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Third generation antibody discovery methods:
in silico rational design

Pietro Sormanni, * Francesco A. Aprile and Michele Vendruscolo *

Owing to their outstanding performances in molecular recognition, antibodies are extensively used

in research and applications in molecular biology, biotechnology and medicine. Recent advances in

experimental and computational methods are making it possible to complement well-established in vivo

(first generation) and in vitro (second generation) methods of antibody discovery with novel in silico

(third generation) approaches. Here we describe the principles of computational antibody design and

review the state of the art in this field. We then present Modular, a method that implements the rational

design of antibodies in a modular manner, and describe the opportunities offered by this approach.

Introduction
Antibodies and antibody fragments

Antibodies are proteins produced by the immune system to
target and neutralise pathogens and toxins. The binding of
antibodies to their target molecules, referred to as antigens,
triggers their elimination by activating downstream processes
in the immune response. Furthermore, when it occurs to
functionally relevant regions, the binding can also neutralise
the antigen directly. Antibodies are tetrameric proteins with
a characteristic Y-shaped structure, consisting of two pairs of

heavy and light chains (Fig. 1). The tips of the Y are formed by
the variable domains of the heavy (VH) and light (VL) chains,
and contain the binding regions (paratopes). The paratopes are
usually located within six binding loops, three per variable
domain, which are referred to as the complementarity deter-
mining regions (CDRs), as they mediate the interaction with
the target regions of the antigens (epitopes). The base of
the antibody, called the crystallisable fragment (Fc) region,
regulates the communication with other parts of the immune
system, and it contains conserved glycosylation sites that modu-
late these interactions. By exploiting sophisticated processes of
genetic recombination followed by somatic hypermutation and
clonal selection, the adaptive immune system generates novel
antibodies against new antigens to great effect and staggering
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diversity, thus making antibodies the most versatile among the
currently known classes of binding molecules.1–3

Because of their ability to bind a large variety of molecular
targets with high affinity and specificity, antibodies have been
the focus of a wide range of technological developments aimed
at isolating, producing, and optimising these molecules for
specific targets of interest. Antibodies have thus become key
tools in research and diagnostics, and represent the fastest-
growing class of biological therapeutics on the market. The
therapeutic antibody market is projected to steadily rise for the
next several years, and it is expected to reach $125 billions by
2020.4–6

Different fragments derived from the immunoglobulin struc-
ture retain binding and biological activity (Fig. 1). For example,

Fab fragments retain the antigen-binding function while lacking
the Fc-mediated effector function, single-chain antibodies (scFv)
consist in the VH and VL domains connected by a linker, and
single-domain antibodies (known as sdAb, VHH or nanobodies)
have been isolated from camelids and some species of sharks, as
well as engineered from human VHs.7–9 These smaller antibody
fragments have gained momentum for some applications, as they
have thermodynamic stabilities comparable to those of full-length
antibodies but can usually be expressed in prokaryotic systems.
In particular, their small size may enable better target engagement
by allowing for deeper penetration into tissues and active sites.
The Fab and scFv formats, for example, are widely used in the
recombinant display and engineering technologies that are exten-
sively applied to isolate new antibodies.10

Third generation antibody discovery methods

Well-established procedures for the discovery of novel anti-
bodies can be broadly classified into in vivo and in vitro
approaches, which are often used in synergy. In vivo (first
generation) approaches harness the power of an immune
system to generate the required antibodies, traditionally
through animal immunisation, and more recently also from
human patients.11,12 By contrast, in vitro (second generation)
approaches rely on the laboratory construction of large libraries
of antibody sequences mimicking the diversity achieved by
the immune system, and thus likely to contain some binding
molecules for each given antigen. In both cases extensive
laboratory screenings or deep-sequencing and advanced analysis13

are needed to isolate those antibodies actually binding to the
intended target. Synthetic libraries can be built from human
DNA sequences, and can now routinely generate antibodies
with binding affinities down to the pM range, and for some
targets even fM.14 However, as these antibodies do not undergo
the in vivo selection process carried out by the immune system,
they often possess poorer biophysical properties than those

Fig. 1 Structures of an antibody and of common antibody fragments. An antibody structure is shown on the left with the heavy (H) and light (L) chains in
blue and green, respectively. Complementarity determining regions (CDRs) containing the paratopes are coloured in red, and the heavy and light variable
domains (VH and VL) are labelled. The antigen-binding fragment (Fab) region is responsible for recognising the target, while the crystallisable fragment
(Fc) region for immune function and lysosome escape. Two commonly used fragment formats are shown: a Fab fragment, which retains monovalent
antigen binding while lacking the effector function, and a single-domain antibody, which corresponds to an autonomously folding VH domain. The three
CDR loops are highlighted in red on this domain.

Michele Vendruscolo

Prof. Michele Vendruscolo is the
co-director of the Centre of
Misfolding Diseases (University
of Cambridge). He obtained a
PhD in Condensed Matter
Physics at the International
School for Advanced Studies
(Trieste, Italy) in 1996, and
since 2010 he is Professor of
Biophysics at the Department of
Chemistry, University of
Cambridge. He was awarded the
Soft Matter & Biophysical
Chemistry Award by the Royal

Society of Chemistry (UK) in 2013, and the Giuseppe Occhialini
Prize jointly by the Institute of Physics (UK) and the Italian Physical
Society (Italy) in 2017 for his research on the fundamental
principles of protein aggregation, solubility and homeostasis.

Review Article Chem Soc Rev

Pu
bl

is
he

d 
on

 0
9 

O
ct

ob
er

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

 o
n 

12
/1

8/
20

18
 7

:5
5:

08
 A

M
. 

View Article Online

http://dx.doi.org/10.1039/c8cs00523k


This journal is©The Royal Society of Chemistry 2018 Chem. Soc. Rev., 2018, 47, 9137--9157 | 9139

derived from mammalian platforms.15 Conversely, antibodies
of non-human origins may elicit adverse immune responses
when used as therapeutics.16 Much effort is being devoted to
overcome these limitations, for example advances in in vivo
DNA manipulation have been exploited to genetically engineer
mice able to produce human antibodies, which can thus
be obtained through immunisation.17–20 The wide range
of established technologies of these types that are available to
scientists for the discovery of novel antibodies has recently
been extensively reviewed.21–23 Here we focus instead on the
emerging field of in silico (third generation) discovery methods.

Novel therapeutic applications push the boundaries of
antibody discovery

Despite the great success of existing antibody discovery
methods, some classes of hard targets still remain, including
some membrane proteins, proteins within highly homologous
families, epitopes that agonize or antagonize a biological
pathway, aggregation-prone peptides, and disease-related
short-lived protein aggregates. Although the diversity of the
human antibody repertoire has been estimated to a staggering
B1011 unique sequences,24 it presents certain limitations, such
as biases and redundancy in representing the mutational and
conformational space available in principle to antibodies.25

In addition, in vitro approaches that rely on the laboratory
screening of large libraries can be time consuming and costly,26

and may become particularly challenging when one is interested
in targeting a specific epitope within the target antigen.27–29

In fact, these methods usually select for the tightest binders,
which typically occur for immunodominant epitopes, thus
precluding the discovery of antibodies with lower affinities
but binding to functionally relevant sites. Finally, the lessons
learned from these approaches do not easily generalise to inform
the development of other systems, and screening campaigns
sometimes yield antibodies with favourable binding but otherwise
poor expression yield, stability, or solubility, which may hinder
many applications.30–32

In addition to its biological activity, another key property of
a promising therapeutic antibody candidate is the likelihood of
its successful development into a stable, safe, and effective
drug, which is known as ‘developability’.33 Therapeutic anti-
bodies destined to subcutaneous injection must be formulated
at concentrations much higher than those at which antibodies
are typically produced in living organisms, and they must
remain active at those concentrations over the shelf-life of the
product (typically 41 year).31 Therefore, biophysical properties
including thermodynamic stability and solubility, but also
chemical liabilities like oxidation and deamidation, play a key
role in determining the success of therapeutic antibody
development.32,34,35

The exquisite binding specificity of antibodies may actually
create practical issues for some therapeutic programs due to
the lack of species cross-reactivity. This property refers to the
ability of an antibody to bind and functionally interact with
the orthologous proteins from different animal species that
are used as models for the evaluation of in vivo efficacy,

pharmacokinetic, and safety. The limitations in the study of
therapeutic antibody candidates in rodent models imply that
these properties must often be assessed in costlier and lengthier
studies involving primates, thus slowing down progress, and
increasing development costs and risk of late-stage failures.36

A common strategy to overcome these problems is to screen for
antibody candidates that functionally interact with both the
human target and its relevant orthologs, which however compli-
cates screening and lead selection. An appealing alternative is to
carry out a simple bioinformatics analysis to identify epitopes
conserved among the orthologs of interest, and raise antibodies
specific for these epitopes, but this route is often highly challenging
with existing technologies. The ability to target conserved epitopes
is also of great relevance to obtain broadly neutralizing antibodies,
which are able to inactivate a wide spectrum of genetic variants of a
given pathogen (usually a virus).28

In order to function effectively in the crowded cellular or
extracellular environments, antibodies should exhibit a balance
of different biophysical traits, including stability, solubility,
interaction affinity and selectivity. However, the stringent
requirements of therapeutic applications imply that in most
cases all these traits must be optimised far beyond their typical
natural levels. This task is highly problematic, as these traits
are often conflicting from an evolutionary perspective, in the
sense that mutations that improve one of them tend to worsen
the others.37,38 Therefore, there is a need to develop fundamen-
tally new approaches to enable the simultaneous optimisation
of all these traits.

Computational approaches offer a promising avenue to
generate such technologies, as they could drastically reduce
time and costs of antibody discovery, and in principle allow for
a highly controlled parallel screening of multiple biophysical
properties. Moreover, rational design inherently allows targeting
specific epitopes of interest, which can be particularly daunting
using available techniques. It is not surprising therefore that
antibody engineers have long sought to design customised
antibodies from scratch.39

There is plenty of room for improving the biophysical
properties of antibodies

The random mutations that are the engine of molecular evolution,
on average, tend to destabilise proteins and to decrease their
solubility, but only those few that instead improve these proper-
ties are typically selected.40,41 However, once natural selection
has made these molecules stable and soluble enough to
function optimally at their physiological concentrations and
conditions, there is no further evolutionary pressure to improve
their stability and solubility. The balance of the contrasting
forces of random mutational drift and natural selection has
effectively placed proteins and antibodies on an edge of bio-
physical fitness. It is increasingly recognized that natural
proteins are just stable and soluble enough to optimally
perform their function at physiological conditions,42 but with
little or no safety margin besides the buffering effect provided
by molecular chaperones and other components of the protein
homeostasis system.40 This argument has recently been

Chem Soc Rev Review Article

Pu
bl

is
he

d 
on

 0
9 

O
ct

ob
er

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

 o
n 

12
/1

8/
20

18
 7

:5
5:

08
 A

M
. 

View Article Online

http://dx.doi.org/10.1039/c8cs00523k


9140 | Chem. Soc. Rev., 2018, 47, 9137--9157 This journal is©The Royal Society of Chemistry 2018

corroborated by a range of proteomic observations, including
the fact that in vivo thermal stability43 and solubility44 strongly
correlate with protein abundance. Highly abundant proteins
must be more soluble than their low-abundance counterparts
to avoid aggregation, yet if all natural proteins had evolved for
maximum solubility no correlation with abundance would
be expected.45 Similarly, highly expressed proteins are more
exposed to random translational errors, which if not well-
tolerated by means of high conformational stability can lead
to the accumulation of toxic misfolded species.46 Taken
together, these observations imply that there is room to
optimize the biophysical fitness of proteins and antibodies
far beyond their natural levels, as also indicated by the many
successes of in vitro directed evolution, which for example has
been applied to improve antibody binding-affinities by several
order of magnitudes over typical natural values.14

The existence of this large biophysical space left unexplored
by evolution is a crucial requirement for the successful develop-
ment of effective methods of rational antibody design aimed at
producing optimal antibodies for biomedical applications.

Quantitative parameters for the
systematic antibody optimisation

Antibody design refers to methods aimed at producing
antibodies with specific properties. These properties include
solubility, stability, effector functions, and binding affinity and
specificity, which are closely intertwined and usually determine
other essential properties, such as biological activity, in vivo
half-life, protease susceptibility, solution viscosity, chemical
stability, pharmacokinetics and in some instances also immuno-
genicity.47–50 In this section we review the state of the art in the
rational design of these properties.

Solubility

In thermodynamics the solubility of a substance is a property
defined as the specific value of the concentration – termed the
critical concentration – at which the soluble and insoluble
phases are in equilibrium. While this definition is rigorous,
it only applies directly to substances that have well-defined
soluble and insoluble phases. However, depending on the
concentration, the vast majority of proteins can populate a
variety of states, including monomers, dimers, small and large
oligomers, amorphous aggregates and sometimes fibrils. Thus, the
boundary between soluble and insoluble species is ultimately
arbitrary and operationally dependent on the method used to
separate them, for example on the centrifugation speed or filter
size, which hampers the possibility of defining and therefore
measuring absolute solubility values. However, it is possible to
measure solubility differences among different antibodies, or at
least differences in their propensity to self-associate, precipitate, or
populate aggregated states, which are common proxies for solubi-
lity across the literature.

Solubility differences can be measured both in vivo and
in vitro. In vivo measurements are generally used as preliminary

screenings and include protein yield determination and analysis of
the composition of the inclusion bodies from expressing bacterial
strains. Recently, new and more quantitative methods based on
automated immune-detection,51 split beta-galactosidase, and split
GFP,52 have been developed. PEG-induced precipitation is for
example a common way to estimate protein solubility in vitro.
In this set up, the antibody is incubated in the presence of
increasing concentrations of a precipitant, such as PEG or
ammonium sulphate, and the amount of precipitated protein
is estimated by measurements of turbidity or retained protein
concentration after filtering.53 The apparent solubility may then
be extrapolated from the data points in the linear range of the
precipitation sigmoid,54 or, if the variants under scrutiny have
similar sigmoid slope, it is possible to use PEG1/2 as a solubility
proxy (i.e. the concentration of PEG at which the antibody is 50%
precipitated), which can be estimated with greater accuracy.30

Other common measurements of solubility differences include
quantifications of the monomeric population carried out with
analytical size exclusion,55 or aggregation rates from measure-
ments of turbidity, and dynamic or static light scattering.
However, measurements of solubility differences are not com-
parable across different experimental conditions or assays, thus
limiting their applicability to train or test methods of solubility
prediction and design.

Given that insufficient solubility is often the main reason
behind the high development costs of antibodies,31,56 and that
low solution viscosity is a key requirement for subcutaneous
injection, there in a strong pressure to carry out solubility-
related screenings as early as possible in antibody development
pipelines in order to avoid expensive late-stage failures.
Therefore, in vitro developability assays are increasingly employed
to predict the clinical success of antibodies, by screening for
desirable biophysical properties in the early development phase,
when samples are usually available in limited amount and low
concentration and purity. These approaches typically measure
parameters considered to be predictive of solubility or solution
viscosity, such as reversible self-association, or non-specific
interaction with different materials. Examples include cross-
interaction chromatography (CIC), standup monolayer adsorption
chromatography (SMAC), hydrophobic interaction chromato-
graphy (HIC), affinity-capture self-interaction nanoparticle
spectroscopy (AC-SINS), as well as emerging microfluidic-based
approaches,57–59 which have all been shown to correlate with
varying extent with viscosity, solubility and sometimes in vivo
clearance.32,33

Conformational stability

The stability of a protein is defined as the free energy difference
between the native state and the unfolded state. In practical
terms, the stability of an antibody translates into its ability to
retain its structural conformation and activity when subjected
to physical or chemical stress (e.g. temperature, pH and
denaturants). Antibody stability is generally evaluated in vitro
by means of biophysical approaches based on spectroscopic
or calorimetric measurements. In particular, one can use
steady-state or time-resolved circular dichroism or intrinsic
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fluorescence, and differential scanning calorimetry or fluorimetry
(DSC and DSF respectively), to accurately monitor the denatura-
tion of an antibody over time, a range of temperatures, or different
concentrations of denaturants (e.g. urea or guanidinium). In this
way, one can determine the kinetics of folding and unfolding,
and thermodynamic stability of a protein either as the melting
temperature (Tm) or the free energy difference (DG) between the
folded and unfolded states, or between the folded and the
aggregated states. The vast majority of antibodies generated with
existing discovery technologies are typically stable enough to be
fully active at physiologically-relevant temperatures and pH
values. However, it is highly desirable to select or design extremely
stable antibodies. In fact, high conformational stability is an
important determinant of heterologous-expression yield, proteo-
lytic resistance, and in vivo half-life.43,60–62 Furthermore, a higher
native-state stability corresponds at equilibrium to decreased
population of partially of fully unfolded states, whose presence
may elicit protein-aggregation at highly concentrated storage
condition.

Binding affinity

Binding affinity refers to the strength of antigen binding, and it
is typically reported as the dissociation constant Kd, which is
defined as the product of the concentrations of antibody and
ligand divided by the concentration of their complex. Kd is
therefore measured in units of concentration, with smaller
values denoting stronger binding.

Various techniques have been developed to determine binding
affinities and kinetic constants (on- and off-rates). Experimental
setups generally consist of titration experiments or kinetic
experiments where the readout is proportional to the amount
of formed complex. The most used techniques include nuclear
magnetic resonance (NMR) chemical shifts, isothermal
calorimetry,63 surface plasmon resonance (SPR),64 microscale
thermophoresis (MST),65 and various types of spectroscopic
measurements broadly relying on the use of fluorescently
labelled proteins or ligands (i.e. fluorescence intensity, polari-
sation, or fluorescence resonance energy transfer). In the context
of affinity maturation/optimisation protocols, high-throughput
(but less quantitative) techniques such as enzyme-linked
immunosorbent assay (ELISA) and immune-precipitation assays
or cell two-hybrid screens are routinely used66 Recently, more
quantitative techniques such as bio-layer interferometry (BLI),67

and micro-diffusion measurements68,69 have been proved to be
particularly suitable for binding screenings.

Binding specificity

Binding specificity is generally understood as the relative
weakness of off-target interactions. The fewer ligands an anti-
body can bind to, the greater its specificity. Protein arrays
currently represent the gold standard to probe the specificity
of an antibody, as they can provide a direct readout of which
and how many off-target interactions exist. Following this
approach, one incubates a chip containing an array of
several hundred immobilised proteins in the presence of a
fluorescently labelled variant of the antibody of interest.70

Fluorescence emissions at each position of the array are then
used to determine the amount of antibody that is bound to the
corresponding immobilised protein. Alternative methods to
probe specificity are for example SPR or BLI measurements
with the immobilised antibody of interest against a cell-lysate
or other relevant protein mixtures in the absence of the target
protein, where the expectation for highly specific antibodies is
to observe no signal. Ultimately, most antibody development
campaign for therapeutic applications rely directly on in vivo
target engagement and absence of side effects in animal
models and eventually in patients as a comprehensive readout
of specificity and pharmacokinetics.

The trade-off between properties is the greatest challenge
for rational design

There is a delicate balance between antibody stability, solubility
and binding affinity and specificity, as mutations that improve
one of these traits often negatively impact the others. For
example, increasing the conformational stability of a protein
typically increases its rigidity, thus affecting its functionality,
and vice versa.71 For antibodies, more rigid scaffolds and CDR
loops that are pre-disposed in the bound conformation in the
absence of the antigen have been associated with better affinities,
as there should be less entropy loss upon binding.72,73 Yet,
sometimes significant conformational rearrangements occur
upon binding, probably because the antibody requires a different
conformation to be stable in the absence of the antigen,74 and
the relationship between paratope rigidification and affinity
maturation remains controversial.75 Similarly, amino acid
substitutions that improve conformational stability have been
seen to negatively impact solubility,76 while these two properties
have often been reported to correlate.77–79 Surface mutations
that would in principle improve solubility can sometimes cause
an increase in conformational dynamics leading to the transient
exposure of otherwise buried hydrophobic patches, which may
actually elicit aggregation.80–82 In the case of antibodies, binding
often requires long and irregular CDRs, and the presence of
solvent-exposed hydrophobic residues, which may negatively
impact both stability and solubility.30,83,84 However, at least for
nanobodies, the length of the CDR3 loop was recently shown
to positively correlate with thermal stability, thus challenging
this view.85 A recent analysis of over 400 antibody–antigen
complexes confirmed previous reports that paratope residues
including Tyr, Trp, Ser, Asn, Arg, and Gly contribute substantially
to the interactions between antibody and antigen, thus driving
binding affinity.86 However, while binding affinity and specificity
are typically correlated, the enrichment of Trp, Arg, Gly, and
Val has also been associated with the occurrence of poor
specificity.87,88 Interestingly, Tyr, Ser, and Trp are prevalent in
antigen-contacting residues in germline antibodies, but not
among mutations introduced by the somatic hypermutation
mechanism, thus suggesting a role of this process in suppressing
non-specific interactions.89 Generally speaking, complementary
electrostatic interactions and the formation of antibody–antigen
hydrogen bonds have been associated with the occurrence of
specificity, while aromatic and hydrophobic interactions, mostly
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occurring with the epitope main chain atoms and side-chain
carbons, with binding affinity.90

Taken together, these apparently contrasting findings, and
the existence of many cases contradicting the expected average
behaviour, show that it is very difficult to extrapolate universally
applicable rules to explain the molecular basis of the balance
between antibody biophysical properties. Overall, the determi-
nants of stability, solubility, and interaction affinity and specify
appear to be highly context-dependent, and rather specific to
individual antibody–antigen complexes. Therefore, the accurate
modelling of this delicate equilibrium is probably the greatest
challenge that rational antibody design has to face in order to
offer practically useful antibodies.

General approaches to protein design

Since the pioneering work of Regan, DeGrado and co-workers
in the late ‘80s,91,92 a multitude of different methods
to rationally modify protein molecules have been proposed.
However, it is only in the last few years that reports of successful
design of proteins with practical applications and uses have
started to emerge.93 Quite generally, protein-design methods
can be classified into four broadly defined groups, with the most
successful design strategies typically combining approaches from
different groups. While this section refers to protein design in
general, the approaches described are all applicable to antibodies.

Energy-based methods

The largest class of protein design methods are those that
directly exploit the laws of statistical thermodynamics, according
to which a protein is preferentially found in the conformation
corresponding to its free energy minimum. To date, the majority
of successfully applied computational design methods have
exploited this principle, and have therefore implemented
modelling strategies aimed at directly maximising the free
energy difference between the target state, such as the native
state or a bound state, and all other possible states.94

In principle achieving this goal requires accurate macro-
molecular representation, correct modelling of the interactions
among the many atoms comprising proteins, solvent, and ligands,
and exhaustive sampling of the conformational ensemble to
estimate the free-energy landscape. All of these steps should be
repeated for each tested design. In practice, however, accurate
ensemble determination remains daunting even for small
proteins for which high-quality experimental data are available
to guide computer simulations,95,96 and methods of protein-
design have the additional complication that they must also
sample the mutational space, for example by trying as many
mutations as possible to optimize the traits of interest. Therefore,
in most energy-based approaches the sampling of the conforma-
tional space is either not performed or it is limited to small
fluctuations about the target structure, which are used to adjust
the backbone to accommodate different side-chains from candi-
date mutations.97,98 Consequently, rather than calculating
the free-energy landscape of the system, most energy-based

approaches in practice calculate the energy of the target struc-
ture (i.e. one calculates the energy E, rather than the free energy
E-TS, where S is the entropy and T is the temperature). The goal
then becomes to minimise this energy to the point that all other
alternative conformations are likely to be higher in free energy,
at least within a relevant range of temperatures and protein
concentrations. Sometimes these approaches are combined
with elements of negative design, which are particularly relevant
for the generation of specific interactions (e.g. substrate recogni-
tion or interface assembly).99,100 These elements of negative
design may consist in known alternative conformations that are
explicitly considered in the simulations so that they are energeti-
cally disfavoured,101–103 or heuristics, whose occurrence is known
or suspected to bring about undesired molecular traits that may
give rise to alternative free-energy minima (e.g. aggregation-prone
segments or specific structural motifs).104,105 Overall, a common
feature of all systems that have been successfully designed with
energy-based approaches is that the actual free-energy difference
between the target state and all other possible states is larger
than the error introduced by the approximations and assump-
tions employed.93,94 Energy-based methods, especially when
combined with appropriate experimental validations,93 and
more recently with high-throughput manufacturing and screening
technologies,60,106 have revealed many fundamental features of
protein structure, stability and interactions.

Combinatorial design methods

Combinatorial design methods directly mimic some combina-
torial aspects of natural evolution. It is increasingly recognised
that proteins can evolve by repurposing existing folds or fold
fragments.107 This evolutionary mechanism can be imitated to
rationally design new proteins or new functionalities through
the combination of fragments from existing proteins.108 These
combinatorial methods are not necessarily affected by the
accuracy of energy functions, and they usually only require
relatively small-scale sampling of the different combinations of
the available fragments, and therefore are not particularly
computationally demanding. Conversely, these methods are
less general than their energy-based counterparts, as rather
than on general physical laws they rely on custom rules that
determine how and which fragments should be combined. This
set of rules and the database of fragments employed directly
affect the reliability of a combinatorial method and may
ultimately limit its applicability. For example, a method
recently developed in our laboratory to rationally design anti-
bodies binding to specific epitopes within disordered regions
of target proteins is based on combinatorial design.109 In this
approach, which will be explained in more detail below, protein
fragments found to interact with components of the target
epitope within native structures of proteins are combined
together with a set of rules to build antibody paratopes.109

Empirical methods

Empirical methods of protein design directly exploit efforts of
rationalising biological observations or measurements, by imple-
menting empirical functions that recapitulate these observations.
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The most common examples are knowledge-based potentials,
which are statistical force-fields derived from databases of known
protein properties that empirically capture aspects of the physical
chemistry of protein structure and function.110,111 These poten-
tials have played important roles in protein design and structure
prediction, by improving the accuracy of energy-based models of
interatomic interactions, as well as the computational efficiency
of the design process.112–114 Another area where empirical
methods have been widely successful is the rationalisation and
prediction of the aggregation propensity of peptides115,116 and
proteins.117–119 For example, the CamSol method, which we have
developed in our laboratory to predict and rationally design
antibody solubility, is a method of this type.30,55

Machine-learning-based methods

The growing amount of available biological data, including
macromolecular structures and measurements of biophysical
properties, is increasingly enabling applications of machine-
learning algorithms to address biological problems. Machine
learning, sometimes referred to as ‘‘artificial intelligence’’,
refers to a broad class of computer algorithms that have
the ability to ‘‘learn’’ from data, without being explicitly
programmed. The learning or training phase typically consists
in the optimisation of a large number of free parameters, so
that from known inputs (e.g. protein sequences) the algorithm
reproduces the corresponding known outputs (e.g. the corres-
ponding native structures). When properly trained on a large-
enough amount of diverse data, these algorithms have the
ability to generalise, that is to correctly predict the outputs of
never-seen-before inputs. Following pioneering applications
of these algorithms to the prediction of protein secondary-
structure,120,121 machine-learning has been widely employed
in protein science. Its applications include predictions of
conformational dynamics,122,123 protein tertiary structure,124

and binding sites,125 including those of antibodies,126,127 while
direct applications to protein design are beginning to
emerge.128,129 Although machine-learning-based methods lack
the physical transparency of other approaches, their frank
pragmatism is remarkably successful. Therefore, given that
the amount of available ‘‘training-data’’ across biological data-
bases is rapidly increasing, and that machine-learning algo-
rithms are constantly improving,130 these methods are destined
to play key roles in shaping the future of protein design.

De novo antibody design

In this section we review ongoing efforts to design antibodies
de novo, considering those methods for which some extent of
experimental validation has been presented. Furthermore, we
discuss the approaches that can, at least in principle, take as
input only an epitope within an antigen, and predict one or
more antibody sequences capable of binding it. We therefore
do not cover studies aimed at developing methods of antibody
docking and of in silico affinity maturation.131–134

Structure-based methods of antibody design

Structural modelling of antibodies. Structure-based methods
of antibody design (Fig. 2) involve the modelling of the structure
of the antibody, as well as that of the antibody–antigen complex.
The quality of this modelling is a key determinant of the ability
of these methods to correctly predict novel interactions.

Owing to the high degree of structural homology between
variable domains from different antibodies, and in particular to
the fact that most CDR loops can be clustered into canonical
conformations,135–137 the vast majority of the Fv region can
now be modelled reliably and with high accuracy.131,138 None-
theless, it remains challenging to obtain accurate models of the
conformations of the heavy-chain CDR3 loop (CDR-H3), and
also of the relative orientation between the VH and VL
domains, which are often the two most important features in
determining binding.139–141 Additionally, as the CDR-H3 is
often quite dynamical, its solution conformations can differ
significantly from those observed in crystal structures, which
may be stabilized by crystal packing effects, and may also
change upon binding,74,142 thus further complicating both
the modelling and the assessments of modelling quality.143

Then, even when an accurate model is obtained, correctly
docking the antibody and the antigen remains an arduous
task. For example, for protein–protein or protein–peptide
interactions, in a recent round of Community-Wide Critical
Assessment of Protein Interactions (CAPRI) there was not a
single model, among the 20 670 submitted, that ranked as
‘acceptable’ in its quality (i.e. identifying correctly at least
50% of the interface contacts) for six out of 20 complexes
assessed.144 Similarly, a recent analysis of antibody docking
carried out on 17 complexes, found that when using modelled
antibody structures as a starting point, the correct antibody–
antigen pair was the top-ranking model in only two cases.145

Taken together, these findings suggest that successful
efforts of designing novel antibodies that depend the structural
modelling of the complexes with their targets cannot rely on
one model only. Consequently, hundreds, and sometimes
thousands of different models for different sequences should
be built in silico. These models are typically further refined
computationally by carrying out point mutations predicted
to improve the interaction energy. This optimization step,
however, has usually limited performance, as highlighted by a
recent study comparing the predicted and observed effect
of mutations on antibody binding affinity.146 Finally, a high
number of diverse, top-scoring models is typically taken for-
ward for experimental validation hoping that at least one binds
the target.

OptMAVEn and OptCDR. Maranas and colleagues have
developed the OptCDR method147 and the OptMAVEn
method,148 which extends the applicability of the earlier
OptCDR approach to the design of the whole Fv region.
A recent version of the OptMAVEn design pipeline has been
applied to design scFvs binding to a hydrophobic heptameric
peptide with a repetitive sequence (FYPYPYA).149 Similarly,
OptCDR managed to yield scFvs binding to the FLAG-tag tetra-
peptide.150
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OptCDR generates thousands of random antigen positions,150

and for each one it generates the backbone of the binding loops
by sampling from clusters of canonical CDR conformations using
a geometric score.147 Sidechains are then placed according to
(i) sequence preferences within each CDR cluster, (ii) a rotamer
search from a backbone-dependent rotamer library, and (iii) a
CHARMM-based energy function.147,150 Finally, an in silico affinity
maturation is carried out to introduce point mutations predicted
to improve binding affinity.151

OptMAVEn consists in a combinatorial-design procedure
that essentially reproduces the immune-system V(D)J recombi-
nation, followed by an energy-based in silico affinity maturation
inspired by the somatic hypermutation mechanism. The
OptMAVEn pipeline can be split into four steps.148,149 The first
step is the sampling of the antigen positions into a predefined
antibody binding site, which is defined as a rectangular box
covering all mean epitope coordinates determined from the
analysis of 750 antibody–antigen complexes.149 Antigen-positioning
is followed by the assignment of the best V, (D), and J antibody
modular parts selected from the MAPs database,152 thus leading to
the assembly of germline-antibody models for the target of interest.
The third step consists in all-atom, explicit-solvent, 100 ns mole-
cular dynamics simulations carried out for each model. These
simulations are used to rule out those models in which the antigen
dissociates rapidly, and to refine the antibody–antigen interface of
the remaining models. The fourth and final step is an in silico
affinity maturation, during which mutations in the antibody are
selected to improve the binding energy. In this step, mutations are

also attempted outside antigen-contacting sites, as these may still
mediate antigen interactions and contribute to the stability of the
complex.

OptMAVEn was used to design five scFv antibodies against
the peptide FYPYPYA, starting from the structure of an existing
antibody bound to a dodecameric peptide containing this
sequence (scFv-2D10, PDB 4hoh). All five scFvs had designed
sequences reasonably different from that of the parental
scFv-2D10, and three of the designs successfully bound the
target. The Kd-s of these antibodies were in the low/mid nM
range, all slightly higher than the Kd of scFv-2D10, which
remained the best binder.149 OptCDR was instead used
to design 50 scFvs predicted to bind to the minimal FLAG
peptide (DYKD). Of these about half resulted in detectable scFv
expression, and four were able to bind to the FLAG sequence.150

Even in these successful cases, the melting temperature of
the designed antibodies in Fab format was about 10 1C lower
than that of the parental Fab scaffold.150 These findings
highlight the challenges of designing antibody affinity and
specificity while not compromising other essential biophysical
properties.

AbDesign. Fleishman and coworkers have introduced the
AbDesign algorithm,153 which follows an approach similar to
OptMAVEn combining V regions and CDR3 regions by analogy
to V(D)J recombination. AbDesign segments the antibody back-
bone using junctions of high structure conservation (e.g. the
disulphide-bonded cysteines and conserved positions at the
end of CDR3), as opposed to genomic-recombination sites,

Fig. 2 Structure-based antibody design. Schematic representations of the key steps most commonly employed in approaches of structure-based
de novo antibody design. Step 0: pre-computation stage, consisting in the compilation of a fragment library and, if employed later, the associated
sequence constraints. Step 1: the target epitope is selected and positioned in a simulation box, if the target epitope is a dynamical peptide, multiple
conformations are generated and each one is used as a starting point for the next step. Step 2: various combinations of fragments from step 0 are
sampled (‘germline’ models) and docked against the target epitope, each combination is scored with an energy and/or geometrical function. Step 3: the
best-ranking models from the previous step are subjected to sequence optimization by carrying out point mutations (blue to purple side-chains)
predicted to improve binding energy and/or total energy (i.e. antibody stability).
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which may help generate structurally compatible framework–
CDR interactions. Also, the backbone fragments employed are
extracted from all antibodies in the structure database, including
highly homologous ones, thus increasing the potential coverage.
However, because the CDR1 and CDR2 are grafted together in the
latest implementation of the algorithm,154 AbDesign has limited
flexibility in terms of setting which CDRs to design and what CDR
lengths or combination of conformations to sample.

Specifically, a set of antibody conformations representing all
canonical conformations for a chosen starting Fv scaffold is
generated from these backbone fragments, docked against
the target surface, and designed for optimal binding affinity.
As implemented in the Rosetta Software Suite, the sequence
design is carried out from a position-specific scoring matrix
(PSSM) of aligned antibody sequences. This PSSM effectively
constrains the mutational space of each residue position in the
Fv scaffold to amino acids that are actually found at that site in
natural antibodies. Finally, a filter is applied using a fuzzy-logic
design that aims at finding the optimal compromise between
antibody binding and antibody stability.155

AbDesign was recently employed to generate novel anti-
bodies against insulin and mycobacterial acyl-carrier protein
(ACP).154 In this endeavour five design/experiment cycles were
performed, leading to several improvements in the algorithm.
In particular, to prevent the emergence of destabilizing features
during the design, the backbone was segmented in only two
parts per chain (the CDR3 and the rest of the variable domain),
and conformation-dependent sequence constraints (PSSMs)
were used to guide Rosetta design choices. Throughout the five
design/experiment cycles, 114 insulin-targeting designs were
custom-synthetized and tested, from which one insulin binder
was identified, although cycle 5 consistently produced high-
expression antibodies. Similarly, two binders were identified
among the 79 designs tested for ACP. All the three identified
binders required manually-inserted mutations to improve
binding and stability, as 32 and 5 mutations for the ACP and
6 for the insulin scFvs were inserted with FoldIt and/or to
improve charge complementarity with the antigen.154 Finally,
in vitro affinity maturation was carried out to increase the
binders’ affinity for their designated targets, by using error-
prone PCR (one to four random mutations in the scFv-coding
gene) followed by yeast display. Affinity in isolated clones
increased by approximately an order of magnitude thus reaching
the mid nM range for two of the three designed antibodies.154

Rosetta antibody design (RAbD). Dunbrack and colleagues
have recently presented the RosettaAntibodyDesign method,
which like AbDesign employs the Rosetta Modelling suite to
carry out a structural-bioinformatic-based combinatorial design.156

RAbD exploits the PyIgClassify database,135 which contains
CDR sequences and cluster identifications for all antibodies
in the Protein Data Bank (PDB) to obtain antibody fragments.
These fragments are then grafted onto an antibody framework
and sequence design is performed according to PSSMs of each
cluster. CDR backbones are sampled with a flexible-backbone
design protocol that includes cluster-based CDR constraints.
RAbD can handle both l and k light chains, and, in addition to

the six canonical CDRs, it can also engineer the DE loop,
sometimes called L4, which is a short loop between strands D
and E of the VL domain.

While RAbD could in principle be applied to design anti-
bodies de novo starting from a modelled structure, the currently
available experimental validation consisted in an in silico
affinity maturation performed starting from two experimentally-
determined antibody–antigen structures.156 Of the 30 designs
generated from an antibody that binds to hyaluronidase with a
9.2 nM Kd (PDB: 2j88), 20 retained some degree of binding with
affinities at least in the mM range. Of those 20, 3 exhibited a
binding affinity better than that of the parent antibody, with the
best design yielding a 12-fold improvement. Similarly, of the
27 designs made from the antibody CH103 that binds to HIV
gp120 (PDB 4jan), 21 could be purified and tested, and 6 could
bind one or more of seven gp120 variants from different strains of
HIV. One designed antibody had an improved binding affinity to
some of the gp120 variants tested.

Overall, as RAbD samples CDR fragments rather than whole
Fv regions and requires an antibody–antigen structure or model
as a starting point, its present implementation could be
expected to be particularly suitable for affinity maturation or
redesign applications, for example to target homolog antigens
that can be modelled onto existing antibody–antigen structures.

Discussion on the state-of-the-art of structure-based methods.
The structure-based antibody-design methods discussed above
combine combinatorial design of antibody fragments and energy-
based design. The energy function is used to rank the various
combinations of fragments, sometimes together with empirical
scores,147 and also to design affinity-improving mutations along
the backbone, often guided by PSSMs.148,153,156

Typically in these methods a high number of designs is
generated (for example RAbD recommend between 1000 and
10 000)156 to then select the best candidates. In addition, one
should consider the vast size of the combinatorial fragment
space and associated mutational space that must be sampled
during the design process. In particular, those methods
that model the whole Fv region rather than just the CDR
loops,148,153 and that involve all-atom explicit solvent molecular
dynamics simulations for all generated candidates,148 should
be particularly resource-demanding. Overall, therefore, the gain
in time and resources offered by these in silico approaches over
standard laboratory methods may not be substantial at present,
especially in those cases where the de novo designs require
additional optimisation before becoming practically useful
(e.g. in vitro directed evolution).154 Nevertheless, all these
methods in principle enable to target pre-selected epitopes of
choice, which can often be daunting with purely experimental
methods. Furthermore, as computers become more powerful,
energy functions improve, and fragment libraries grow in size
and diversity, the competitiveness of these computer-based
technologies could be expected to increase.

The successes obtained by these approaches demonstrate
that it is now possible to implement methods of de novo
antibody design able to yield novel antibodies binding to
targets of interest. However, the low success rates, and the
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quality of most de novo designed antibodies, which were
often found to be poorly stable, weak binders, or both, indicate
that further developments are required for these methods
to become competitive with traditional antibody-discovery
technologies for most applications.

In particular, the five cycles of design and experiments
carried out in the validation of AbDesign provided important
insights into those features of antibodies that are difficult
to model with this approach, and yet are crucial for antibody
folding and expressibility.154 Importantly, antibody-expressibility
was improved throughout design/experiment cycles by gradually
drifting away from energy-based design towards more conserva-
tive combinatorial approaches. Expression levels comparable to
that of a natural scFv were obtained by employing conformation-
dependent sequence constraints to guide Rosetta design choices,
thus greatly restricting the available mutational space, and only
once the Fv backbone was segmented in merely two parts per
chain: the whole framework region, comprising CDR1 and 2,
and the CDR3 loop, which is well-known to be the most
versatile loop in length, amino acid composition, and
conformation.136,140,157,158 This finding, together with the
relatively low success rates of the energy-based approaches
discussed here, suggest that the combinatorial component of
these structure-based strategies plays a key role in yielding
functional antibodies. On the contrary, even the most advanced
energy functions (e.g. Rosetta) are still unable to fully capture
on their own the complex molecular trade-offs that control
antibody binding and stability. Generally speaking, restricting
the sampling space to pre-determined fragments and sequences is
not a desirable feature, since it limits the possibility to sample
sequences and conformations that are unlikely to be present in an
animal immune system or in an antibody display library, thus
decreasing the appeal of a computational approach. Nevertheless,
the fact that these methods were able to produce diverse
antibodies for unrelated targets demonstrate that the available
sampling space is still large enough to provide novel antibodies,
which were consistently found to be different in terms of both
sequence and conformations from those present in the PDB.

Finally, both OptMAVEn and OptCDR were applied to
generate novel antibodies targeting linear epitopes (i.e. short
peptide), while AbDesign was used to design antibodies targeting
conformational epitopes (i.e. non-sequential epitopes of well-
defined 3D structure). These two types of epitopes are different
and thus present different challenges for computational design.
On the one hand, modelling antibodies to target conformational
epitopes may be regarded as more difficult. The paratope shape
tends to be convex, and antibody loops and side-chains must
be accurately built around relatively rigid molecular structures
containing irregularities, and whose surface properties may be
difficult to model (e.g. hydrophobicity and electrostatic potential).
On the other hand, the many conformations that peptides
populate in solution, entail that no well-defined antigen struc-
ture can be used as a starting point for the design, which often
must be carried out starting from a wide range of possible
conformations.150 In addition, depending on the biophysical
properties of the target peptide, there may be a large entropy

loss associated with its binding to the antibody. Such entropy
loss, if present, must be compensated by an even larger
enthalpy gain that requires accurate modelling of the anti-
body–peptide interactions, albeit the concave paratope shape
allowed by short linear epitopes may facilitate this task.159

Empirical approaches of antibody design

The growing amount of high-quality structural and biological
information available on antibodies, and also on protein inter-
actions more generally, is increasingly being exploited to devise
knowledge-based strategies to obtain antibodies for targets of
interest. Pre-defined interaction patterns, which may be known
from structural or biological (i.e. protein–protein interaction)
data, can be grafted onto the CDRs of antibodies to produce
lead antibodies binding to epitopes of interest. This strategy
has been referred to as hotspot-centric design, and it has been
applied to several reports of successful design of protein–
protein interactions,160,161 including recently introduced
massively-parallel approaches.106 These methods are not
universally applicable, as their success strictly depends on the
pre-existing knowledge of an interaction pattern for the target
epitope. Moreover, for applications to antibodies, such patterns
must be, or must contain a fragment, suitable for CDR grafting,
and this interaction motif must retain enough binding affinity
once grafted onto the antibody scaffold. Despite these limitations,
strategies of this type have been successful in generating novel
antibodies for challenging targets.

For example, a strategy of this type has been used for the
structure-guided design of an anti-dengue antibody directed to
a non-immunodominant, yet highly conserved, epitope within
the E protein of the dengue virus.162 Starting from a known
antibody with modest binding affinity (100 nM) an epitope–
paratope connectivity network was computed to identify puta-
tive affinity-enhancing mutation sites, and a site-saturation
combinatorial library was generated and screened with yeast-
display. The resulting antibody retained the intended epitope,
which it bound with high-affinity (Kd o 0.1 nM for most
serotypes), and was able to broadly neutralize multiple geno-
types within all four serotypes.162 While this example relied on
the existence a known binding antibody used as a starting
point, in another application of hotspot-centric antibody design,
epitope-specific antibodies binding Keap1, an important compo-
nent of the antioxidant response, have been obtained by grafting
structural interaction patterns directly from Keap1 native binding
partner, Nrf2, the master regulator of such response. Key binding
residues were grafted onto geometrically matched positions of a
set of antibody scaffolds.163 Following in silico redesign of the
CDR-H3 sequence, the affinity of one of these antibodies was
taken from Kd 4 100 nM to the low nM range, and the optimized
antibody was able to effectively compete with the binding of Nrf2
itself.163

Empirical approaches have been particularly successful in
generating antibodies binding to disease-related amyloidogenic
proteins, both in their monomeric and aggregated forms.
Following a proof-of-concept on the prion protein,164 Tessier
and co-workers have generalized this idea by introducing
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the gammabodies (for Grafted AMyloid-Motif AntiBODIES).
Gammabodies are human-derived single-domain antibodies165

that contain in their CDR3 the sequence of an amyloidogenic
motif (typically of about 10 residues), as found within disease-
related amyloidogenic proteins or peptides.166 Gammabodies
carrying different amyloid-motifs have been shown to be effective
inhibitors of the aggregation of their parent proteins in the case of
a-synuclein, islet amyloid polypeptide (IAPP) and Ab.166 Moreover,
Ab-gammabodies were shown to be sequence- and conformation-
specific depending on which amyloid motif was grafted in their
CDR3.167 Gammabodies have been optimised for improved
solubility,168,169 subjected to in vitro directed-evolution to improve
affinity and stability,83,84 and extended to the scFv format.88

Overall, these empirical approaches that rely on pre-defined
interaction motifs offer an expedite route for the generation of
antibodies towards pre-determined epitopes. Their success rate
is at the present stage considerably higher than that of other
de novo design methods that rely on the minimisation of

interaction energies. Nonetheless, they remain applicable only
to cases for which at least one suitable pre-defined interaction
motif is known.

Modular: a method of rational antibody
design
The concept of modular design

Modular design, which separates the design of different proper-
ties into different modules, is particularly well suited to address
the challenge of designing antibodies with a range of different
biophysical properties (Fig. 3a), since these properties can
require conflicting design principles, as for instance in the
case of solubility and affinity.

To implement this strategy, we recently developed the
Modular method, in which we combined together different
modules to optimise individual molecular traits. In particular,

Fig. 3 Illustration of the rational design strategy of Modular. (a) The CamSol method (left) is used to optimise the solubility of the designed antibodies
by applying it to engineer the stem of the CDR3, where the complementary peptides are grafted, and to rank the complementary peptides themselves
(table, left column). The scatter plot shows an example of correlation between predicted (x-axis) and measured (y-axis) solubility.55 The Cascade method
(right) is used for the sequence-based design of complementary peptides. The example shows the target epitope of DesAb-F on the NAC region of
a-synuclein in red, with dashed lines representing predicted hydrogen bonds with the complementary peptide (in green). The circles show the fragments
comprising the complementary peptide (in green) interacting with fragments comprising the target epitope (in red) within different protein structures
from the PDB database. The table in the middle contain four candidate complementary peptides for this epitope, together with two statistical scores from
the Cascade procedure (complementarity scores to the left and mean enrichments to the right, see ref. 109). The peptide embodying the best
compromise between predicted solubility and various statistical scores (see ref. 109) is then grafted onto the CDR3 of a stable antibody scaffold.
(b) Micro-scale thermophoresis (MST) of fluorescently-labelled monomeric a-synuclein in the presence of increasing concentrations (x-axis) of DesAb-F
(red) and a DesAb with two designed binding loops (blue). (c) Seeded aggregation assay (3% seeds) of 70 mM a-synuclein alone (green) and in the
presence of the DesAbs from (b) (see legend) at 1 : 2 DesAbs : synuclein-monomers ratio. Error bars are SEs over three replicates.

Chem Soc Rev Review Article

Pu
bl

is
he

d 
on

 0
9 

O
ct

ob
er

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

 o
n 

12
/1

8/
20

18
 7

:5
5:

08
 A

M
. 

View Article Online

http://dx.doi.org/10.1039/c8cs00523k


9148 | Chem. Soc. Rev., 2018, 47, 9137--9157 This journal is©The Royal Society of Chemistry 2018

to design the antibody paratope we employ the Cascade method,
as we discuss in detail in the next section. This method enables
the design of linear motifs, called complementary peptides, which
are predicted to bind to a target epitope and are grafted onto the
CDR of an antibody scaffold. We then employ the CamSol method
of predicting protein solubility to reduce the tendency of the
antibody scaffold to self-associate, as well as to rank different
designed paratopes to select highly soluble binding regions.
The CamSol method was shown to be highly quantitative in
recapitulating experimental measurements of solubility changes
upon mutations,55,82,170 as well as in ranking monoclonal anti-
body libraries according to their solubility.30

The optimisation of antibody solubility is a crucial require-
ment for a successful antibody design strategy, as antibodies
perform their function in crowded molecular environments,
and need to interact specifically with their target while avoiding
non-specific interactions and self-association, in particular
under storage conditions. As binding interfaces are on average
enriched with aggregation-promoting patches,171 neglecting
the design of solubility is likely to yield poorly soluble binding
sites, which may favour antibody aggregation and compromise
expression yields. In addition, enrichment of sticky hydro-
phobic residues on antibody paratopes has been associated
with poor specificity.87,90 Therefore, controlling for the solubility
of designed CDR may be an expedient to also reduce the
emergence of non-specific interactions.

The grafting of an artificial sequence onto a CDR is expected
to be a destabilizing feature of the designed antibody. There are
many tools available to design stability-improving mutations
that could be employed within the modular design process
without requiring computationally expensive simulations.76–78,97

However, a systematic assessment in 2009 quantitatively com-
pared predicted and experimentally-observed stability changes
for 6 of such methods, finding a median Pearson’s coefficient
of correlation of R = 0.52, which indicates rather poor predic-
tions at a quantitative level.172 A more recent (late 2017) similar
analysis on 11 methods reported a median coefficient of
R = 0.54.76 Since over the same period of time the number of
protein structures in the PDB has more than doubled, the
marginal improvement in the performance of the methods
highlights the challenges of accurately predicting stability
changes with computationally-efficient structure-based approaches.
Therefore, to bypass this issue, in the design strategy of Modular
we exploited the availability of highly stable antibody and
protein scaffolds that were reported to be relatively tolerant of
insertions in the CDR loops. Indeed, the key advantages of this
modular approach are that it allows the use of independent
techniques to design different molecular traits, and also that
different designed or available components can be combined in
different ways to obtain antibodies with tailored characteristics.

Combinatorial sequence-based antibody design: the Cascade
method

We recently introduced a combinatorial method to rationally
design novel antibodies targeting specific epitopes within
intrinsically disordered proteins (IDPs).109 IDPs carry out their

functions while being devoid of a well-defined three-dimensional
structure, constitute about one-third of eukaryotic proteomes,
and play key roles in regulation and signalling.173 Importantly,
these proteins are closely linked with a wide range of
human diseases, including cancer and neurodegeneration, and
mostly classify as undruggable according to the lock-and-key
paradigm.174

On average, traditional antibody discovery methods are able
to yield antibodies for disordered antigens with about the
same likelihood of ordered antigens.159 Besides, in spite of
the entropic cost associated with IDP immobilisation upon
binding, the median binding affinity for disordered epitopes
was found to be only five-fold lower than that for structured
ones.159 However, some disordered regions have been reported
to contain relatively few MHC class I and II binding peptides,
thus suggesting that the immune response against IDPs may have
specific characteristics distinct from those against structured
proteins,175 and may be restricted towards fewer epitopes within
disordered antigens, which appear to be immunodominant.
For example, in the case of disordered human a-synuclein,
nanobodies raised in camelids were all directed towards the
immunodominant C-terminus of the protein.176,177 However,
different regions along the sequence of IDPs typically mediate
different interactions regulating different processes, including
pathological ones such as neurotoxic aggregation.173,178 It is
therefore important to be able to obtain antibodies targeting
specific epitopes within disordered regions, ideally with single-
residue resolution.

To address this requirement, we recently introduced a peptide
design and grafting procedure, whereby peptides designed to
bind to linear epitopes of interest are grafted onto antibody
CDRs.109 These complementary peptides are designed with
a combinatorial strategy, named Cascade method. Since dis-
ordered regions lack a specific structure by definition, this
method only requires the amino acid sequence of the target
epitope as input. The identification of complementary peptides
is based on the analysis of the interactions between amino acid
sequences from the PDB. With this choice, the affinity and the
specificity of the interactions exploited are already proven in
a biological context (i.e. the native structures of proteins).
The Cascade procedure starts by collecting from the PDB all
fragments facing in a b-strand any subsequence of the target
epitope of at least three residues. Then, starting from the
longest of these fragments, complementary peptides are grown
to the length of the target epitope by joining some of the other
fragments following three rules: (i) fragments generating the
same complementary peptide must come from b-strands of the
same type (i.e., parallel or antiparallel), (ii) they must partly
overlap with their neighbouring fragments, and (iii) the over-
lapping regions must be identical in terms of both sequence
and hydrogen-bonding pattern (Fig. 3a).109 The choice of
b-strands is motivated by the fact that these are linear in
nature, and therefore directly amenable to sequence-based
design. Furthermore, protein aggregates formed by IDPs and
underpinning protein-misfolding diseases are enriched in
b-strand structures.178 We therefore reasoned that the designed
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antibodies (DesAbs) obtained in this way would preferentially
bind to pathological aggregated species, as the entropic cost of
binding should be smaller, and aggregates will have greater
avidity. Finally, while b-strand-mediated binding is not the
typical binding mode of natural antibodies, the structure of a
camelid nanobody binding its antigen with this mechanism
was recently solved.179

Given the large number of protein structures deposited in
the PDB, the Cascade approach was shown to be generally
applicable, as for the vast majority of potential target epitopes it
is able to generate a number of complementary peptides to
choose from.109 The best peptides are then selected according
to statistical scores reflecting how often the fragments comprising
the designed peptide are found interacting with the corres-
ponding ones within the target epitope, as opposed to with other
sequences, and to a solubility score from the CamSol method
(Fig. 3a).55 This solubility prediction is particularly important
because b-strands are notoriously enriched with aggregation-
prone motifs that drive protein folding, but whose occurrence
should be minimized on antibody paratopes.

The Cascade method was initially experimentally validated
by designing five human-derived single-domain antibodies
with the CDR3 loop engineered to target different epitopes
within three disease-related IDPs: a-synuclein, Ab42 and IAPP,
whose aggregations are respectively hallmarks of Parkinson’s
disease, Alzheimer’s disease and type-II diabetes. All designed
antibodies (DesAbs) could be effectively expressed in E. coli,
were correctly folded and stable, and successfully bound their
targets. Encouraged by these results, we measured the Kd value
of one antibody designed for the central region of a-synuclein
(DesAb-F), and we quantitatively probed its ability to inhibit
a-synuclein aggregation in vitro. DesAb-F bound a-synuclein
monomers with a Kd value of about 15 mM, and was a potent
inhibitor of its aggregation even at sub-stoichiometric
concentrations,109 at variance with immunisation-obtained
nanobodies targeting the C-terminus of a-synuclein176,177

(Fig. 3b and c). In a later study, DesAb-F was also shown to
inhibit a-synuclein aggregation in vivo in a C. elegans model of
Parkinson’s disease, and to rescue the disease phenotype.180

Finally, as single-domain antibodies bind the antigen with
up to three CDRs, and these validation DesAbs only had one
engineered CDR, a novel DesAb was designed with a second
complementary peptide grafted in the CDR2 with the aim of
increasing the affinity for the monomeric antigen. The Kd value
of this two-loop design was about 45 nM, corresponding to a
two/three orders of magnitude improvement over the one-loop
design targeting the same region of a-synuclein. However,
expression yields and stability of the domain scaffold were
affected by the insertion of a second extended loop, indicating
that further work is required to make this type of design
generally applicable.

New possibilities in sequence–activity relationship studies

Understanding which parts of a protein are key for its function
is an important requirement for the development of new
therapeutics, as it allows the identification of regions to target

pharmacologically. Methods that enable such identification are
globally referred as ‘‘sequence–activity relationship studies’’ or
‘‘scanning’’, as they are based on the functional analysis of the
primary sequence of a protein in a systematic manner. These
scanning strategies often rely on site-directed mutagenesis,
and include for example the widely-employed alanine
scanning.181,182 This method consists in the functional screening
of a library of mutational variants, each carrying an alanine
substitution at a different site. The identification of the variants
with the lowest activity thus enable the mapping of those residues
that are most important in determining function.182 However, it is
often difficult to determine whether a mutation selectively affects
function over structure and stability, and therefore the structural
integrity of each mutant must be assessed separately.183

An alternative technique for the identification of functional
parts of a protein is antibody scanning, also called epitope-
mapping.184,185 Rather than mutagenesis, this strategy employs
a library of antibodies, in which each antibody targets a
different epitope of the protein under investigation. The activity
of the protein is then measured in the presence of each
antibody individually, and the ones causing the strongest
inhibition are those that target an important functional region.
The strength of the antibody scanning approach relies on the
antibody library that is used for the analysis. To obtain reliable
results, this library has to provide exhaustive coverage of the
target protein, and there should be no ambiguity about where
each antibody actually binds. With standard antibody-discovery
techniques, it can be very challenging to obtain such a pool of
antibodies.

In this regard, the ability to quickly generate antibodies
with essentially single-residue resolution in the choice of
epitope has opened up novel avenues for the rapid production
of antibody libraries to be used in scanning studies. In a recent
work, we generated a library of antibodies designed to bind
successively along the whole sequence of the Ab42 peptide
(Fig. 4a),186 whose aggregation is an hallmark of Alzheimer’s
disease.

The aim of the study was to determine which regions of the
Ab sequence should be targeted to inhibit the production of the
toxic oligomeric species, which form during the aggregation
of Ab and are widely regarded as one of the major factors
triggering the disease.178,187–190 The formation of Ab oligomers
is a complex process that depends on several interconnected
steps. In particular, once a critical concentration of early
oligomers has formed through the self-assembly of Ab monomers
as a result of primary nucleation, and converted into fibrils,
surface-catalysed secondary nucleation becomes the dominant
mechanism of oligomer generation, as fibril surfaces can promote
the formation of new oligomeric species.188,191 These oligomers
can then grow and convert into additional fibrils, thus providing a
positive feedback mechanism that results in rapid aggregate
proliferation (Fig. 4b). The inhibition of primary and secondary
nucleation events may respectively delay or decrease toxicity,
whereas the inhibition of fibril elongation may actually lead to
an overall increase in toxicity.192 Therefore, effective therapeutic
strategies must be aimed at targeting precise microscopic steps
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during the Ab aggregation process, and the knowledge of which
regions to target will be essential to develop a truly rational drug
discovery program. The availability of this small but maximally-
diverse library of DesAbs enabled to investigate systematically the
different fundamental molecular-level events in Ab aggregation,
both in vitro and in vivo in a C. elegans model.186

All five DesAbs in the library were folded, stable, and able
to bind Ab42 monomers, and showed an epitope-dependent
binding to amyloid fibrils in agreement with the known
solvent-exposure of their epitopes in fibril structures.186

All antibodies inhibited the in vitro aggregation of Ab42, and
they did so in distinct manners, which are fully compatible
with the corresponding suppression of toxicity in a C. elegans
model of Ab-overexpression. The analysis revealed that the
central (residues 18–24) and c-terminal (29–36) regions of the
peptide are important to selectively target primary and second-
ary nucleation, respectively, while the DesAb targeting the

n-terminus (3–9) inhibited both processes, albeit to a weaker
extent (Fig. 4c and d).186 Furthermore, targeting regions 13–19
and 36–42 also resulted in a strong inhibition of fibril elongation,
which should be avoided in therapeutic development.178,192

In this way, we successfully mapped the contribution of the
primary sequence to the microscopic events that underpin the
aggregation of Ab42, which is very relevant for drug discovery.

This work demonstrate that approaches of rational antibody
design can be exploited to generate powerful research tools,
which enable to address basic research questions as well as
provide novel insights for drug development programmes.

Discussion on the opportunities offered by the Modular
method. In summary, the design strategy that we implemented
in the Modular platform involves a peptide-design and grafting
procedure, which, in synergy with an accurate prediction of
solubility, enables the design of novel antibodies targeting
linear epitopes of interest. As complementary peptides are

Fig. 4 Antibody scanning applied to the Ab peptide. (a) Schematic representation of the panel of designed antibodies (DesAbs) developed and
characterised in ref. 186 and corresponding epitopes on the sequence of Ab42 (in the middle). (b) Cartoon illustrating the aggregation mechanism of
Ab42. Monomers, oligomer and fibrils are shown. (c) Effect of the DesAbs on primary (red) and secondary (blue) nucleation, and elongation (black) steps
in the aggregation of Ab42. (d) Numerical estimates of the change in the population of on-pathway oligomers in the absence and presence of the
DesAbs. Reproduced from ref. 186 with permission from the American Association for the Advancement of Science, copyright 2017.
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designed almost independently of the antibody scaffold, this
strategy is highly modular and applicable to the design of
protein–protein interactions more generally (Fig. 3). The modu-
larity of the design also allows overcoming, at least in part, the
complexity of modelling contrasting molecular traits discussed
in the introduction. For instance, for our studies we relied on a
single-domain antibody scaffold that was engineered for high
stability,165 we designed solubility-improving mutations on
the stem of the CDR loops,55 and we exploited the rest of the
loops to design affinity and specificity, while also screening for
solubility.109 In this modular framework different components
of the antibodies are designed to modulate a single molecular
trait, in essence yielding the correct balance trough compensa-
tory effects. For example, the grafting of an artificial comple-
mentary peptide is almost certainly a destabilising feature,
which is however compensated by the high stability of the
scaffold and therefore very well tolerated. This framework also
inherently enable the use of unrelated techniques (e.g. CamSol
and the Cascade method) to design different components, and
different components can then be combined in a number of
ways to obtain protein binders for specific tasks, as shown for
instance by our work on the rational design of molecular
chaperones.193,194 This flexibility will enable in the future to
readily extend the potential and the applicability of the
Modular approach by incorporating new ‘‘modules’’, for example
for the design of thermodynamic stability or of low immuno-
genicity. The latter in particular is a crucial property for the
development of therapeutic antibodies, and the combinatorial
assembly of designed antibodies may in principle give rise to
neo-epitopes, which may elicit an adverse immune response.
The increasing number of human antibody sequences available
across public databases can be exploited to ensure that designed
antibodies are as human-like as possible, for example by com-
bining only amino acid fragments also found within human
antibodies and proteins. A similar and complementary approach
would be to predict and consequently remove candidate T-cell
epitopes.195

This modular combinatorial design strategy has proven to
be highly successful, as all eleven DesAbs that were tested in
experimental validation were stable and active.109,186 As only
the best scoring designs were chosen for laboratory production,
we do not expect that all complementary peptides generated
by the Cascade procedure will yield functional antibodies.
Nonetheless, hundreds of different peptides are typically
generated for a given epitope,109 and our experimental valida-
tion on three unrelated antigens,109 together with the antibody
scanning of the Ab sequence,186 as well as other applications to
molecular chaperones193,194 and solubility design,30,55,170

demonstrate the broad applicability of this strategy.
In addition, thanks to a pre-computed library of interacting

fragments and the lack of complex energy calculations, the
Cascade method runs in a few seconds on standard laptops,
and CamSol solubility predictions are even faster. This feature
makes the computational approach highly competitive with
laboratory-based methods of antibody discovery, at least in
terms of time and resources necessary for implementation.

However, further method development is required to optimise
the rational design of high affinity DesAbs for monomeric
proteins. For example, while the proof-of-concept two-loop
DesAb was able to bind its target with a Kd of B45 nM, stability
and expression yield of the antibody were affected. Moreover,
the current implementation of the algorithm is limited to
unstructured linear epitopes, albeit the overarching idea of
combining protein fragments known to interact within protein
structures can be generalized to structured targets.

Overall, the high success rate of this purely combinatorial
sequence-based design, together with that of the empirical
hotspot-centric approaches discussed in the previous section,
indicate that structural databases provide an invaluable
resource for the design of novel antibodies. By contrast, the
lower success rates observed with energy-based approaches
suggest that the available energy functions and sampling
strategies are not yet fully able to recapitulate the complex
rules that govern antibody binding, stability and solubility.

Conclusions

The development of the hybridoma technology in the mid ’70s
opened up the possibility of producing monoclonal antibodies
against specific antigens,196 and paved the way for the estab-
lishment of a first generation of antibody discovery methods
based on animal immunisation. Subsequently, in the early ’90s,
breakthroughs in biotechnology lead to the development of
a second generation of antibody discovery methods based
on DNA-library construction and screening, for example with
phage display and related techniques.197,198 These in vitro
methods offer several advantages over in vivo approaches,
including increased control over antigen presentation and the
possibility of creating and screening fully-human antibody
libraries. In addition, these second-generation technologies
are highly complementary to immunisation approaches, as
for instance scFv libraries can be generated from spleen cells
of immunized animals and then screened with phage-display.
For these reasons, in vitro approaches quickly gained popularity
and are now widely employed in industry and academia.

In this review we have discussed the emerging endeavour
of de novo rational antibody design. We believe that it is now
particularly timely to take on the challenge to develop and
establish a third generation of technologies of antibody dis-
covery and optimisation, based on in silico rational design
(Fig. 5a). The last two decades have seen transformational
advances in the biomedical sciences, to the extent that the
21st century has been heralded as the century of biology,
following the extraordinary developments of the 20th century
in physics and the 19th century in chemistry.199 In particular,
the Human Genome Project has triggered the development of
next-generation sequencing technologies, which are enriching
biological databases with millions of sequences of proteins and
antibodies from myriad different sources. Furthermore,
improvements in the pace and accuracy of protein structure
determination techniques are contributing unprecedented
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amounts of high-quality structural data, comprising large
numbers of antibody–antigen complexes (Fig. 5b and c).135,200

The increasing use of quantitative methods in biology has
gradually transformed the way biological observations are made,
and it is now possible to assemble large datasets of highly
accurate measurements of antibody biophysical properties,
including binding affinity, stability and solubility.55,146 These
data, together with structural and dynamical information
(e.g. from NMR spectroscopy), are also enabling the develop-
ment of increasingly accurate energy functions, which are
employed to simulate the conformational dynamics of proteins
and protein complexes underlying many approaches of rational
design.95 Finally, computers able to quickly perform complex
calculations are now available, and the cost of computing
power is going down at a staggering rate. Taken together, these
advances enable to address questions that were essentially
intractable a decade ago, including the rational design of
antibodies.

While still in its infancy, de novo antibody design has already
produced some success stories, and it has already facilitated
novel types of experiments, like the antibody scanning
approach that we have discussed here. We anticipate that, in
combination with well-established in vitro directed-evolution

techniques, and with emerging high-throughput DNA-library
manufacturing technologies, in silico antibody discovery will
make it possible to generate novel opportunities to understand
the fundamental principles of molecular recognition, and to
develop effective antibodies for research, and for diagnostic
and therapeutic applications.

In our vision, in silico rational design has the potential
of becoming the preferred procedure for the generation of
antibodies for many applications, as this approach offers
unique opportunities to accelerate discoveries in the bio-
medical sciences. Not only it promises to provide a cheaper
and faster route to antibody discovery, but also to enable a
uniquely precise control over the properties of the resulting
antibodies. We envision a future in which it may become
possible to use computational methods to swiftly and reliably
obtain antibodies with customised stability, solubility and
binding affinity, targeting pre-determined epitopes of interests
that would be challenging to access using current approaches.
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Fig. 5 Towards the advent of in silico antibody discovery. (a) Pictorial timeline of the three generations of antibody discovery technologies, which
consists in in vivo methods based on animal immunisation (blue), in vitro methods of library construction and screening (yellow) and in silico methods of
rational design (green). These approaches are not mutually exclusive but are highly complementary to each other. A non-comprehensive list of some of
the advances that enabled the development of each generation of technologies is presented below the x-axis. (b and c) Numbers of protein (b) and
antibody (c) structures in public repositories, which are rapidly growing in time (sources: RCSB and SAbDab databases).
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Z. Popović, J. J. Havranek, J. Karanicolas, R. Das, J. Meiler,
T. Kortemme, J. J. Gray, B. Kuhlman, D. Baker and
P. Bradley, Methods Enzymol., 2011, 487, 545–574.

99 S. J. Fleishman, T. A. Whitehead, E.-M. Strauch, J. E. Corn,
S. Qin, H.-X. Zhou, J. C. Mitchell, O. N. A. Demerdash,
M. Takeda-Shitaka, G. Terashi, I. H. Moal, X. Li, P. A. Bates,
M. Zacharias, H. Park, J.-S. Ko, H. Lee, C. Seok,
T. Bourquard, J. Bernauer, A. Poupon, J. Azé, S. Soner,
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