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Abstract

Extensive amounts of information about protein sequences are becoming available, as demonstrated by the
over 79 million entries in the UniProt database. Yet, it is still challenging to obtain proteome-wide experimental
information on the structural properties associated with these sequences. Fast computational predictors of
secondary structure and of intrinsic disorder of proteins have been developed in order to bridge this gap.
These two types of predictions, however, have remained largely separated, often preventing a clear
characterization of the structure and dynamics of proteins. Here, we introduce a computational method to
predict secondary-structure populations from amino acid sequences, which simultaneously characterizes
structure and disorder in a unified statistical mechanics framework. To develop this method, called s2D, we
exploited recent advances made in the analysis of NMR chemical shifts that provide quantitative information
about the probability distributions of secondary-structure elements in disordered states. The results that we
discuss show that the s2D method predicts secondary-structure populations with an average error of about
14%. A validation on three datasets of mostly disordered, mostly structured and partly structured proteins,
respectively, shows that its performance is comparable to or better than that of existing predictors of intrinsic
disorder and of secondary structure. These results indicate that it is possible to perform rapid and quantitative
sequence-based characterizations of the structure and dynamics of proteins through the predictions of the
statistical distributions of their ordered and disordered regions.

© 2014 Elsevier Ltd. All rights reserved.
Introduction

Proteins folded in their native states experience
conformational fluctuations, which in many cases
facilitate their functions [1–6]. It has also been recently
recognized that many proteins or protein regions,
respectively known as intrinsically disordered proteins
(IDPs) and intrinsically disordered protein regions
(IDRs), are highly dynamical and do not populate
stable three-dimensional structures, even under
physiological conditions, despite being still perfectly
functional [7–12].
Because of their involvement in key biological

processes, such as regulation and signaling, and their
connections with conformational diseases and some
cancer types [9,10], IDPs have increasingly become
the center of focussed attention [7–12]. As IDPs do not
conform to the traditional sequence–structure–function
er Ltd. All rights reserved.
paradigm, a distinction is commonly made between
two classes of proteins—“ordered” and “intrinsically
disordered”. Yet, the boundary between these two
classes is not well defined, as many structured
proteins contain at least some disordered regions,
while disordered proteins tend to contain some
structured parts. Furthermore, the local stability of
different structural regions varies extensively. In the
course of their lifetimes, most proteins populate
partially or fully disordered states, which are often
crucial in determining their functional or dysfunctional
behaviors [7–13].
Detailed experimental characterization of structure

and disorder in proteins remains a difficult and costly
task, which is associated with the risk of obtaining
inconclusive results especially when not employing
a broad range of different techniques [7–12,14]. As a
consequence, to offer guidance for experiments,
J. Mol. Biol. (201 ) 427, 982–9965

mailto:mv245@cam.ac.uk
http://dx.doi.org/PietroSormanni1CarloCamilloni1PieroFariselli2MicheleVendruscolo1Nmv245@cam.ac.uk1Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UKDepartment of Chemistry, University of CambridgeCambridgeCB2 1EWUK2Department of Computer Science, University of Bologna, 40127 Bologna, ItalyDepartment of Computer Science, University of BolognaBologna40127ItalyNCorresponding author.
http://dx.doi.org/


983Prediction of secondary structure populations
to allow for large-scale studies and to facilitate the
functional annotation of proteins, a variety of sequen-
ce-based predictors of protein disorder has been
developed [14–25]. Predictions of intrinsic disorder
can be presented together with predictions of sec-
ondary or tertiary structure, as performed by some
Web servers [22,26,27], to provide qualitative insights
about the type and the stability of the structures
formed by a given protein.
In this context, since structure and disorder repre-

sent closely intertwined properties of protein mole-
cules, it would be desirable to have a predictor that
provides them at the same time. The development of
such type of predictors has beenhindered by the great
challenges in obtaining experimentally structural
information about disordered states. Here, we exploit
recent advances in the use of nuclear magnetic
resonance (NMR) chemical shifts, which aremaking it
possible to determine quantitatively the populations of
secondary-structure elements directly from the mea-
sured chemical shifts [28]. We thus introduce a
prediction method, named s2D, which offers a
sequence-based estimate of the secondary-structure
populations at the individual residue. As a conse-
quence, the s2Dmethod is simultaneously a predictor
of intrinsic disorder and of secondary structure. More
specifically, the s2D method is trained on the
secondary-structure populations calculated with the
δ2D method [28] from measured backbone chemical
shifts, and thus, it gives information about conforma-
tional properties of disordered states.
Table 1. Performance indicators from the 10-fold
cross-validation of the s2D method

μtest σtest μtrain σtrain

RH 0.817 0.007 0.836 0.001
RE 0.77 0.02 0.789 0.002
RC 0.71 0.02 0.737 0.002
MSEH 0.038 0.002 0.0340 0.0004
MSEE 0.024 0.001 0.0217 0.0003
MSEC 0.041 0.001 0.0371 0.0004
MAEH 0.140 0.004 0.1321 0.0008
MAEE 0.113 0.003 0.1063 0.0008
MAEC 0.158 0.003 0.1491 0.0009

We report the Pearson's correlation coefficients (R), the mean
square errors (MSE) and the mean absolute error (MAE) calculated
for the populations of α-helix (H), β-strand (E) and disordered
random coil (C). μ is the mean calculated on the results of the 10
different rounds of training and testing and σ is the corresponding
standard deviation. Training and testing setswere extracted from the
s2D dataset, but all reported parameters are calculated only on
entries whose secondary-structure populations were obtained from
NMR chemical shifts (i.e., entries in the δ2D dataset).
Results

In this work we present the s2Dmethod of predicting
secondary-structure populations, which consists in a
combination of artificial neural network trained with
extreme learning machines (ELMs) (see Materials and
Methods). The predictor is trained using a dataset of
protein sequences with the corresponding populations
ofα-helix,β-strand and randomcoil calculated primarily
from measured NMR chemical shifts at each residue
position (see “The δ2D and s2D datasets”). In this
context, the three secondary-structure types predicted
by the s2D method can be regarded as orthogonal
since they produce well-distinct patterns of NMR
backbone chemical shifts [28,29]. As a result, disor-
dered states that have significant populations of either
α-helix or β-strand can be distinguished from fully
random coil states without transient secondary-
structure elements, thus allowing the s2D method
to provide a detailed characterization of the confor-
mational properties of disordered states.

10-Fold cross-validation of the s2D method

In order to assess the performance of the s2D
method, we applied a 10-fold cross-validation proce-
dure to the framework described in “The architecture
of the s2D method” (Materials and Methods). Given
the 10 non-homologous subsets generated as de-
scribed in “The δ2D and s2D datasets”, we trained the
s2D predictor 10 times. Each time, a different subset
was selected for testing, while all sequences belong-
ing to the other nine subsets were used for training.
This procedure ensured that the local sequence
identity between sequences in the training and in the
testing set was always below 25%. The method
performance was assessed using the Pearson's
coefficients of correlation between the predicted and
the observed populations of the three secondary-
structure types considered (RH, RE, RC) and the
corresponding mean square errors (MSEH, MSEE,
MSEC) and mean absolute errors (MAEH, MAEE,
MAEC). Differently from the model selection (see
“Model selection”), here we calculated these perfor-
mance indicators (R, MSE and MAE) only on
secondary-structure populations obtained from NMR
data, while the few entries extrapolated from X-ray
structures were ignored in the testing, as their
secondary-structure populations are inherently less
accurate (see “The δ2D and s2D datasets”).
The results are reported in Table 1, and the

similarity of the performance indicators on the
training and on the testing sets indicates that there
is no significant over-fitting. More importantly, the
small values of the standard deviations, calculated
on the results of the 10 different training rounds,
suggest that the results in the first column of Table 1
are representative of the performance of the s2D
predictor on most protein sequences. Consequently,
on average, the s2D method can predict the
populations of secondary-structure elements of a
protein molecule—as a monomer in solution—with



Fig. 1. Validation of the s2Dmethod on structured and disordered proteins. (a) Normalized distributions of the difference
between the highest and second-highest secondary-structure populations of the residues for which the s2D prediction
agrees with the DSSP assignment (blue) and for which it does not agree (yellow). The broken line represents the median of
the second distribution. (b) Distribution of the predicted coil population of the residues belonging to regions annotated as
disordered in the DisProt database [35] (yellow) and to regions annotated as structurally determined (blue). (c) Distribution
of the predicted coil population of the residues with assigned coordinates (blue) and with missing electron density (yellow)
in a dataset of 1304 protein sequences from Ref. [37].

984 Prediction of secondary structure populations
an average error of about 14% and a correlation
coefficient of about 0.77.

Validation of the s2Dmethod on structured proteins

In order to obtain an independent validation of
the performance of the s2D method on structured
proteins, we ran the predictor on a dataset contain-
ing 1833 gapless protein sequences with less than
25% sequence identity between themselves. This
dataset was extracted from X-ray structures and
was used in Ref. [30] to test the accuracy of the
three-state predictor of secondary-structure SPINE
X. Here, we assigned the secondary structure to
each Protein Data Bank (PDB) chain with the DSSP
program [31].
The secondary-structure type predicted by the s2D

method to be the most populated at each residue
position was used for comparison with the DSSP
assignment of the X-ray structures. The analysis
reveals that the predicted most populated secondary
structure corresponds to the one assigned byDSSP in
78.6 ± 0.2% of the cases, where the error is the
standard error calculated from the Q3 score on
the different sequences. This Q3 score (accuracy of
the three-state prediction) increases slightly to 79.0 ±
0.2%when 355membrane proteins are removed from
the dataset of 1833 protein chains. Similarly, the
median segment overlap scores [32] is 73 (or 73.5
without membrane proteins), which reflect the great
sensitivity of these scores to individual residues (e.g.,
the ones at the end of observed secondary-structure
segments) whose predicted most populated state is
not the one of the crystal structure, even when this is
only marginally more populated than the one in the
crystal. Overall, the performance of the s2D method
on this dataset is comparable with that of existing
three-state secondary-structure predictors trained on
larger and less noisy databases [30].
To investigate the origins of the specific disagree-

ments between the s2D and DSSP results, we
calculated the differences between highest and
second-highest secondary-structure populations pre-
dicted by the s2D method. We found that these
differences are below 0.16 for 50% and below 0.05 for
20% of the residues for which the s2D predictions and
the DSSP assignment differ (Fig. 1a). By contrast,
when we consider the residues for which the s2D
prediction agrees with the DSSP assignment, this is
the case for only 17% and 5%, respectively. These
results are likely to reflect the known fact that some
structural motifs, which are favored energetically but
not entropically in solution, are stabilized under
crystallization conditions [33,34]. Differently from
existing three-state secondary-structure predictors,
the s2D method is not biased toward predicting such
motifs, as it is trained mostly on solution-based NMR
measurements.
Finally, we treated the s2D predictions of the

populations of α-helix, β-strand and disordered
random coil as three independent binary classifiers
and performed a receiver operating characteristic
(ROC) curve analysis using the DSSP assignments
as true outcomes (Fig. 2a). The area under the curve
is 0.96 for α-helix, 0.93 for β-strand and 0.89 for
random coil.

Validation of the s2D method on IDPs

We then applied the s2D method to the protein
sequences in the DisProt database [35], which
contains IDPs or proteins with intrinsically



Fig. 2. ROC curves calculated on two validation datasets. (a and b) ROC curves calculated for the predicted
populations of α-helix (blue), β-strand (green) and random coil (orange) considered as three independent binary
classifiers. The calculations were performed using as true outcomes the DSSP [31] assignments of the residues in the
dataset of 1883 protein sequences described in the “Validation of the s2D method on structured proteins” (a) and in the
dataset of 1034 described in the “Validation of the s2D method on structured proteins with disordered regions” (b).
Residues with missing electron density in the second dataset were considered random coil. The broken line is the line of no
discrimination and represents the ROC curve of a random guess.
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disordered regions. The predictions of the s2D
method were compared to the regions annotated as
disordered in DisProt. s2D predicted 86.5 ± 0.8% of
the residues annotated as disordered to preferen-
tially populate random coils and 88.8 ± 0.7% to
have both α-helix and β-strand populations smaller
than 0.5.
Since the DisProt database also contains infor-

mation about structurally determined regions in its
sequences, we compared the random-coil popula-
tion of the residues in regions annotated as
disordered with the one of residues in regions
annotated as structurally determined (Fig. 1b).
This comparison is not ideal as it is hindered by
two facts. First, some residues within structurally
determined regions may be found in loops of the
structures and would thus be classified as coil by
the s2D method. Second, the annotations in the
DisProt database (version 6.02) are not free from
noise, probably as a result of the different exper-
imental methods used for disorder and structure
determination. In some entries, structurally deter-
mined regions overlap with regions annotated as
disordered (e.g., DP00064, DP00702 and so on;
such entries were neglected in the analysis), and in
some others, the regions annotated as disordered
are in sharp disagreement with protein structures
deposited in the PDB (e.g., DP00355 and 2L7B,
DP00701 and chain B of 1SC5 and so on; such
entries are retained in the analysis). Nevertheless,
the two distributions in Fig. 1b, corresponding
to the s2D predictions of the coil population of
residues in the two classes, are well resolved with a
median difference of 0.25.

Validation of the s2D method on partially
structured proteins

As a further validation of the s2D method, we
applied it to a dataset of 1304 protein sequences
extracted from high-resolution (≤2.5 Å and R ≤ 0.25)
X-ray structures containing missing residues (remark
465 in the PDB annotations). These regions of
missing electron density have been associated with
intrinsic disorder because they possess a similar
amino acid composition to IDPs [36] and because
disordered regions are not expected to be detectable
in the crystals as they fail to form stable structures.
The dataset that we used was assembled in Ref. [37]
(additional file 1 therein) and contains sequences with
less than 25% sequence identity with each other and
without His tags or leading/trailing segments. The
1304 chains comprise 318,431 residues with
assigned coordinates and 14,737 disordered ones.
The latter are separated in 1954 short regions (≤30
residues) and 54 long regions (N30 residues), which
contain 19% of the disordered residues.
Secondary structures were determined for the

residues with assigned coordinates using the DSSP
program [31] and the performance of the s2Dmethod
on these residues was assessed as in “Validation of
the s2Dmethod on structured proteins”. TheQ3 score



Fig. 3. Application of the s2D
method to four proteins that form
fuzzy complexes. In all panels, the
predictions of the s2D method (left)
are superimposed with a represen-
tation of the DSSP assignment of
the protein structures shown to the
right. In the DSSP assignment, a
continuous black line denotes coil,
a broken line denotes residues of
missing electron density, a blue
rectangle denotes an α-helix and a
green arrow denotes a β-strand.
Absence of the DSSP assignments
denotes sequence regions present
in UniProt but not in the seqres field
of the PDB files. (a) The Oct-1
transcription factor (P14859) binds
to DNA acting as a clamp. The two
binding domains (PDB file 1hf0) are
connected by a linker that is disor-
dered also in the bound state,
which contributes to binding as its
shortening has been shown to re-
duce the affinity [75]. (b) The UmuD
protein (P0AG11) forms a dimer
(PDB file 1i4v) after RecA-facilitated
self-cleavage. UmuD yields a ran-
dom-coil signal in CD experiments at
physiologically relevant concentra-
tions [76]. (c) The p27Kip1 cell
cycle kinase inhibitor (P46527)
binds to the cyclin–Cdk2 complex
(PDB file 1jsu). (d) The s2D predic-
tion for the WH2 domain of ciboulot
(O97428). The structure shown is the
PDB file 3u9z, but this domain has
been reported to interact with actin in
a polymorphic way, binding in differ-
ent locations [77].
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on this dataset was 79.3 ± 0.2% (median segment
overlap score, 74.5), and the behavior presented in
Fig. 1a was observed again (data not shown). Of the
residues with missing electron density, 83.2 ± 0.5%
were predicted to mostly populate random-coil
populations, and 87.3 ± 0.4% had both predicted
α-helix and β-strand populations smaller than 0.5.
Such percentages are changed to 84.6% and
89.1%, respectively, for residues found in short
disordered regions, as well as to 76.4% and 79.5%,
respectively, for residues found in long ones. The
smaller amount of predicted random coil in long
disordered regions is compatible with the idea that
such regions might populate some structured motifs,
but their overall degree of disorder would be too high
for successful crystallization.
The distribution of the random-coil population of

residues with assigned coordinates, which include
crystallized loops, is distinct from the one of residues
withmissingelectrondensity and themediandifference
is 0.27 (Fig. 1c). In addition,we performedaROCcurve
analysis as in “Validation of the s2D method on
structuredproteins”, including the residueswithmissing
electron density as disordered random coil (Fig. 2b).
The areas under the curve on this dataset are 0.96,
0.94 and 0.89 for α-helix, β-strand and random coil,
respectively.

s2D analysis of IDPs that fold upon binding

The s2D method enables the prediction of the
populations of secondary-structure elements of
protein molecules as free monomers in solution
(see “The δ2D and s2D datasets”). Many IDPs,
however, perform their function by transiently
populating relatively structured states [7,12,38].
Notable examples of IDPs in this group are the ones
that fold upon binding, where a disordered protein or
protein region can show well-defined secondary
structures in the bound state [39,40].



Fig. 4. Application of the s2Dmethod to IDPs that fold upon binding. (a) Bar plot of the percentage of residues from the
dataset of IDPs containing preformed structural elements from Ref. [44] in the different secondary-structure types. IDPs
that fold upon binding are shown in blue, while the corresponding template proteins are shown in red. Hatched columns
correspond to the DSSP assignments of the structures of the bound complexes and plain columns to the s2D predictions.
While the s2D predictions were carried out using the full protein sequence employed in the structure determination
experiments, the analysis reported here considered only those residues whose atom coordinates were actually solved in
the experiment and for which a DSSP assignment was available. (b) Residues are divided in three classes (x-axis)
according to the secondary-structure type predicted to be the most populated by the s2D method; these are α-helix (H),
β-strand (E) or random coil (C). The box plots are the distributions of the predicted populations in each class, further
divided into residues belonging to the IDPs that folds upon binding (blue), to their template proteins (red) and to the dataset
of structured proteins employed in “Validation of the s2D method on structured proteins” (yellow). In each box the
horizontal black line denotes the median of the distribution; the white star, the mean. Notches represent the standard error
about the median calculated with 105 bootstrap cycles, whiskers extend from the 5th to the 95th percentile of the
distribution and boxes from the lower to the upper quartile.
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To illustrate how the s2Dmethod performs in such
cases, we ran it on four IDPs that have been reported
to form fuzzy complexes (Fig. 3), that is, complexes
that show some residual (e.g., after binding) degree
of disorder but are generally amenable for structural
studies [41,42]. The predictions of the s2D method
qualitatively resemble the secondary-structure
elements observed in the bound states (Fig. 3).
However, these are predicted to be populated at
a relatively low extent and, in some cases, the
secondary-structure type observed in the bound
structure is less populated than random coil in the
s2D predictions (e.g., third, fourth and seventh
α-helix in Fig. 3a; first α-helix in Fig. 3b; the β-strand
and the last α-helix in Fig. 3c). These results are
compatible with the view that the free-energy
landscapes of monomeric IDPs already contain
conformations very similar to the bound structures,
which are subsequently stabilized upon binding by
the presence of the binding partner [43–45].
To further investigate this matter, we used a

dataset of 22 IDPs for which a bound structure was
available [44]. These proteins contain disordered
segments that undergo disorder-to-order transitions
upon binding, which have been referred to as
molecular recognition features/molecular recogni-
tion elements [46–48] or preformed structural
elements and prestructured motifs [44,49]. We ran
the s2D method on all IDPs and on all protein
template structures on which IDPs are bound.
Figure 4a compares the number of residues in
each secondary-structure type according to the s2D
method, with that obtained from the DSSP assign-
ments of the structures of the complexes. While the
agreement is remarkable for the template globular
proteins (in red), the s2D method slightly underes-
timates the number of residues in α-helix or β-strand
for the bound IDPs (in blue), as expected from the
fact that these proteins have been reported as
disordered in their monomeric state. However since
many IDP residues were predicted to mostly
populate structured states (either α-helix or
β-strand), we asked whether the predicted popula-
tions of such structural motifs were, on average,
smaller than those of corresponding motifs in struc-
tured proteins. To address this problem, we grouped
residues according to the secondary-structure type
predicted to be the most populated by the s2D
method, andwe looked at the population of such types
in IDPs that fold upon binding, in the template proteins
and in the structured proteins of the dataset of
“Validation of the s2D method on structured
proteins”, which we employ here as an additional
control. The results reveal that structured motifs in
IDPs that fold upon binding are predicted to be
significantly less populated than the corresponding



Fig. 5. Analysis of the IDP tau
(a) Results obtained using three
di f ferent disorder predictors
PONDR-FIT™ [25] (magenta), DIS-
OPRED 3 [18,73] (lilac) and Dis-
EMBL™ [19] (purple). (b) Results
obtained with two different secon-
d a r y - s t r u c t u r e p r e d i c t o r s
PSIPRED version 3.5 [71,72] (top)
and JPRED3 [78] (bottom). Boxes
represent α-helices (blue) and ar-
rows represent β-strands (green)
(c) Secondary-structure population
predicted with the s2D method
colored blue for α-helices and
green for β-strands.
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motifs in structured proteins, while their disordered
regions tend to have a larger coil population than the
loops in structured proteins (Fig. 4b).
Taken together, these results are compatible

with the existence of preformed structural motifs
that facilitate the disorder-to-order transition upon
binding, and they suggest that the s2D method
tends to predict the conformational properties of a
“mixed” state, where the structural motifs of the
bound state are present in the prediction, albeit at a
relatively low population.

Applications of the s2D method

In order to present the opportunities offered by the
s2D method of predicting secondary-structure pop-
ulations, we applied it to well-characterized IDPs and
.

:

:

.

,

we compared its results with those of existing
predictors of secondary structure and of intrinsic
disorder. Confronting the prediction of intrinsic
disorder with the one of three-state secondary
structures (Figs. 5a and b and 6a and b; Fig. S1a
and b) reveals the challenge of combining these two
types of predictions in order to estimate the extent to
which structural elements are populated, also
because these two types of predictions are some-
times contradictory.
This problem is illustrated, for instance, by the

case of the C-terminal region of tau, which is
predicted to contain one α-helix and some short
β-strands by PSIPRED and by JPRED3 (Fig. 5b),
two of the most commonly used three-state secon-
dary-structure predictors, while it is characterized as
highly disordered according to the predictors of



Fig. 6. Analysis of the intrinsically disordered Aβ42
peptide. (a) Results obtained using three different disorder
predictors: PONDR-FIT™ [25] (magenta), DISOPRED 3
[18,73] (lilac) and DisEMBL™ [19] (purple). (b) Results
obtained with two different secondary-structure predictors:
PSIPREDversion3.5 [71,73] (top) andJPRED3 [78] (bottom).
Boxes represent α-helices (blue) and arrows represent
β-strands (green). (c) Secondary-structure population
predicted with the s2D method, colored blue for α-helices
and green for β-strands.
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intrinsic disorder that we tested (Fig. 5a). Similarly,
the N-terminal region of α-synuclein is predicted to
be in an α-helix conformation by PSIPRED and by
JPRED3 (Fig. S1b), while it is disordered according
to two out of the three predictors of intrinsic disorder
that we tested (Fig. S1a). PONDR-FIT™ and
DISOPRED3 predict a disorder probability of over
70%, and DisEMBL™ [19] sets it to about 25%. A
similar situation is observed for the central and
C-terminal regions of Aβ42 (Fig. 6a and b). In
particular, residues 5–10 and 37–41 are predicted to
have a high propensity for being unstructured by the
disorder predictors (Fig. 6a) but to form β-strands by
the secondary-structure predictors (Fig. 6b).
A problem in combining the use of disorder and

secondary-structure prediction methods is that one
does not obtain direct information about the stability
of the predicted secondary-structure elements or
about the conformational properties of the disor-
dered states, even in those regions where the two
types of predictions are not in contrast. The s2D
method is designed instead to provide such
information.
In the case of tau, the s2D method predicts the

whole protein to be disordered, with some structural
motifs moderately populated in the C-terminal
region. Interestingly, the C-terminal α-helix predicted
by both PSIPRED and JPRED3 (residues 746–755)
is present in the s2D prediction as well, but it is
populated at only about 40% in agreement with the
observation that this region is disordered according
to the predictors of intrinsic disorder that we tested.
Analogously, in the case of α-synuclein, the s2D

method predicts the whole sequence to be disor-
dered, with the highest amount of random-coil
population in the residues at the C-terminus (residues
95–140; Fig. S1c). This prediction is consistent with
experimental measurements on the monomeric state
of α-synuclein in solution, by both circular dichroism
(CD) [50] and NMR spectroscopy [51], performed also
in vivo in Escherichia coli cells [52]. In addition, the
s2Dmethod predicts some amount (≈30%) of α-helix
population for the first residues of the N-terminus
(residues 2–22) and a similar amount of β-strand and
α-helix population for residues in the central part
(residues 37–95). These predictions are in agreement
with recent results that characterized the distinct roles
of the different regions of α-synuclein in the process of
association with lipid membranes [53]. The N-terminal
α-helix (residues 1–25) was shown to form on the
membrane acting as a stable anchor that strongly
binds the monomer to the lipid layer, while a central
α-helix (residues 37–95) is more transiently populated
on the membrane and modulates the affinity [53]. In
the light of these results, one may expect to find a
degree of α-helical population also in the membrane-
free solution state of α-synuclein, as predicted by the
s2D method (Fig. S1c). Likewise, the region of small
β-strand population matches the residue range that
includes the proposed five strands of the β-sheet
sandwich core of the fibrillar structure [54]. Thus, the
predicted populations of β-strand and α-helix are in
qualitative agreement with existing experimental data.
While the populations of the structuralmotifs predicted
by the s2D method slightly overestimate those
calculated from the chemical shifts [28]—by an
amount compatible with the results in Table 1—they
are of similar magnitude to those reported in a recent
study that combines NMR chemical sifts, residual
dipolar couplings and small-angle scattering to obtain
an ensemble description of α-synuclein [55]. Howev-
er, while the s2D predictions suggest a higher degree
of random coil in the C-terminal region (Fig. S1c,
observed also in the chemical shift analysis [28] and in
solid-state NMR [53]), the populations reported in Ref.
[55] are more uniform along the sequence.
Similarly, in agreement with the s2D predictions,

the Aβ42 peptide has been reported to be mostly
disordered at physiological conditions, as assessed
by different techniques including CD, NMR and
molecular dynamics simulations [56]. However, most
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kind of secondary structures, including α-helices and
β-strands, can become significantly populated as a
result of changes in conditions [57,58] (e.g., temper-
ature and pH) or formulation [59,60] (e.g., presence of
trifluoroethanol or micelles), suggesting that states
other than random coil might be marginally populated
even at physiological conditions.
To illustrate the applicability of the s2D method to

large-scale analysis, we used it to investigate the
human cytosolic proteome. The analysis reveals
that a large number of proteins (or protein domains)
for which a crystal structure is not yet available have
a predicted degree of disorder similar to that found
in proteins successfully crystallized. In particular,
the distribution of mean coil population of protein
domains (or whole protein sequences in some
instances) that have been employed in crystallo-
graphic experiments has a large overlap with that of
proteins that have not yet been crystallized (blue and
yellow distributions in Fig. 7b). In addition, the
distribution of the mean coil population across the
human proteome is fully consistent with previously
reported results stating that IDPs, or proteins highly
enriched in disordered regions, constitute a large
fraction of the proteome itself [18,61].
The analysis presented in Fig. 7 was carried out

extracting from the human reference proteome of the
UniProt Web site protein sequences with assigned
cytosolic subcellular location. Non-X-ray structures
were excluded from the mapping to the PDB provided
by UniProt [62]. Such mapping relies the sequence
that was used in the crystallography experiment and
not on those residues for which coordinates have
Fig. 7. s2D analysis of the human cytosolic proteome. (a) Pr
protein sequences that have been crystallized fully or in part
never been crystallized (blue). (b) Histogram reporting the
distributions of the mean coil population of subsequences of pro
X-ray experiments (yellow) and that have not (orange).
actually been assigned. This implies that some of
the sequences considered as “crystallized” might
comprise a large number of residues with missing
electron density (remark 465). This likely explains the
tail toward disordered states observed in the yellow
distribution in Fig. 7b.
Discussion

In this work, we have described the s2D method
of predicting secondary-structure populations of
proteins from their amino acid sequences. A 10-fold
cross-validation procedure was applied, showing that
the s2D method can predict secondary-structure
populations with amean absolute error of about 0.14
and a mean coefficient of correlation of 0.77.
We validated the predictions provided by the s2D

method on three independent datasets containing
protein sequences not employed in training or testing:
a first dataset of structured proteins, a second one of
disordered proteins (the DisProt database [35]) and a
third one of structured proteins enriched in disordered
regions, as assessed by regions of missing electron
density in the X-ray structures. The results show that
the s2D method predicts the secondary-structure
populations assigned to the X-ray structures with a
Q3 score above 79% and can identify disordered
regions with an accuracy of about 85–88%, depend-
ing on the definition of disorder employed.Wesuggest
that the scores from these validations may represent
lower bounds of the actual performance because
some secondary-structure elements that are favored
obability distribution of the mean random-coil population of
(green) superimposed to the one of sequences that have
two distributions in (a) (here non-normalized) and the
teins from the green distribution that have been used in an
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energetically but not entropically are stabilized under
crystallization conditions [33,34]. Such motifs would
thus be observed in the crystals but would not be
highly populated in solution, where the NMR mea-
surements used to train the s2D method were
performed. The results in Fig. 2a are consistent with
this possibility for a large fraction of the residues for
which the s2D prediction is in disagreement with the
crystal structure assignment. Similarly, possible struc-
tural preferences of disordered states are not embod-
ied in these validation datasets. Therefore, there is
currently no fully reliable way to tell whether the small
populations of secondary structure, which s2D some-
times predicts in disordered states, are accurately or
erroneously predicted. Taking these considerations
into account, for structured proteins, the performance
of the s2D method on these validation datasets is
comparable to that of the state-of-the-art predictors of
secondary structures [30]. At the same time, for
disordered proteins, its performance is also compa-
rable to that the state-of-the-art predictors of intrinsic
disorder [22].
Our motivation for developing the s2D method is

that, although disorder and structure are intimately
related concepts, it is often not immediate to obtain an
overall view of the conformational properties of a
proteinmolecule by looking simultaneously at existing
predictions of secondary structure and intrinsic
disorder. In fact, most existing secondary-structure
predictors have been built by exploiting static infor-
mation extracted fromX-ray structures of native states
of proteins, and thus, they may not be ideally suited
to account for protein dynamics. Conversely, the
majority of the existing disorder predictors have been
developed by defining disorder as the “absence of
structure” (e.g., from the missing electron densities
in X-ray structures) and may not contain specific
characterizations of the conformational properties
of disordered states. These differences result for
many proteins in large gaps between the two types of
prediction, which prevents a clear quantification of the
structure and dynamics of the molecule under
scrutiny. To address this problem, the s2D method
bridges the gap by predicting directly the populations
of secondary-structure elements, which allows for a
unified prediction of structure and disorder.
We anticipate that, with the progressive increase

in the size of the Biological Magnetic Resonance
Data Bank (BMRB) database and the growing
accuracy of chemical shifts analysis techniques, it
will become possible to train the s2D method on a
larger and less noisy database. This development
would both improve the performance of the method
and allow for a more detailed characterization of the
populations of different secondary-structure ele-
ments, which may include other types of secondary
structures, such as polyproline II. Similarly, improve-
ments in the resolution of chemical shift analysis will
allow for a more finely tuned characterization of the
coil states, distinguishing between highly dynamic
states typical of fully disordered regions and relatively
static states found in some globular proteins [29,63]
(Fig. S2).
Quite generally, the possibility of performing

sequence-based predictions of statistical popula-
tions of ordered and disordered regions will enable a
rapid and quantitative assessment of the structure
and dynamics of proteins and proteomes.
Materials and Methods

Artificial neural networks with ELMs

The s2D predictor relies on the machine-learning
algorithm of single-hidden layer feedforward neural
networks (SLFNs) trained with ELMs [64]. An important
aspect of ELMs is that, differently from many other
learningmethods, their universal approximation capability
has been proven [65]. In addition, a major practical
advantage of ELMs is that their speed during the learning
phase allows a large number of different models to be
tested.
Unlike other learning algorithms, ELMs randomly assign

the weights of the connections between the input and
the hidden layer (the hidden weights, W) and keep them
fixed during training. Only the weights of the connections
between the hidden layer and the output layer (the output
weights, β) are actually trained. Since the hidden weights
are held fixed, the output weights can be analytically
determined, yielding a learning speed that can be
thousands of times faster than the one of conventional
approaches for training feedforward neural networks [65].
The output vector o = {o1,⋯, om} of a SLFN can be

mathematically expressed as

o j ¼ ∑
Nh

i¼1
β j ihi ¼ ∑

Nh

i¼1
β j i g w i � xð Þ ð1Þ

where the dot denotes the inner product, h is the
hidden-neuron vector containing Nh hidden neurons that
includes a bias neuron with hb = 1, g is the activation
function, x = {x1,⋯, xn}

T is the input vector formed of n input
neurons andwi is theweight vector connecting the ith hidden
neuron with the input neurons. The idea behind training is
that, given N arbitrary distinct samples (xk, tk), where tk =
{t1k,⋯, tmk}

T represents the observed output (target of the
training) corresponding to the input xk = {x1k,⋯, xnk}

T, there
exist two matrices β and W such that ∑k = 1

N ‖ok − tk‖ = 0.
In the context of ELMs, the weights in the matrix W are

held fixed and, in practice, the output weights β, represented
by a matrix of size m × Nh, can be determined by fitting
the target output T = [t1,⋯, tN]m × N using a least-square
approach [66] so that

β ¼ TH−1 ð2Þ
whereH−1 is the Moore–Penrose generalized inverse of the
matrix H ¼ h1;⋯;hN½ �Nh�N [67]. It can be shown that this
choice for H−1 minimizes both ‖T − βH‖ and ‖β‖ [65].
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The δ2D and s2D datasets

To train and test the s2D predictor, we assembled a
dataset of protein sequences with assigned NMR chemical
shifts, which were then used to calculate the correspond-
ing secondary-structure populations using the δ2Dmethod
[28]. We downloaded the full release of the BMRB [68] and
filtered it in order to obtain a database representative of
the conformational properties of protein molecules when
present as free monomers in solution. Molecules other
than proteins, proteins in complex and chemical shifts
measured at extreme experimental conditions were left
out. Included entries corresponded to experiments carried
out in solution, at temperatures between 10 and 42 °C
and at a pH between 5.5 and 8. These threshold values
were chosen as a trade-off between measurements at
physiological conditions and number of entries in the
resulting dataset.
Moreover, since we wanted the s2D method to predict

the secondary-structure populations of monomeric
states in solution, we excluded entries with samples
containing micelles, denaturants or other compounds
that might affect the behavior of the protein. The
remaining entries were used for the δ2D calculation.
As some of the sequences had some residues with an

insufficient number of chemical sifts assigned, the resulting
δ2D secondary-structure populations had some gaps. We
analytically continued the secondary-structure population
profiles for sequences where at least 70% of the residues
had enough assigned chemical shifts and no individual gap
was longer than four consecutive amino acids. Sequences
not matching any of these two criteria were discarded.
This procedure resulted in the δ2D dataset, which

contained 2223 protein sequences with their correspond-
ing secondary-structure population profiles. Since in this
dataset there is a degree of noise due to the variety of
experimental conditions included, and of sequence
similarity, it would be desirable to increase its size to be
able to extract sufficiently large training and test sets for
the s2D predictor. In addition, entries in the δ2D dataset
have secondary-structure populations biased toward
disordered random coil (Fig. S3a), with only 18% of the
residues preferentially in β-strand conformations. While
this probably reflects the relevance of NMR in studying
disordered states of proteins, it may bias the training of
s2D toward disordered states. Consequently, we sought
to increase the size of the dataset, with particular attention
to incorporating more residues in a β-strand conformation.
Having exhausted the available protein sequences with

assigned chemical shifts, we decided to exploit the large
number of X-ray structures present in the PDB. In order to
match the secondary structures in the crystal state to the
secondary-structure populations characteristic of solution
states, we considered that the structures formed by
proteins belonging to thermophilic organisms would be
highly stable in the temperature range of the δ2D dataset.
Thus, we started with 10,649 PDB chains of proteins from
thermophilic organisms and filtered them for gapless
chains, belonging to non-membrane and non-nucleotide-
bound proteins, with less than 25% sequence identity with
each other and at least 18% of the residues in β-strand
conformations. This yielded 448 sequences (Fig. S4 and
Supplementary File 1), whichwere added to the δ2Ddataset
assigning a population of 1 to their secondary-structure
elements (determined with the DSSP program [31]), thus
resulting in the s2D dataset of 2671 sequences.

This procedure increased the number of sequences by
about 20% and helped remove biases toward disordered
states by increasing the number of residues in β-strand
conformations by 83% and in α-helix conformations by
47% (Fig. S3). In the s2D dataset, we introduced some
additional noise since assigning a population of 1 to the
secondary-structure elements is likely to overestimate
their stability to some extent despite having used only
highly stable proteins from thermophilic organisms. Howev-
er, weanticipate that the growing size of theBMRBdatabase
will soon allow building a new, larger δ2D dataset derived
solely from NMR chemical shifts and containing minimal
amount of noise, which will further improve the performance
of the s2D method.
In order to extract a subset of sequences from the s2D

dataset to be used for testing, as performed in Ref. [66],
we clustered the sequences by local similarity (computed
with BLAST [69]) with a 25% sequence identity cutoff.
From these clusters, we created 10 different groups of
sequences that internally confined local sequence
homology (Supplementary File 1), which were then used
to perform the 10-fold cross-validation procedure.

The architecture of the s2D method

The s2D predictor is built by using a combination of artificial
neural networks trained with ELMs. This procedure consists
in a three-step iterative prediction of secondary-structure
populations, which allows to include in the input for the final
prediction both global and local information about the protein
sequence.
For each protein target, a sequence profile is generated

using the position-specific scoring matrix (PSSM) obtained
with the PSI-BLAST program [70], and one additional
parameter is assigned to each position along the sequence
to represent the identity of the amino acid actually found
at that position (Table S1). Consequently, each residue
in a protein sequence is represented by 22 input values
(21 come from the PSSM and 1 from Table S1).
The PSI-BLAST search is carried out with a procedure

similar to the one described in Ref. [71]. It is performed
against the UniRef90 dataset [72], which was filtered
to remove trans-membrane segments, coiled-coil and
low-complexity regions using the pfilt program distributed
with PSIPRED [73]. The PSSM information is extracted from
the ASN.1 checkpoint file rather than from the actual output
of PSI-BLAST, asBLAST+ [69] by default savesPSSMdata
after rounding them down, hence loosing precision.

(i) The first step of the s2D prediction is performed using
two SLFNs. The two networks are identical in
architecture, but the first employs a sliding window of
11 amino acids and the second a sliding window of 15
amino acids, for a total of 242 and 330 input neurons,
respectively. Each network has 3 output neurons,
corresponding to the secondary-structure populations
of α-helix, β-strand and random coil of the central
residue in the sliding window. Vacant locations in the
windows around residues near the termini of a protein
are assigned all zeros as input values. Both
networks have 4000 hidden nodes. For compari-
son, since the first layer of weights is randomly



993Prediction of secondary structure populations
assigned in the context of ELMs, an SLFN with 4000
hidden nodes trained with ELMs is equivalent, in
terms of number of free parameters, to an SLFN
trained with standard learning algorithms (e.g., back--
propagation) with 242 input and 3 output nodes (like
ours) and 49 hidden nodes.

(ii) The second step consists in predicting the mean
secondary-structure populations of the entire pro-
tein (mean populations of α-helix, β-strand and
random coil, calculated from the assigned chemical
shifts), using an N-to-1 network. N-to-1 networks
are aimed at encoding a whole sequence into a
single object, overcoming the machine-learning
problem of the variable length of biological se-
quences [74]; their formulation with ELMs is
described in Ref. [66]. In the framework of the
s2D method, the N-to-1 network uses as input, for
each amino acid in the sequence, the 22 values
previously described and the 6 additional values
corresponding to the outputs of the two networks
employed in the step (i). This network has 150
hidden nodes and predicts three output values: the
mean populations of α-helix, β-strand and random
coil of the protein sequence, as calculated from the
chemical shifts using the δ2D method. This
approach is superior to simply calculating by aver-
aging over the sequence the mean populations from
the predictions of the two networks in step (i). The
N-to-1 network, exploiting the information contained
in the sequence profile, is able to overcome possible
inaccuracies of the first prediction, yielding more
precise mean populations.

(iii) The third and final step of the s2D prediction
employs again an SLFN. However, differently from
the first step, this network has a sliding window of 5
amino acids and 3600 hidden nodes and uses the
same input values per residue as the N-to-1
network of step (ii), plus the mean populations
predicted by the N-to-1 network itself. Conse-
quently, this network has access to the predicted
secondary-structure populations of all five resi-
dues covered by its window and thus can correct
the predictions for the central one using the
predicted populations of the residues at its sides.
Moreover, the N-to-1 provides it with valuable
information about the global properties of the
protein sequence under scrutiny, which can be
exploited to partially account for the stabilizing
effect of the tertiary structure. For instance,
chances are that the structural motifs of a protein
that is mostly disordered are not stabilized by
tertiary contacts, while the opposite can be
conjectured for highly structured proteins.
Model selection

The ELM models described above depend on specific
parameters (amino acid representation, scaling parameter
of the random weights, number of hidden neurons, the size
of the input window) that influence the overall predictive
capacity of the s2D method and need to be optimized.
Moreover, different combinations of networks in the
three-step iterative prediction can affect the performance
of the s2D method, and the best combination needs to be
selected.
Although we did not systematically search through the

vast number of possible combinations of networks and
network topologies, many combinations were tried (data
not shown). Model selection was carried out by training the
networks on 9 of the 10 subsets of sequences described at
the end of “The δ2D and s2D datasets” and by using the
remaining one as a benchmark (testing set). This approach
ensures that the local sequence identity between training
and testing proteins is always below 25%.
The comparison between the different network combina-

tions and topologies that were tested was performed using
as performance indicators the Pearson's correlation coeffi-
cients between the predicted and the observed populations
of the three secondary-structure types considered (RH, RE,
RC) and the corresponding mean square errors (MSEH,
MSEE, MSEC) and mean absolute errors (MAEH, MAEE,
MAEC), all evaluated on the sequences in the testing set.
While for the two networks of step (i) and for the final

network of step (iii) we found that different sets of random
weights W did not have any significant influence on
the performance indicators and we observed a weak
dependence for the N-to-1 network of step (ii), consis-
tently with previous reports for this type of networks [66].
These results are likely to reflect the fact that the
stochastic nature of ELMs becomes more apparent with
a smaller number of free parameters. Thus, in order to
take account of the dependence on the initial weights, 5
sets of random weights were generated for each tried
N-to-1 architecture. The N-to-1 network parameters were
then tuned using the mean values of the performance
indicators, and the network that best performed on the
testing set was used to train the final network of step (iii).
The same training and testing sequences were used in

model selection for all tried combinations of networks and
network topologies, and only the selected model (described
in “The architecture of the s2D method”) was subjected to a
thorough 10-fold cross-validation procedure (see “10-Fold
cross-validation of the s2D method”).
Availability

The s2Dmethod is available as aWeb server† and
executable and source code can be downloaded
from the samewebsite under the GNUGeneral Public
License.
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