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We establish the Hamiltonian structure of the rate equations describing the formation of protein
filaments. We then show that this formalism provides a unified view of the behavior of a range of biological
self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further
demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously
unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow
linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these
results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific
mechanisms controlling the proliferation of fibrils.
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The formation of protein filaments is associated with a
wide range of cellular functions, including transport and
scaffolding [1,2], as well as a variety of human disorders,
such as Alzheimer’s, Parkinson’s and prion diseases [3,4].
The formal description of protein filament growth kinetics
was initiated by Oosawa [1,2] for polymer systems
growing through primary nucleation and filament elonga-
tion and was later generalized [5–7] to include secondary
pathways, where existing aggregates multiply in number,
e.g., through fragmentation [8–10], lateral branching
[6,11,12], or surface-catalyzed nucleation [7,13,14]. The
general mathematical approach underlying these descrip-
tions considers mean-field master equations for the lowest
moments of the filament length distribution, which
correspond to the most commonly accessible experi-
mental measurements of the total number and mass of
filaments [1,2,7,15,16]

dmðtÞ
dt

¼ −2kþmðtÞPðtÞ; ð1Þ

dPðtÞ
dt

¼ knmðtÞnc þ k2mðtÞn2 ½mtot −mðtÞ�; ð2Þ

where mðtÞ is the concentration of soluble monomer, PðtÞ
is the number concentration of aggregates, mtot is the total
mass of proteins and MðtÞ ¼ mtot −mðtÞ is the filament
mass. Equation (1) describes the consumption of mono-
mers through their incorporation onto the ends of existing
filaments, with the rate constant describing elongation
given by kþ. The rate constants kn and k2 are those of the
primary and secondary nucleation, respectively, and the
terms in Eq. (2) describe the formation of new aggregates
via these pathways with the exponents nc and n2 defining
the dependencies of these processes on the free monomer
concentration: n2 ¼ 0 corresponds to filament fragmenta-
tion [8,9,15], n2 ¼ 1 pertains to a secondary process with a
linear dependence on the monomer concentration, an

example of which is lateral branching [6,11,12], whereas
higher exponents n2 ≥ 2 arise in the presence of hetero-
geneous nucleation where the surfaces of filaments cata-
lyze the nucleation of new aggregates from monomers
[7,13,14].
The defining equations (1) and (2) are coupled nonlinear

equations that have been described for the past three decades
as not readily integrable [6,7]. New insights into the behavior
of the system have recently emerged from an analysis that
utilizes fixed-point theory to generate self-consistent solu-
tions to the rate laws [15,18], but the complexity of the
self-assembly process has continued to preclude the develop-
ment of a general theoretical framework to account quanti-
tatively for the kinetics in all cases. Here, we show that it is
possible to achieve this goal by establishing the Hamiltonian
structure of this classical equation system [19].
By analogy with classical mechanics, we define a

momentum coordinate as pðtÞ ¼ 2kþPðtÞ and a position
coordinate qðtÞ ¼ log½mtot=mðtÞ�, which emerges naturally
by imposing p ¼ _q in Eq. (1). This identification allows
Eqs. (1) and (2) to be cast into canonical form _q ¼ ∂H=∂p,
_p ¼ −∂H=∂q. The resulting Hamiltonian takes the form
H ¼ p2=2þ VðqÞ, with potential function

VðqÞ ¼ λ2
e−ncq

nc
þ κ2

e−n2q½ðn2 þ 1Þ − n2e−q�
n2ðn2 þ 1Þ ; ð3Þ

where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþknm

nc
tot

p
and κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþk2m

n2þ1
tot

q
are effec-

tive rate constants for proliferation driven by primary
nucleation [1,2] and secondary nucleation [7,15,28],
respectively. This Hamiltonian admits an interesting
mechanical analogy. The position coordinate q measures
the increase of fibril mass during filament growth. The
momentum p is proportional to the number of filament
ends, and the kinetic energy term p2=2 depends on the
square of the momentum. So at twice the number of ends,
the system has twice the momentum and four times the
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energy of motion. This kinetic energy term measures the
propensity of the system to move in position coordinate q,
i.e., to consume monomer subunits and form aggregates. In
the next two sections, we associate the potential energy
term VðqÞ with the driving force for filamentous growth
(see Fig. 1).
Conservation of energy.—The nonlinear and coupled

nature of the moment equations (1) and (2) has made them
challenging to study [6,7], leading to a range of specialized
numerical and analytical approaches. Here, the reduction to
canonical form allows us, instead, to follow the samegeneral
program as in classical mechanics. The total energy of the
linearly assembling system is the sum of its kinetic and
potential energy terms,whereby the potential energy decom-
poses into single contributions from each of the active
nucleation pathways [29]. Because the Hamiltonian is time
translationally invariant, ∂H=∂t ¼ 0, the total energy of the
system is conserved: H ¼ Vð0Þ ¼ λ2=nc þ κ2θ2=2, where
θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=½n2ðn2 þ 1Þ�p
; by consequence, the generation of

new filaments growth ends through nucleation can be
interpreted as the conversion of potential energy into kinetic
energy [30]. The system, therefore, moves along the
orbits Hðp; qÞ ¼ Vð0Þ, revealing a simple relationship
between the number and the mass of fibrils: pðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Vð0Þ − VðqÞ�p

corresponding to the fact that, in a
linearly assembling system, aggregates grow in such a
way that their total number and mass obey the energy
conservation relationship at all times.
Euler-Lagrange equation.—The next step in our

program involves introducing the Lagrangian L ¼ _q2=2 −
VðqÞ by exchanging p for _q ¼ p, which leads to the Euler-
Lagrange (EL) equation q̈ ¼ −∂qV. Within the classical
mechanical analogy, the term −∂qV is interpreted, there-
fore, as the driving force of the assembly reaction, whose
form is defined by the specific dependence of the various
nucleation mechanisms on the concentrations of monomers
and aggregates (Fig. 1), leading, in the case of secondary
nucleation, to a nonmonotonic driving force. Interestingly,
the potential function, Eq. (3), reveals that the time
evolution of qðtÞ, as described by the EL equation, depends
on combinations of the rate constants, kþkn or kþk2, via the

parameters λ and κ for each active nucleation mechanism.
This conclusion is consistent with the observation that if a
specific primary or secondary mechanism is dominant, then
the reaction kinetics are dominated by the corresponding
combined rate parameter [1,13,15,18].
Scaling behaviors.—Integrating the EL equation once,

or equivalently combining the conservation of energy
relationship with the identification _q ¼ p, provides an
implicit solution for qðtÞ in terms of a single integral

t ¼
Z

q

0

dq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Vð0Þ − Vðq0Þ�p : ð4Þ

Equation (4) provides additional insights into the scaling
behavior of the system. The key phenomenological observ-
able considered in the literature is the time τ at which a
certain fraction of the monomer has been consumed [e.g.,
the half-time where qðτÞ ¼ log 2]. When the rate of the
secondary process vanishes, Vð0Þ − VðqÞ ∼ λ2; thus,
Eq. (4) recovers the scaling law τ ∼ λ−1 ∼m−nc=2

tot derived
in the Oosawa theory [i.e., Eqs. (1) and (2) with k2 ¼ 0]
[1,2]. In the opposite limit, where the secondary pathway
dominates, Eq. (4) indicates a transition to an inverse scaling

of the half-time with κ such that τ ∼ κ−1 ∼m−ðn2þ1Þ=2
tot (see

the Supplemental Material [21]). It is interesting to note,
therefore, that the total energy of the system is closely
related to the sum of the relevant system time scales.
Integrated rate laws.—Integrated rate laws provide a

convenient means of establishing the values of the micro-
scopic rates for each step in the assembly pathway from
experimental measurements. Equation (4) makes it possible
to investigate the existence of such integrated rate laws for
filamentous growth processes. Previously, it has been
assumed in the literature that Eqs. (1) and (2) have no
exact closed form solutions in terms of elementary func-
tions when secondary pathways are active. Interestingly,
however, the reduction of the problem to quadrature,
Eq. (4), shows that for n2 ¼ 1 and nc ¼ 1 or nc ¼ 2,
Eqs. (1) and (2) admit an exact solution

e−qðtÞ ¼ mðtÞ
mtot

¼ ν2

λ2 coshðνtÞ þ ν2 − λ2
; ð5Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 2λ2

p
for nc ¼ 1 and ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ λ2

p
for

nc ¼ 2. Equation (5) is, to our knowledge, the first exact,
mass-conserving solution to be presented for filamentous
growth with secondary pathways. Strikingly, the effective
proliferation rate ν that emerges from Eq. (5) interpolates
between the combined rate constants for growth through by
primary, λ, and secondary, κ, pathways.
Sigmoidal-type kinetics result from many different

microscopic processes, perhaps the best known being the
case of simple autocatalytic processes, Aþ B → 2B.
Because of the similarity in overall shape, logistic and
other similar functions are commonly used to analyze
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FIG. 1. Potential energy terms and associated driving forces for
primary nucleation and secondary processes.
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filament growth kinetics. Equation (5) clearly shows that
these types of functions do, indeed, emerge from the rate
laws [31]. Unlike in the case of classical autocatalytic
growth, however, the parameter ν in Eq. (5) does not relate
to an individual microscopic rate constant, but rather
corresponds to a complex combination of the rate constants
and the monomer concentration.
System behavior when secondary processes dominate.—

Although the reduction to quadrature makes it possible to
directly connect the case n2 ¼ 1 to classical autocatalytic
growth, for higher values of the nucleation exponents,
Eq. (4) involves elliptic integrals which neither reduce to
elementary functions nor can be inverted to yield qðtÞ in
closed form. Despite the nonexistence of exact closed form
solutions beyond the case n2 ¼ 1, a more general relation-
ship to autocatalytic descriptions does in fact exist when the
reaction kinetics are dominated by the secondary mecha-
nism, which is defined by the condition κ ≫ λ. To motivate
this connection, note that, in the case n2 ¼ 1, neglecting the
term proportional to λ in the potential energy Eq. (3) leads
to the simplified energy conservation relationship
pðtÞ ¼ κð1 − e−qÞ. This proportionality between the poly-
mer number and monomer concentrations emerges because
the rate at which monomers are incorporated into fibrils
through elongation and the rate at which fibrils are created
through the secondary process are both linear in the
monomer concentration. When substituted into Eq. (1),
this linear energy relationship yields the well-known
logistic differential equation [31].
The simplified formof the energy relationship noted above

can be generalized to any secondary nucleation exponent
by considering the behavior of the system at early and late
times. In particular, linearization of the moment Eqs. (1) and
(2) shows that the polymer number and monomer concen-
trations initially grow exponentially with the same exponent
[6,7], κ, independently of the value of n2; by fixing the late
time limit Pð∞Þ ¼ θκ=ð2kþÞ, which emerges from the
Hamiltonian Hð0Þ ¼ Hð∞Þ ¼ pð∞Þ2=2 at long times, it
is then possible to construct (see the Supplemental Material
[21]) a simplified energy conservation relationship that is
valid and accurate for all values of n2 [32]

PðtÞ
Pð∞Þ ¼ 1 − e−qðtÞ=θ ¼ 1 −

�
mðtÞ
mtot

�ð1=θÞ
: ð6Þ

Interestingly, a similar energy relationship holds when only
primary nucleation pathways are active, PðtÞ=Pð∞Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ncq

p
, where the square-root can be rationalized since

for early times P ∼ t, M ∼ t2 [2,18]. Application of the
generalized energy relationship Eq. (6) into Eq. (1) results in
the generalized logistic (Richards) differential equation,
yielding the solution

e−qðtÞ ¼ mðtÞ
mtot

¼
�
1þ λ2

2κ2θ
eκt

�−θ
: ð7Þ

Note that, because the derivation of Eq. (7) neglects
primary nucleation, a critical concentration of filaments
M ∼mtotλ

2=ð2κ2Þ has been introduced in the integration
to seed the system so that the resulting expression for mðtÞ
matches the leading order term for early times [15,18]. This
critical concentration corresponds to the point at which the
potential term in Eq. (3) driven by the secondary process
becomes larger than the term relating to primary nucleation.
We also note that in the case n2 ¼ 1, corresponding to θ ¼ 1,
Eq. (7) recovers the logistic function. Moreover, in the
special case n2 ¼ 0, corresponding to breakable filaments,
Eq. (7) reduces to a Gompertz autocatalytic function [33]
mðtÞ=mtot ¼ exp ½−λ2eκt=ð2κ2Þ� as demonstrated by exploit-
ing the identity limb→∞ð1þ a=bÞb ¼ ea, with the energy
conservation equation Eq. (6) reducing to PðtÞ ¼ κqðtÞ=
ð2kþÞ ¼ κ=ð2kþÞ log ½mtot=mðtÞ�.
Equation (7) gives, in closed form, the time evolution of

the monomer concentration in a system dominated by a
secondary nucleation pathway. This result shows that
different autocatalytic descriptions are required to capture
the characteristic shapes of the reaction profiles and the
scaling behavior that is associated with the actions of the
different secondary pathways. While variations of logistic
functions have been used to fit protein aggregation data
[34,35], the specific form derived here, Eq. (7), is different
from the forms commonly used.
Unified analysis of experimental data.—Using the sim-

ple integrated rate laws that have emerged, we now show
that mechanistic information and the microscopic rate
constants can be extracted, using a global analysis [36],
from a range of experimental data describing protein
aggregation in diverse systems ranging from functional
to disease-associated systems, as shown in Table I.
The aggregation of the yeast prion Ure2p involves

filament fragmentation [9,39], and the data are, therefore,
fitted to a Gompertz function (n2 ¼ 0). The Arp 2=3
complex, when activated by Wiskott–Aldrich Syndrome
protein (WASP), has been observed to initiate branch points
along the sides of actin filaments [12,40] (n2 ¼ 1); the data
for actin can, therefore, be fitted to the logistic form.
Finally, the self-assembly of the islet amyloid polypeptide
(IAPP) involves a nucleation step (n2 ¼ 4) that is catalyzed
by the surfaces of existing filaments [13], and is, therefore,
described by Eq. (7) with θ ¼ 1=

ffiffiffiffiffi
10

p
. For each system, the

data are fitted with two global fitting parameters corre-
sponding to the combinations of the microscopic rate
parameters from λ and κ in Eq. (7).
The integrated rate laws for the three secondary mech-

anisms in Table I correspond to variations of autocatalytic
growth, which is a consequence of the different depend-
encies of the secondary nucleation processes on the free
monomer concentration. All three systems show an
exponential initial phase. The data for actin, controlled
by lateral growth, is approximately symmetric about the
time to half-completion. In contrast, the data pertaining to
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fragmentation and surface-catalysis dominated systems
show opposite asymmetries about the half-time, with the
aggregation of the yeast prion slowing down towards the end
of the reaction more rapidly than the acceleration at the
beginning of the reaction, and IAPP showing the opposite
asymmetry. These characteristic (a)symmetries are the
difference between Gompertz (n2 ¼ 0), logistic (n2 ¼ 1),
and Richards (n2 ≥ 2) autocatalytic behavior, and demon-
strate the need to use chemical kinetic analysis in order to
establish the correct functional form to describe a given
mechanism.
It is also important to note that fitting even the correct

functional form in an empirical manner does not reveal the
relationship between the fitting parameters and the true
microscopic rate constants, Table I. Moreover, without
knowledge of how the phenomenological parameters in a
fitting function depend on the monomer concentration, a
global analysis is not possible and the scaling behavior with
respect to the monomer concentration is not recovered (see
the Supplemental Material [21]).
Finally, from the analysis of the kinetic data, we can also

directly test the predictions that have emerged from
energy conservation for filamentous growth processes.
Figures 2(a)–2(c) show experimental data for the three
systems in Table I and the predicted relationships between

the polymer number and monomer concentrations that have
emerged as a consequence of conservation of energy,
Eq. (6). Moreover, overlaying all of the experimental data
and plotting, in Fig. 2(d), the Hamiltonian from Eq. (3) as a
function of time verifies that HðtÞ ¼ Hð0Þ is, indeed,
conserved in filamentous growth processes.
Summary and outlook.—Despite extensive study in the

literature over the past five decades, many advances in the
study of filamentous growth have been system dependent,
suggesting that each filament system requires a unique suite
of analytical and numerical tools to understand its behavior.
Here, by showing that the fundamental equations describing
filament formation possess canonical Hamiltonian structure,
we have, instead, been able to apply the general tools of
classical mechanics to provide a unified theoretical frame-
work for understanding the behavior of this system. Using
this approach, we have derived previously unsuggested
connections between the polymer number and monomer
concentrations and have established simple closed form
solutions that can be used to analyze experimental mea-
surements. Looking forward,with the increasing availability
of quantitative data, this approach could move us closer to
the construction of a general dynamical theory of self-
assembly processes, which represent some of the most
fundamental and inspiring aspects of biological systems.

TABLE I. Connection between filamentous growth dominated by a secondary pathway and autocatalytic processes [33]. The data for
the yeast prion (Ure2p) are from Ref. [37]; the data for actin are from Ref. [38] and have nc ¼ 3 [1,2]; the data for IAPP are from
Ref. [13] and have n2 ¼ 4 [13], nc ¼ 8. The reaction profiles shown for each protein system correspond to reactions beginning from
increasing initial concentrations of monomer: mtot: 20 μM [blue], 25 μM [orange], 38 μM [red] (yeast prion); 2 μM [green], 4 μM
[blue], 6 μM [orange], 10 μM [red] (actin); 700 μM [blue], 800 μM [orange], 1000 μM [red] (IAPP). The data sets are each fitted with
the two microscopic global parameters, kþk2 and kn=k2, that appear in the phenomenological parameter identifications for a, b. The
images are from Refs. [12,39], and [13]. Fit parameters: kþk2 ¼ 9.8 × 10−4 M−1 s−2, kn=k2 ¼ 103 M−1 (yeast prion);
kþk2 ¼ 1.8 × 107 M−2 s−2, kn=k2 ¼ 4.4 × 103 M−1 (actin); kþk2 ¼ 6.4 × 1010 M−5 s−2, kn=k2 ¼ 960 M−3 (IAPP).

Example system

Secondary nucleation exponent n2 ¼ 0 n2 ¼ 1 n2 ≥ 2
Corresponding mechanism Fragmentation Lateral branching Surface nucleation
Analogous system Gompertz Logistic Richards
Integrated rate law mðtÞ=mtot≈ exp ð−aebtÞ 1=ð1þ aebtÞ 1=½1þ aebt=c�c
Microscopic parameter identification a ¼ knm

nc−n2−1
tot =½2k2� b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþk2m

n2þ1
tot

q
c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=½n2ðn2 þ 1Þ�p

Global fit to data

Asymmetry about the time to
half-completion

Sharper approach to plateau
relative to early stage growth

Approximately
symmetric

Less sharp approach to
plateau relative to early
stage growth
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