as a binary clas-
sification problem between two classes of residues: those that do not
participate in binding (Class 0) and those that do (Class 1).
Following previous conventions (Krawczyk et al., 2013), we define
binding residues as those with at least one atom found within 4.5 A
of any of the antigen atoms. The algorithm will output the probabil-
ity of binding (p) for each residue in the input CDR(s) plus two extra
residues per side.

Our model uses several prominent architectural developments in

deep learning.

2.2.1 Multilayer perceptrons

Neural networks can be thought of as a set of interconnected units,
called neurons or perceptrons, each of which performs a simple
computation.

Neurons are typically arranged in layers, where each neuron in a
layer is connected to the output of every neuron in the previous
layer. A layer with this kind of connection is called fully connected.
The neural network itself is constructed as a series of such layers—
the data are transformed in turn by every layer as it flows through
the network. This architecture is known as a deep feed-forward

neural network or a multilayer perceptron (MLP).

Neural network architectures are extensively used for machine
learning tasks that can be reformulated as function approximation
problems. We would like a network to learn to approximate some
target function f : X — Y using a set of known input/output pairs
for it (supervised learning setup). For example, for paratope predic-
tion, x € X could be a vector encoding a residue and y € Y = {0,1}
could indicate whether the residue participates in binding.

The signals between neurons are real numbers and the neuron
computes its output as follows:

* A neuron computes a weighted sum of its inputs (x) and adds a
constant term to it. The coefficients by which every input is
scaled are called weights (W) and the constant term is called the
bias (b). The weights and bias constitute a set of adjustable
parameters of a neuron.

* Some non-linear activation function ¢ is applied to the sum to
produce the output. The activation function introduces a non-
linearity necessary to model complex functions.

We can compactly write the transformation performed by all
neurons in a layer as a single weight matrix multiplication and bias
vector addition:

y=0(W'x+Db) (1)

2.2.2 Recurrent neural networks

We can design a neural network which processes every element in a
sequence in turn. The key idea behind RNNs is to iteratively apply a
simple processing block, called RNN cell, to obtain a summarized
representation of a sequence up to any point. Figure 3 shows a com-
putation graph of an RNN—the cell iteratively consumes inputs (x)
by computing a function of x and the previous state of the cell s.

We use the Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) cell which is able to learn long-range dependen-
cies in sequences. The computation performed by an LSTM cell con-
sists of the following steps:

*  An LSTM cell holds the state s in two vectors: C (‘memory’) and
h (previous output). Input x and state vector h are concatenated
before being processed in four steps:

fi = a(w}f[ht,l,xz} + b,) 2)
C, = tanh(W¢[h,_1,x] +bc) 3)
iy = (Wl h_1,%] +b;) (4)
0, = ¢(WX[h,_1,%] +by,) (5)

where tanh is the element-wise hyperbolic tangent and ¢ is the

logistic sigmoid function (a(x) = m) Matrices W and vec-

tors b are parameters learned by the network.

* The new cell state C, and 4, as well as the output y, is given by:
C,=Cryxf; +C, %14, (6)

yr = by = tanh(C;) * o (7)
where « is the element-wise vector multiplication.

Capturing dependencies between an output and later inputs is
necessary for amino acid sequences because they don’t have a
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Fig. 3. Neural network constructs used in this work. (A) The computation graph of an RNN before (left) and after (right) unrolling. The same RNN cell is used to
process every element of the input sequence. (B) Unrolled graph of a bidirectional RNN. The inputs are passed through two different RNN cells (one for each dir-
ection) and the network’s output at time tis an aggregation (here—concatenation) of the two cells’ outputs. (C) An example of 1D convolution with kernel size 3.
Outputs are computed by applying a kernel at each position in the input sequence

canonical direction (reading a sequence left to right is equivalent to
reading it right to left). To achieve this, we use a bidirectional RNN
(Schuster and Paliwal, 1997) which introduces a second pass going
in the opposite direction (see Fig. 3). RNNs enable the model to cap-
ture features which span the entire input sequence.

2.2.3 Convolutional neural networks
Amino acid residues are known to interact with other residues and
prefer some kinds of amino acids more than others as their neigh-
bours (Xia and Xie, 2002). A paratope prediction model can exploit
such preferences by processing every residue together with its neigh-
bourhood to learn useful local patterns first and only then use an
RNN to learn aggregate features of the entire sequence.

Spatially local features can be extracted using convolutional
layers, typically found in convolutional neural networks (CNNSs).

A convolutional layer is similar to a single-layer MLP discussed
previously, only it uses a convolution operation instead of matrix
multiplication. A convolution operation for sequences is defined as:

«
= ki (8)
i=—K'

where i, and f; are elements of the input and output sequences at
position ¢, respectively, and k € R€*C is a kernel of size K = 2K’ + 1
(w.l.o.g assume that the kernel has an odd number of elements; C
refers to the dimensionality of the input). This computation is visual-
ized in Figure 3.

The kernel is applied this way at every position of the input se-
quence to produce the output sequence. For positions where kernel
spans beyond the input sequence, we assume the input is padded
with zero vectors: iy =0 for ¢ < 0 or > T. The input and kernel
elements themselves are vectors with multiple channels—name
comes from an analogy with images: each pixel in an image has

three dimensions: red, green and blue channels—e.g. an encoded

residue would have 28 dimensions/channels (20 + 1 amino acid type
one-hot encoding + extra 7 features, as described earlier).

Convolution performs a weighted summation over all dimen-
sions of input elements to produce a single number (the sum of vec-
tor dot products). The fact that the same small kernel is applied to
every position in the input sequence allows it to detect input patterns
regardless of their position. Learnable parameters of a convolutional
layer are its kernels; multiple output channels can be produced by
using several different kernels (filzers).

2.2.4 Residual connections

Residual connections (He et al., 2015) act as a shortcut connection
between inputs and outputs of some part of a network by adding
inputs to outputs. Such shortcut can be added around the convolu-
tional feature extractor—if the local feature extractor is supposed to
learn some function h(x), with the shortcut connection it only has to
learn the residual h(x) — x which is often easier to optimize for. The
shortcut also enables the rest of the model to learn both from origin-
al inputs and extracted local features and acts as a complexity con-
troller by effectively allowing the network to adjust its depth.

2.2.5 Exponential linear units as activation functions
Activation functions introduce a non-linearity which is necessary to
model complex functions. Experimenting with the activation func-
tion’s behaviour can improve the training process. We use the
Exponential Linear Unit (ELU) (Clevert et al., 2015) activation
function which makes the network more robust to noise and faster
to train. The function is given by:
x ifx >0,
ELU(x) = 9)
{a(e" -1) ifx < 0.

We use a=1.
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Fig. 4. The architecture of the Parapred method

2.2.6 Model regularization

Deep-learning models often have to be regularized to prevent over-
fitting—a phenomenon where a network memorizes training exam-
ples (and noise) instead of modelling the underlying relationship.
We use two regularization methods:

* Dropout (Srivastava et al., 2014) is a computationally efficient
regularization method. The main idea of Dropout is to discard
some intermediate results of the network at every training iter-
ation with a certain probability p. This discourages the network
from learning to rely on a particular subset of inputs.

* [, regularization (aka weight decay) adds an extra term—an L,
norm of a layer’s weights—to network’s optimization objective,
which penalizes weights if they grow too large during training.

3 Algorithm and implementation

The software was developed in Python using Keras deep-learning
framework (Chollet ez al., 2015). Overall, the network’s computa-
tion consists of the following steps (Fig. 4):

1. Encoded sequences (CDRs with two extra residues) are proc-
essed by a convolutional layer (regularized with an L, term
scaled by 0.01) with 28 kernels, each spanning a neighbourhood
of three residues. ELU activation is applied to the convolution
results.

2. Residual connection is implemented by adding the original input
sequences to the convolution output.

3. Resulting features are processed by a bidirectional LSTM with state
size 256. The network applies Dropout with p = 0.15 to RNNs in-
put and Dropout with p = 0.2 to RNNs recurrent connections.

4. Dropout with p = 0.3 is applied to the RNNs output and indi-
vidual feature vectors are processed by a single-output fully con-
nected network with logistic sigmoid activation function (to
bring the output to the range of probabilities). Network’s
weights are regularized using an L, term scaled by 0.01.

The model’s architecture could be easily augmented with layers
that are able to process the 3D structure of an antibody in conjunction
with its amino acid sequence. However, such sophisticated architec-
tures would require a much larger training dataset (at least 10x more
3D structures) which is not available at this time. Training this kind
of model would also require a way of efficiently exploiting cross-
modality during feature extraction (Velickovi¢ et al., 2016).

All architectural parameters (aka hyperparameters), such as
LSTM state size, convolutional layer span, Dropout probabilities,
etc. were chosen by evaluating network’s performance on a special
validation set (subset of the training set not shown to the network
during training).

Neural network training is a function optimization problem,
where we aim to find a local or global optimum of the optimization
target (aka loss) with respect to network’s parameters. This should
be a differentiable measure of how well the neural network approxi-
mates the target function. We use the binary cross-entropy loss, a
popular choice for binary classification problems:

z:(@):% 3

x;,y; €TrS

w; (—yilog (Fo(x)) = (1= yi)log (1 - Fo(x))
(10)

where TrS is the training set of size m, /?9 is the function computed
by the network with parameters ® and w is the sample weight
(described later).

To find a loss minima, we use the Adam (Kingma and Ba, 2014)
optimizer with base learning rate setting of 0.01 for the first 10 epochs
and 0.001 otherwise. The network is trained with 32 samples at once
(aka batch size) for 16 epochs (iterations over the entire training set).

The dataset has an uneven number of binding (positive) and
non-binding (negative) residues—3.4 x more negative samples. The
cross-entropy loss function [Equation (10)] equally penalizes mis-
classified positive and negative samples, which allows the model to
keep the overall loss low by preferring to predict that residues will
not bind. This achieves good classification accuracy but hinders the
model’s ability to learn to identify positive samples. This can be
improved by penalizing misclassified positive samples more—the
per-sample loss is scaled by the sample weight w; which we set to a
2.5x higher value for positive samples.

We made Parapred available as a webserver at http://www-
mvsoftware.ch.cam.ac.uk/. For convenience, the online interface
accepts full Vg and Vi amino acid sequences and uses ANARCI
(Dunbar and Deane, 2015) to extract the CDRs.

4 Results

4.1 Model results

To ensure an unbiased evaluation, the model has to be tested on
data it has not seen during training. To obtain statistically signifi-
cant results using our small dataset (277 complexes), we used the
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Fig. 5. Performance characteristics of Parapred. (A) Precision-recall curves of Parapred when trained on our dataset and antibody i-Patch’s dataset, together with
the PR values reported by the authors of antibody i-Patch. Errors show 95% confidence bounds (2 SD). (B) Performance indicators of the Parapred with 95% confi-
dence intervals (top row) and of the proABC method (bottom row). To convert predicted binding probabilities to binary labels, we used a threshold of 0.488
[obtained by maximizing Youden’s index (Youden, 1950)]; the labels were used to compute the F-score and MCC metrics. (C) ROC AUC values of Parapred, sepa-

rated by loop type. Errors show 95% confidence bounds

10-fold cross-validation technique to assess the model performance
on multiple dataset splits. This technique randomly partitions the
complexes into 10 subsets and trains the model 10 times. Each time,
a different subset is chosen as the test set, and the model is trained
from scratch on the complexes belonging to the other nine.

To measure the performance of the binary classifier, we use a
number of standard metrics, such as MCC, F-score and precision-
recall and ROC curves. Because evaluation results may vary due to
the random partitioning of the data, the random initialization of the
network parameters, and dropout, the cross-validation process itself
is repeated ten times, which enables us to calculate confidence inter-
val of the mean values of each performance indicator.

Figure SA shows the precision/recall curve of the Parapred
method which indicates a statistically significant improvement over
Antibody i-Patch for recall values >0.1. This improvement is par-
ticularly relevant given that, in contrast to Parapred, Antibody i-
Patch requires a structure or a homology model of the antibody and
the antigen it binds to.

Figure 5B shows the F-score, MCC and ROC AUC performance
metrics of Parapred. Narrow confidence intervals indicate consistent
performance across cross-validation rounds. Furthermore, the
results show that our model performs significantly better than the
current state-of-the-art predictor, proABC (Olimpieri et al., 2013)
(both MCC and ROC AUC are statistically significantly better),
without needing the entire antibody sequence or extra features such
as the germline family or antigen volume.

We investigated to what extent the performance improvement
originates from using a larger dataset (277 complexes versus 148 of
Antibody i-Patch) and to what from the deep-learning-based archi-
tecture of Parapred. To assess this, we measured Parapred’s per-
formance when trained on the Antibody i-Patch’s dataset (Fig. SA).
We find that our method achieves significant precision improve-
ments for recall values >0.5, which is typically the most useful
range. We conclude that the deep-learning-based architecture of
Parapred is able to capture a richer set of features leading to better
classification, even though it uses less explicit information about the
antibody (Parapred does not require structural data or any informa-
tion about the antigen it binds to). The leap in performance,
observed when increasing the dataset size, is discussed in
Supplementary Material, Section D and is in agreement with the ob-
servation that deep models thrive in environments with a larger

number of more varied data points to learn from (Goodfellow et al.,
2016, p. 430).

Our encoding of an amino acid sequence does not include infor-
mation about the CDR loop type it originated from, so the model
may not be able to capture loop type-specific features. Figure 5C
shows the ROC AUC values of our model’s predictions, separated
by CDR types. The data show that the model’s performance varies
slightly depending on the loop type; however, our initial attempts at
including the loop type information made no appreciable difference
to the performance (data not shown).

4.2 Docking improvements

We show the usefulness of Parapred by integrating its predictions
with the PatchDock rigid protein docking algorithm (Duhovny
etal.,2002).

PatchDock works with two protein molecules in the PDB format
and searches for suitable orientations for one of the molecules—con-
ventionally, the antigen—‘onto’ the other. The algorithm produces
several hundred candidate orientations of the antigen, called decoys,
which are ranked in the output by an internal scoring function. The
algorithm also provides facility to guide the search process by pre-
specifying potential binding site residues.

Decoys can be classified into 4 quality classes—high (***), me-
dium (**), low (*) or unclassed—based on how close the computed
orientation of the antigen is to the true (native) orientation recorded
in the dataset. The classification uses the CAPRI criteria (see
Supplementary Material, Section E).

The usefulness of Parapred was measured by running PatchDock
with three potential binding sites of the antibody molecule: (i) the
full CDRs, (ii) the actual paratope and (iii) binding residues pre-
dicted by Parapred. We picked 30 antibody—antigen complexes at
random (highlighted in Supplementary Material, Section A) to be
run through the docking algorithm and, to ensure that the model is
not tested on data it has been trained on, we used only the remaining
structures as the training set for the model (247 structures). For a
docking run with Parapred’s predictions, residues were assumed to
be binding if they scored above 0.67. This threshold was determined
as the cut-off value that best recapitulates the total number of resi-
dues comprising the predicted binding site with that observed in the
actual paratopes of antibodies within the aforementioned 247

810z Jaquieldeg £z uo Jesn ebpuquies 1o AusisAilun Aq S662.261/1162/L L /YEA0BNSqe-8]01E/SO11BULIOIUI0IG/WOoD dNo"olWapeoe.//:sdny WoJj papeojumoq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty305#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty305#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty305#supplementary-data

2950

E.Liberis et al.

Table 1. The number of high, medium and low quality decoys
obtained by running PatchDock with different constraints on a test
set of 30 structures

Binding site Top 10 Top 200 Running time
CDRs 0 2 01 14 0 3h50min19.72s
Paratope 0 7 11 21 3 2h02min22.50s
Parapred 0 7 01 19 2 2h15min 52.265
(1) versus (3) speedup 1.70x

structures. To avoid estimating this threshold from structures used
in training, its value was determined using the test sets of an extra
cross-validation run on just the 247 structures.

We recorded the best class decoy in the top 10 and top 200
decoys, as ranked by PatchDock, for each of the 30 structures. As a
hint, we also supplied the antigen’s binding region as residues within
5 A of the real epitope. PatchDock was run with default parameters.

Docking results are shown in Table 1—supplying just the CDR gives
the worst performance; however, supplying our model’s predictions
achieves performance comparable to that obtained when supplying the
actual paratope. We conclude that for docking simulations Parapred’s
predictions are almost as informative as the actual paratope.

We also measured the time taken by PatchDock to produce decoys
on a machine with an ‘Intel(R) Core(TM) i7-6600U CPU @
2.60 GHz’ processor. We found that specifying Parapred’s predictions
as a potential binding site produces a 1.70x speedup in PatchDock’s
computations compared to specifying just the CDRs.

We also attempt to interpret local neighbourhood features learn-
ed by the model in Supplementary Material, Section F.

4.3 Concluding remarks

To the best of our knowledge, this work is the first application of
modern deep learning (CNN- and RNN-based neural networks) to
the paratope prediction problem. Our model is able to generalize
using only antibody sequence stretches corresponding to the CDRs
(with two extra residues on the either side) and improves on the cur-
rent state-of-the-art by a statistically significant margin. We also
showed that the model’s predictions provide speed and quality gains
for the PatchDock rigid docking algorithm—decoy quality and time-
to-dock were comparable to those obtained when the docking algo-
rithm has knowledge of the actual paratope as assessed from the
complex crystal structure.

One of the main benefits of Parapred is that it does not rely on
any higher-level antibody features: no full sequence, homology model,
crystal structure or antigen information is required. We envisage that
the Parapred method, which is freely available to the scientific com-
munity, will become a powerful tool in the growing fields of antibody
engineering and computational design. In particular, when a bound
structure of the antibody is not available, Parapred will enable the ac-
curate identification of residues that are the most important in deter-
mining the antibody’s activity, leaving other residue positions as
available mutation sites, which can be exploited to engineer other es-
sential molecular traits, such as stability or solubility.

Conflict of Interest: none declared.
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