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Conventional approaches for simulating steady-state distributions of dilute particles under diffu-
sive and advective transport involve solving the diffusion and advection equations in at least two
dimensions. Here, we present an alternative computational strategy by combining a particle-based
rather than a field-based approach with the initialisation of particles in proportion to their flux.
This method allows accurate prediction of the steady state and is applicable even at intermediate
and high Péclet numbers (Pe > 1) where traditional particle-based Monte-Carlo methods starting
from randomly initialised particle distributions fail. We demonstrate that generating a flux of parti-
cles according to a predetermined density and velocity distribution at a single fixed time and initial
location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation
in proportion to their flux, these particles are propagated individually and detected by summing
up their Monte-Carlo trajectories in predefined detection regions. We demonstrate quantitative
agreement of the predicted concentration profiles with the results of experiments performed with
fluorescent particles in microfluidic channels under continuous flow. This approach is computation-
ally advantageous and readily allows non-trivial initial distributions to be considered. In particular,
this method is highly suitable for simulating advective and diffusive transport in microfluidic devices,
for instance in the context of diffusive sizing.

I. INTRODUCTION

Monitoring diffusion in microscopic channels offers a
wide range of possibilities for determining the size of
particles in solution or the viscosity of fluids [1–8]. For
flow occurring at low Reynolds numbers, where viscous
forces dominate over inertial ones, the velocity profile can
be determined analytically for simple geometries (see for
instance Ref. [9]), a factor which gives a computation-
ally inexpensive way of simulating advective transport.
Exact results for advection coupled to diffusion are also
known for certain geometries, notably in the case of Tay-
lor dispersion [10]. In general, however, for predicting the
steady-state distributions of particles in the presence of
diffusion in arbitrary geometries, conventional strategies
rely on solving the continuity equation in three dimen-
sions [11–13].

Here we present a method for circumventing the re-
quirement to work with the probability distribution di-
rectly, an approach similar to that used for field-flow frac-
tionation [14] and for obstacles in microchannels at low
Péclet numbers [15], and show that the downstream con-
centration profile of the analyte emerges from a particle
flux. Crucially, the computational cost of calculating this
particle flux for dilute, discrete particles is only weakly
dependent on the system geometry and the boundary or
initial conditions. In particle-based simulations, the task
of solving the Fokker-Planck equation [16–19]

−∂ρ(~r, t)

∂t
=
[
~∇ · ~v +D ~∇2

]
ρ(~r, t) (1)

∗ tpjk2@cam.ac.uk

for the probability distribution ρ(~r, t) of the particles is
replaced with that of solving the corresponding Langevin
equation [20]

m~̇v + γ~v = ~Γ(t) (2)

for the motion of the particles with mass m. Here, ~v is
the particle drift velocity, D = kT/γ the diffusion co-
efficient with Boltzman constant k and temperature T ,
γ = 6πηa the friction coefficient of a spherical particle

with radius a, η the fluid viscosity, and ~Γ(t) the ran-
dom Langevin force field that ensures thermal equilib-

rium through 〈~Γ(t)·~Γ(t′)〉 = 2kTδ(t−t′). From equation
2 it can be inferred that the mean-square displacement
in each spacial dimension is 2Dt.

Focusing on the Langevin equation allows a straight-
forward implementation of complex initial or boundary
conditions as well as of inhomogeneous force fields. Fur-
thermore, this method is conceptually very simple as the
stability analysis of the Langevin equation is much sim-
pler than that of the Fokker-Planck equations that com-
monly take the form of complex partial differential equa-
tions which have to be iterated to convergence with spe-
cific boundary conditions in time and space. In spite of
these advantages our technique does not take into ac-
count self-diffusion due to shear induced single-particle
effects [21] or dynamic particle-particle interactions [22–
27]. Nevertheless, in many experiments of biophysical
interest - particularly for diffusive sizing of biomolecules
[1, 6, 7, 28] - the sample concentration is low (volume
fractions are typically below φ ∼ 10−3), and the particle
radius is much smaller than the channel dimensions (also
around or often much less than 10−3). Therefore, the
self-diffusion coefficient which at low concentration is of
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the order of φγa2 up to a proportionality constant < 1
[26], with γ the shear rate of the fluid, is generally several
orders of magnitude smaller than the Stokes-Einstein dif-
fusion coefficient D. In such a dilute regime of small par-
ticles it is therefore reasonable to neglect shear-induced
self-diffusion.

The naive evaluation of the Langevin equation by es-
tablishing a steady-state flow of particles under continu-
ous flow by creating new particles at every discrete time
step is computationally very expensive as an increasingly
large number of particles is required. A key realisation
that makes this approach practically useful is that the
steady state can in fact be simulated by loading all par-
ticles at x = 0 and t = 0 and propagating them until
they have all left the area of interest, rather than intro-
ducing new particles at every step. In applications at low
Péclet numbers, these particles can be loaded randomly
[14, 15], since diffusion will randomise the distribution in
any case. At high Péclet numbers, however, it is crucial
how the particles are initiated. Here, we show that by
initiating a (velocity-weighted) flux

Φ(x = 0, y, z) = C(x = 0, y, z) · v(y, z)/v̄, (3)

with C(x = 0, y, z) the initial concentration, v(y, z) the
fluid velocity at position (y, z) and v̄ the fluid velocity
averaged over the channel cross-section, of a given dis-
tribution at time zero, we can simulate the steady-state
downstream particle concentration by counting the num-
ber of time steps each Monte-Carlo trajectory spends in
a predefined detection region. It is important to note
that this method of initialisation and detection accounts
for the velocity profile in microchannels. Furthermore,
initialising the particle flux instead of concentration cir-
cumvents the detection bias that would occur otherwise
for particles moving slowly through the detection region
- for instance close to a channel wall.

In order to demonstrate the applicability of our ap-
proach we have compared the predicted concentration
profiles with experimentally obtained diffusive broaden-
ing of a stream of fluorescent colloids flowing continu-
ously in a microfluidic channel at steady state, starting
from their measured initial probability distribution. The
readily achievable conditions for laminar flow on microm-
eter scales thereby enables the accurate calculation of the
flow field inside the channel, thus leading to an accurate
match between predicted and measured downstream par-
ticle distributions, which is of great value for determining
the size of biomolecules.

II. SIMULATION STRATEGY

A. Description of the Problem

Figure 1 describes schematically the problem that we
wish to solve. A flux of monodisperse particles is sub-
jected to advective motion along a channel (x-axis) and

diffusive motion in all directions at high lateral Péclet
numbers - i.e., the time scale for advection along the
channel is much shorter than the time scale for diffusion
across the larger channel dimension. At a predefined dis-
tance from the initial point, the lateral distribution of
the particles can be determined experimentally - e.g., by
fluorescence microscopy - and predicted by simulation ac-
cording to Eq. 2.

In our case, the channel dimensions are w = 300 µm,
h = 25 µm, and l = 100 mm for width, height, and
length, respectively. The flow rate is 40 µl/h, which leads
to a Reynolds number of

Re =
ρvdh
η
≈ 0.07� 1, (4)

where ρ = 103 kg/m
3

and η = 10−3 Pa · s are the fluid
density and viscosity, v ≈ 1.5 mm/s is the advective ve-
locity along the channel, and dh = (2h · w)/(h + w) =
46 µm is the hydraulic diameter. For the Péclet num-
ber relating the time scales for diffusive and advective
transport

Pe =
τD
τc

=
ξ2/2D

l/v
, (5)

we distinguish the cases along the height (ξ = h) and
along the width (ξ = w) of the channel. Using a diffusion
coefficientD = kT/6πηr = 8.6×10−12 m2/s for a particle
with r = 25 nm this yields Pez = 0.55 in the vertical
direction and Pey = 79 in the horizontal direction.Note
that these values mean that, due to the channel aspect
ratio, during the time scale of the advective transport
the particles sample the entire height but only diffuse
across a part of the width of the channel. In longitudinal
direction, the Péclet number Pex ≈ 107 is large enough
that diffusion could in principle be neglected completely.

B. Numerical Simulations

In principle, a steady-state distribution of particles can
be simulated by creating a new flux of particles at ev-
ery discrete time step ∆t and propagating all of these
sets. This approach, however, requires keeping track
of a growing number of particles which is computation-
ally extremely expensive and memory-intensive if a large
number of propagation steps is desired. Furthermore, at
low Péclet numbers, the particles can be initialised in
a random distribution since their position will be ran-
domised by diffusive mixing throughout the simulation.
This, however, is not applicable at intermediate and high
Péclet numbers, and merely loading an initial concen-
tration profile will fail since that does not take into ac-
count the velocity-weight of the particle motion across
the channel cross section. Instead, we propose initiating
a large flux Φ (N > 106 particles) at x = 0 and t = 0,
whereupon these particles are individually subjected to
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FIG. 1. Schematic description of the problem addressed here. The geometry is defined by a microfluidic channel with a
rectangular cross section and a width of w = 300 µm, a height of h = 25 µm, as well as a length of l = 100 mm. A large
number of monodisperse particles is loaded at x = 0, according to a given distribution (which can be measured), and diffuses
in all spatial dimensions under longitudinal laminar flow for a time determined by the distance from the starting point to the
detection region.

advective flow and diffusion, which enables determina-
tion of the steady state simply by counting the number
of time steps tn the k-th particle spends in each lateral
bin Yl in a predefined detection region xD. This yields
the concentration per bin via

C(Yl) = ΣkΣn∆[yk(tn)∈Yl] ·∆[xk(tn)∈xD], (6)

where ∆[yk(tn)∈Yl] is the Kronecker delta function, equal
to 1 if yk(tn) is within the region Yl and 0 otherwise.

Figure 2 illustrates the creation and propagation of
fluxes at discrete time steps under advective flow. Specif-
ically, at every time point τ , a new flux of particles (sym-
bolised by a different colour) is introduced at x = 0 and
the existing particles migrate along a channel according
to a given velocity profile. For simplicity, diffusion is not
considered in this schematic. From this graph it is clear
that the flux Φ of particles depends only on the number
of iterations enacted and not on the time step at which
it was created. More formally,

Φ[x = 0, τ = j ·∆t, n = l] = Φ[x = 0, τ = 0, n = l], (7)

where τ denotes the time point at which the particles
were introduced into the device, and n is the number of
iterations effected on them. The (x, y, z)-dependence of
Φ in this term is omitted for improved readability. Note
that in practice the length of the detection region should
be much larger than the distance propagated per step but
much smaller than the distance from the start point to
the detection region. Other than the effect of averaging
the concentration profile over the length of the read area,
the results of these simulations are not sensitive to the
size of the detection region.

Therefore, the steady-state flux, which is given by

Φl(x, y, z) =

l∑
j=0

Φ[x = 0, τ = j ·∆t, n = l − j] (8)

with l sufficiently large, can be written as

Φl(x, y, z) =

l∑
j=0

Φ[x = 0, τ = 0, n = l − j]. (9)

From there, the concentration in a detection region xD
can be computed by

C(x, y, z) =
1

m

l+m∑
r=l

Φr(x, y, z)∆[x∈xD], (10)

where m · ∆t corresponds to an exposure/integration
time. This procedure results in

C(x, y, z) =
1

m

l+m∑
r=l

r∑
j=0

Φ[x = 0, τ = 0, n = r− j]∆[x∈xD],

(11)
which can now be simplified to

C(x, y, z) =

s∑
n=0

Φ[x = 0, τ = 0, n]∆[x∈xD], (12)

where s equals the number of iteration steps needed for
all the initialised particles to reach and exit the detection
region. Equation 12 is straightforwardly implemented
by performing propagation steps individually on a large
number of particles, N , until xk > xD for all k ∈ [0, N ];
note that s may differ for each particle. Specifically, nu-
merical assessment of the concentration is effected by:

(i) Initialising N particles at x = 0 in a given dis-
tribution multiplied by the longitudinal velocity
vx(yk, zk) to obtain a flux Φ[x = 0, τ = 0, n = 0],

(ii) Propagating each individual particle until xk > xD,
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FIG. 2. Schematic description of a traditional, conceptually simple but computationally expensive algorithm to determine the
steady-state distribution of particles under flow, utilising loading of a flux at a uniform distribution. At every time point ∆t a
flux of particles (marked with different colours) is created at x = 0, which is then propagated through the system. Crucially,
however, the computational efficiency of this procedure can be improved significantly with the realisation that the distribution
does not depend on the time of particle injection but only on the number of iterations n. Therefore, an adequately large number
of particles can be injected at a single time point and propagated through the entire geometry without the need for adding
additional particles at every time point. The final distribution is assessed by counting the particles resident in a detection area
at x = xD until a steady state has been reached. In this notation, Φ denotes the flux of particles introduced at position x = 0
and time τ , propagated n times (not to scale).

(iii) Recording the y-values of each particles while xk ∈
xD.

This procedure results in a histogram of y values that
corresponds to the concentration distribution inside the
channel. By also acquiring the z-values in xD, the ver-
tical profile can be simulated as well and compared, for
example, with a confocal image [2].

Taking into account diffusion and advection, propaga-
tion of the kth particle in all three spatial dimensions
in a random walk is given by the discrete version of the

integrated Langevin equation (2)

x
(i+1)
k = x

(i)
k + vx(y

(i)
k , z

(i)
k ) ·∆t

+
√

2D∆t · Random{−1,+1} (13)

y
(i+1)
k = y

(i)
k +

√
2D∆t · Random{−1,+1} (14)

z
(i+1)
k = z

(i)
k +

√
2D∆t · Random{−1,+1}, (15)

with vx the advective flow velocity in x-direction, ∆t =
0.3 ms the time interval of the simulations, D the diffu-
sion coefficient of the analyte in question, and “Random-
1,+1” selecting either -1 or +1. Note that this formula-
tion of particle Brownian motion fulfils the fluctuation-
dissipation theorem by construction [29]. Reflective
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boundary conditions are implemented at the channel
walls. Additionally, any other form of concentration-
independent migration such as electrophoresis can be in-
corporated readily into these steps. By dividing Eqs. 13-
15 by the respective channel dimension we obtain their
dimensionless form

x̃
(i+1)
k = x̃

(i)
k + vx(y

(i)
k , z

(i)
k ) ·∆t/l

+

√
∆t

τ

1

Pex
· Random{−1,+1} (16)

ỹ
(i+1)
k = ỹ

(i)
k +

√
∆t

τ

1

Pey
· Random{−1,+1} (17)

z̃
(i+1)
k = z̃

(i)
k +

√
∆t

τ

1

Pez
· Random{−1,+1}, (18)

with x̃ = x/l, ỹ = y/w, z̃ = z/h, τ = l/v, and Pej the
Péclet number along dimension j.

In the present case of laminar Poiseuille flow through
a rectangular channel with no-slip boundary conditions,
the velocity can be expressed analytically (see Ref. [9],
for instance) by

vx(y, z) = α
∑

i,j odd

sin
(
jπ z

h

)
sin
(
iπ y

w

)
ij(i2/w2 + j2/h2)

, (19)

where w and h are the channel width and height, respec-
tively, and α is a parameter such that integration over
the channel cross section yields the predefined flow rate.

Depending on the number of particles, the length of
the channel, the flow velocity, and the time step length
∆t, a simulation takes between less than one minute up
to a few hours. We note that this strategy does not take
into account changes in viscosity due to changing particle
concentrations - a limitation that is rarely a problem in
practise in light of the low analyte concentration require-
ments afforded by present-day fluorescence microscopy
techniques.

C. Particle Initialisation

The effect of the exact method of initialising the par-
ticles is demonstrated in Fig. 3. Simulations for 5 × 106

particles in a channel of width w = 300 µm, height
h = 25 µm and length l = 50 mm are performed at
Péclet numbers of Pey = 0.4, 4, and 40, by varying the
flow rate from Q = 0.4 µl/h to 4 µl/h and 40 µl/h. Here,
the time step width was chosen to be 5 ms for Pey = 40
and 25 ms for Pey = 4 and Pey = 0.4.

Particles were initialised uniformly in the left half of
the channel according to their concentration (red lines)
and their flux (blue lines), and detected by counting their
occurrence in each of the 100 lateral bins in the detection
region at xD = 50 mm.

In practise, initialisation according to concentration
was achieved by placing each particle k randomly along

the height h and half the width w of the channel. Specif-
ically,

yk = (0.5 · Random(0, 1)− 0.5) · w, (20)

zk = (Random(0, 1)− 0.5) · h, (21)

where Random(0, 1) draws a uniformly distributed ran-
dom number in the range between 0 and 1. Initialisation
according to flux additionally compares a freshly drawn
random number p to the relative flow rate v(yk, zk)/vmax

and only places the particles if p < v(yk, zk)/vmax. This
process is repeated until all N particles could be placed.
The detection algorithm increments a detector bin value
C(Yl) for every time step a particle k spends inside the
detection region, i.e.

• C(Yl) = 0 for all l;

• if yk(tn) ∈ Yl and xk(tn) ∈ xD, the value C(Yl) is
increased by 1;

• repeat until all particles k have left the detection
region xD.

The initial profiles are shown as the dash-dotted lines
in Fig. 3. At low Péclet numbers, both the flux and
concentration initialisation produce the correct profiles
due to the almost complete randomisation of the particle
positions by molecular diffusion. At intermediate Péclet
numbers, however, initialising a particle concentration
leads to an overestimation of the relative intensity close
to the edge of the channel as a consequence of the slower
flow velocity yielding increased detection counts.

These simulations demonstrate the necessity of consid-
ering an initial distribution that is proportional to a par-
ticle flux rather than a concentration. It should also be
noted that the opposite method of initialising a concen-
tration followed by velocity-weighting the detector counts
will not lead to correct results. This is illustrated by the
nearly perfect match of the readout profiles at low Péclet
numbers.

D. Downstream Collection

The detection strategy of counting particles inside a
predefined region outlined above corresponds to measur-
ing the local concentration as is effected by an optical
concentration measurement. If, however, one desires to
assess the average concentration that flows out of a chan-
nel - for instance for an off-line or downstream measure-
ment after separation according to size [6], the particle
flux per time interval through (a section of) the channel
S has to be computed and normalised by the fluid outflux

C =

∫
S
C(y, z)~v(y, z) · d~S∫

S
~v(y, z) · d~S

. (22)

This is analogous to the need for initialising the particles
as a flux for simulating their propagation.
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FIG. 3. Comparison between simulations with particles initialised as a concentration (red lines) and as a flux (blue lines) for the
case of low Péclet numbers (Pey = 0.4, dashed lines) and intermediate Péclet numbers (Pey = 4, dotted lines, and Pey = 40,
solid lines). Shown is the normalised concentration in the detection region at l = 50 mm determined via counting the number
of time steps each Monte-Carlo trajectory spends in each bin along the channel width. The initialised relative concentration
and flux are marked by the dash-dotted red and blue lines.

III. EXPERIMENTAL VALIDATION OF THE
SIMULATION STRATEGY

A. Materials and Methods

In order to test the quantitative nature of the solution
obtained from our simulations, we compared the results
of this numerical simulation with experimental measure-
ments of the transport of colloidal particles in microchan-
nels. Microfluidic channels were fabricated at a width of
w = 300 µm, a height of h = 25 µm and a length of
l = 100 mm using standard soft lithography [30]. Car-
bon nanopowder (633100, Sigma Aldrich, St.Louis MO,
USA) was added to the elastomer prior to curing to create
black devices that decrease the background from ambient
and scattered light.

A suspension of fluorescent polystyrene colloids (Flu-
oroMax G50, Thermo Scientific, Waltham MA, USA;
nominal particle radius 25 nm with a uniformity bet-
ter than 15%; density 1.05 g/cm

3
) at a volume fraction

of around 0.05% and an auxiliary fluid, here deionised
water, were supplied through a pipette tip inserted into
the respective inlet. The analyte and auxiliary fluid were
driven through the channel at a flow rate of 40 µl/h by
a negative pressure on the device outlet, applied by a sy-
ringe pump (neMESYS, Cetoni GmbH, Korbußen, Ger-
many). In a nozzle area, the colloid suspension is focused
in a narrow beam in between two flanking streams of aux-
iliary fluid. The flow of the particle suspension and of the
auxiliary fluid makes up 10 and 90% of the total flow,
respectively, and is determined by the hydrodynamic re-
sistance of the inlet channels.

To ensure full stabilisation of the Poiseuille flow pro-
file through diffusion of vorticity, we allowed the ana-
lyte to migrate longitudinally over a distance of 8.6 mm
before recording what we define as the “initial” distri-
bution. Diffusive broadening was then measured at po-

sitions downstream of this point by 10, 20, 50, and 80
mm, corresponding to average migration times of 7, 14,
34, and 56 s.

All diffusion profiles were recorded through standard
fluorescence microscopy using a cooled CCD camera
(Evolve 512, Photometrics, Tucson AZ, USA) with a
pixel size of 16x16 µm2. We note that this detection
method does not cover the z-dependence of the distribu-
tion resulting from the slower advective velocity closer to
the channel walls [2, 11]. However, since our experiments
take place in the regime of small Péclet numbers in the
vertical direction (diffusive migration distances are larger
than the channel height) it is safe to assume that the an-
alyte will sample the vertical velocity profile well enough
to average out such effects.

B. Comparison of Simulations and Measurements

Figure 4(a) shows a fluorescence microscopy image of
the initial distribution of fluorescent colloids at x = 0.
After migrating longitudinally over a distance of 80 mm,
the beam has widened considerably in the lateral direc-
tion, as seen in Fig. 4(b).

From fluorescence microscopy images at positions of
10, 20, 50, and 80 mm downstream from the initial point,
the distributions of the analyte were extracted and are
presented as the dotted lines in Fig. 4(c)-(f). The sim-
ulated profiles for different, uniform particle sizes are
shown as blue (r = 10 nm), red (r = 25 nm), and green
lines (r = 40 nm).

The excellent agreement between the measured distri-
butions and the simulation using the data-sheet value of
the colloids r = 25 nm demonstrates the feasibility of
using arbitrary (but measured) initial probability distri-
butions as starting points to simulate steady-state mass
transport and verifies the accuracy of our approach. We
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FIG. 4. (a) and (b) Fluorescence microscopy images of a stream of fluorescent polystyrene colloids with a nominal radius of
25 nm at the starting point and after propagation over a distance of 80 mm, respectively. (c)-(f) Comparison between simulated
and measured distributions at different downstream positions in the microfluidic channel. The initial experimental distribution
is measured and used as the starting flux in the simulation. Of the simulated radii, the data sheet value of the colloids of
r = 25 nm clearly matches the experimental diffusion coefficient most closely, confirming the validity of this approach.

emphasise that the simulated curves are not fits to the
data, but are generated from first principles (using the
measured initial profile) and the only free parameter is
the particle size.

Nevertheless, we can quantify the deviations of the
simulations from the measurement in a way analogous
to the reduced χ2 value: calculating the sum of square
errors per data point and normalising against an estimate
of the experimental (via the standard deviations of the
first and last 15 data points in each plot in Fig. 4) we
obtain

Σi(x
(i)
data − x

(i)
sim)2/N

σ2
exp

= 160, 380, 50, 310 (23)

for the simulations with a radius of 25 nm shown in panels
(c), (d), (e), and (f), respectively. In comparison, the
corresponding numbers for radii of 10 or 40 nm are of
the order of a thousand to tens of thousands. While the
above values for r = 25 nm are clearly larger than one,
our estimate for the variance of the experimental data
only takes into account the camera read-out noise at low
signal strengths and no deviations due to imperfections in
the channels or from additional scatterers. In this sense,
these values for the normalised square errors are to be

understood as an upper bound. As such, these results
show that the computed mass distributions approximate
the measurements to better than a factor of

√
380 ≈ 20

of the noise level.

IV. CONCLUSION

We have proposed and validated experimentally a
strategy for simulating steady-state mass transport of di-
lute particles under flow that relies on determining the
trajectories of individual particles initialised according
to their generating flux rather than solving the Fokker-
Planck equations of the probability distributions. This
approach allows for studies of systems at intermediate
and high Péclet numbers and provides a straightforward
way of incorporating measured initial profiles as well as
facile implementation of force fields, such as electric or
gravitational forces. Microfluidics as well as nanofluidics
provide particularly well-suited application platforms for
this approach since devices are typically operated in the
regime of Poiseuille flow and diffusion is widely used for
controlled mixing, separating and analysing particles in
solutions. Due to its simplicity our method is espe-
cially attractive for experimentalists determining the size
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of nanomolecules - a strategy that is receiving a great
deal of attention due to its applicability for studying
biomolecules under native conditions, for example in im-
munoassays [6, 7, 28].
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