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Protein aggregation causes many devastating neurological and systemic diseases and represents a

major problem in the preparation of recombinant proteins in biotechnology. Major advances in

understanding the causes of this phenomenon have been made through the realisation that the

analysis of the physico-chemical characteristics of the amino acids can provide accurate

predictions about the rates of growth of the misfolded assemblies and the specific regions of the

sequences that promote aggregation. More recently it has also been shown that the toxicity in vivo

of protein aggregates can be predicted by estimating the propensity of polypeptide chains to form

protofibrillar assemblies. In this tutorial review we describe the development of these predictions

made through the Zyggregator method and the applications that have been explored so far.

Introduction

Despite the presence of highly organised cellular processes that

regulate the behaviour of proteins in vivo,1 their amino acid

sequences play a fundamental role in determining their in-

trinsic propensities to fold and function,2 or to misfold and to

aggregate.3,4 Following this observation it has been realised

that it is possible to make accurate predictions about whether

a protein will aggregate starting from the knowledge of its

sequence.4–15 Thus, considerable progress in understanding

and controlling protein aggregation has been made by con-

sidering the basic physico-chemical properties of the

amino acids.

These advances are particularly relevant since protein ag-

gregation into assemblies rich in b-sheet structure has been

linked to a series of severe disorders, including Alzheimer’s

and Parkinson’s disease, and type II diabetes.16–18 Additional

interest in this phenomenon comes from the possibility of

using highly ordered cross-b protein aggregates known as

amyloid fibrils as novel high-performance and versatile nano-

materials,19 and in reducing the costs caused by protein

aggregation into the so called inclusion bodies in the produc-

tion of proteins for therapeutic use by increasing their solubi-

lity.20

In this paper we review the development of the Zyggregator

algorithm5,6,21–27 (http://www-vendruscolo.ch.cam.ac.uk/zyg

gregator.php), a computer program that enables predictions

to be made about different phases of the aggregation process

and for a variety of experimental conditions.

Changes of aggregation rates upon mutation

The Zyggregator algorithm is based on a seminal study that

investigated the role of the physico-chemical properties of

amino acids in determining changes in the aggregation rates

resulting from individual amino acid substitutions.4 A signifi-

cant correlation was found between the changes in the aggre-

gation rates resulting from single mutations and their effect on

three physico-chemical properties of the polypeptide chain,

hydrophobicity, charge, and the propensity to adopt a-helical
or b-sheet structures. These factors were included in an

equation to correlate the changes in aggregation rates relative

to the wild-type protein for single substitutions in regions of
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the polypeptide chains observed to influence aggregation and

for peptides and proteins that were at least partially unfolded

log(k/k0) = ahydrDI
hydr + assDI

ss + achDI
ch (1)

In this equation log(k/k0) is the logarithm in base 10 of the

ratio of k, the aggregation rate of the wild type and k0, the

aggregation rate of the mutant, and DIhydr, DIss and DIch

represent, respectively, the change in hydrophobicity, Ihydr,

secondary structure propensity, Iss, and charge, Ich, upon

mutation. The parameters a were obtained by fitting eqn (1)

on a database of mutational variants for which aggregation

rates were measured in vitro.4 This formula reproduces to a

remarkable extent (r = 0.85) the changes in the aggregation

rates observed experimentally for single amino acid substitu-

tions for a series of peptides and proteins, including those

associated with disease.4

Absolute aggregation rates

By exploiting the observation that the physico-chemical prop-

erties of amino acids are important factors influencing aggre-

gation, we investigated whether such properties can be used to

predict the overall aggregation rates of peptides and proteins

starting from the knowledge of their amino acid sequences. On

the basis of eqn (1) we considered the following expression for

the aggregation rate of a polypeptide chain

log(k) = a0 + ahydrI
hydr + assI

ss + achI
ch + apatI

pat (2)

With respect to eqn (1) we added a term, Ipat, to take into

account the existence of patterns of alternating hydrophobic

and hydrophilic residues, which are known to influence

strongly the aggregation process;28 a factor of +1 is assigned

for each pattern of five consecutive alternating hydrophobic

and hydrophilic residues in the sequence.5 As in the case of

eqn (1) the a parameters in eqn (2) can be obtained by fitting

on a database of proteins for which aggregation rates are

measured in vitro.5

The simple approach of eqn (2), however, does not take into

account how diverse factors, extrinsic to the amino acid

sequences, influence the rates of aggregation of peptides and

proteins. In standard in vitro experiments such extrinsic factors

include the parameters defining the environment of the poly-

peptides, such as pH, temperature, ionic strength and protein

and denaturant concentrations.4,18 Additionally, in order to

study the relationship between aggregation and disease it is

important to consider also factors relevant in in vivo experi-

ments such as the interaction with cellular components such as

molecular chaperones, proteases that generate or process the

amyloidogenic precursors, and the effectiveness of quality

control mechanisms, as the ubiquitin-proteasome system.29–31

All these factors are absent from eqn (2), which therefore is of

limited use since the fitting of the parameters a in eqn (2)

should therefore be carried out with a database of peptides

and proteins whose aggregation rates have been measured

under identical conditions.

Since in practice it is extremely challenging to construct such

a homogenous database of aggregation rates, an approach

should be devised that can make use of databases compiled by

considering aggregation rates measured under a variety of

conditions. A problem to solve is that the physico-chemical

propensities considered in eqn (1) and (2) are modified when

the experiment are carried out under varying conditions. For

example, increasing the concentration of denaturant modifies

the hydrophobicity and the secondary structure propensity of

the different amino acids. If we consider these modifications to

be small we can take them into account by introducing linear

corrections

log(k) = log(kint) + log(kext) (3)

where kint is the ‘‘intrinsic’’ aggregation rate defined by eqn (2)

and kext is an ‘‘extrinsic’’ one. We initially considered the

effects of three such factors5

log(kext) = apHE
pH + aionicE

ionic + aconcE
conc (4)

where, EpH accounts for the pH of the solution in which

aggregation occurs, Eionic defines the ionic strength of the

solution, and Econc refers to the polypeptide concentration in

the solution.5

The parameters a in eqn (3) can be fitted by using a database

of aggregation rates determined experimentally under different

conditions, at least when such conditions are not too different

from the physiological ones.5 The predictions made through

eqn (3) have been tested on a range of peptides and proteins,

providing accurate predictions (r = 0.8 or better) for aggrega-

tion rates spanning over five orders of magnitude,5 thus

showing that it is possible to rationalise the aggregation

process in vitro on the basis of relatively simple combination

of physico-chemical properties of the amino acid sequences

and of the environment in which they are found.

We observe that the predictions of the changes of aggrega-

tion rates upon mutation made using eqn (1) are rather

accurate even if they only consider intrinsic factors, since the

ratio kint/kint* is, according to eqn (3), equal to k/k* which are

the rates actually observed in the experiment.

Aggregation-prone regions

The aggregation process of peptide and proteins depends

strongly on the specific regions of their amino acids sequences

whose aggregation propensities are particularly high.6–15 The

definition of the intrinsic aggregation rate kint enables aggre-

gation propensity profiles to be calculated in order to identify

these aggregation-prone regions.6

The aggregation propensity profile is defined by considering

the position-dependent Pi
agg score.6,26 For a given residue i,

the Pi
agg score is calculated as26

Pagg
i ¼ 1

7

X3
j¼�3

paggiþj þ apatI
pat
i þ agkI

gk
i ð5Þ

where we considered the aggregation rate of a seven-residue

segment of the protein centered at position i. In eqn (5) the

intrinsic aggregation propensity, pi
agg, of an individual amino

acid is defined as26

pi
agg = ahpi

h + aspi
s + ahydpi

hyd + acpi
c (6)

where pi
h, pi

s, pi
hyd, pi

c are the amino acid scales for a-helix and
b-sheet formation, hydrophobicity and charge.26 The
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remaining two terms in eqn (5), Ii
pat and Ii

gk, are included,

respectively, to account for the presence of hydrophobic

patterns and of gatekeeper residues.32,33 The term Ii
pat is 1 if

residue i is included in a hydrophobic pattern and 0 otherwise,

while the term Ii
gk is defined as26

Igki ¼
X10
j¼�10

ciþj ð7Þ

where the sum over the charges ci of individual amino acids is

made over a sliding window of 21 residues; shorter windows

are considered at the N- and C-termini. The term Ii
gk is

introduced to take into account the fact that when a hydro-

phobic pattern is flanked by charged residues its contribution

to the aggregation propensity is much reduced by electrostatic

repulsions.

The Pi
agg score is normalised in order to facilitate the

comparison between amino acid sequences of different

lengths14

Zagg
i ¼ Pagg

i � magg

sagg
ð8Þ

where the average magg

magg ¼ 1

ðN� 6Þ �NS

XNS

k¼1

XN�3
i¼4

Zagg
i ðSkÞ ð9Þ

and standard deviation sagg

sagg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðN� 6Þ �NS

XNS

k¼1

XN�3
i¼4
ðZagg

i ðSkÞ � maggÞ2
vuut ð10Þ

are calculated over NS random sequences (with NS = 1000) of

length N generated by using the amino acid frequencies of the

SWISS-PROT database.26 With this normalisation, the Zi
agg

score is 0 if the aggregation propensity at position i along the

sequence is equal to that of a random sequence and 1 if it is

one standard deviation more aggregation-prone.

From the Zi
agg score it is possible to define an overall

aggregation propensity by summing over all the amino acids

of a sequence that have aggregation propensities higher than

those of random sequences26

Zagg ¼

PN
i¼1

Zagg
i WðZagg

i Þ

PN
i¼1

WðZagg
i Þ

ð11Þ

where the function W(Zi
agg) is 1 for W(Zi

agg) Z 0 and 0 for

Zi
agg o 0.

The Zi
agg profiles enable a variety of experimental observa-

tions about the amyloidogenic potential of different regions of

a polypeptide sequence to be rationalised, at least in the cases

in which peptides and proteins aggregate from disordered

states under physiological conditions. We discuss here the

cases of Ab and a-synuclein.

Ab1–42

The amyloid b-peptide (Ab) is the main constituent of the

extracellular deposits characteristic of Alzheimer’s disease

(AD).34 This peptide is found in the human brain predomi-

nately in two forms, of 40- and 42-amino acids in length

(Ab1–40 and Ab1–42, respectively).
The intrinsic aggregation propensity profile, Zi

agg, of Ab1–42
reveals two regions of high aggregation propensity (those

above the Zi
agg = 1 threshold, dashed line in Fig. 1): the

central (residues 18–22) and the C-terminal (residues 32–42)

regions. Both these regions play an important structural role in

the current models of the structures of the Ab1–40 and Ab1–42
peptides in their amyloid forms.

a-Synuclein

Human a-synuclein is known to self-assemble into intracellu-

lar inclusions in dopaminergic neurons of patients suffering

from Parkinson’s disease.38 Using an array of experimental

techniques, including limited proteolysis,39,40 hydrogen–deu-

terium exchange41 and site-directed spin labelling/EPR42,43 it

was found that the central region (approximately residues

30–95) of this normally natively unfolded protein forms the

core of the fibrils. The aggregation propensity profile Zi
agg

identifies four peaks located within this central region of the

sequence (Fig. 2). These four peaks appear to correspond to

the regions found to form the b-core of the fibrils using solid-

state NMR measurements.

Aggregation-prone regions in the presence of

denaturants

In order to obtain an expression for the aggregation propen-

sity profiles that is also valid under strongly non-physiological

conditions, we should consider scales of physico-chemical

factors determined under such conditions. The approach that

we followed in eqn (3) was based on the assumption that the

complex dependencies of intrinsic and extrinsic factors can be

captured by linear expressions. For weak perturbations5,6 this

approximation is rather accurate, but under harsher condi-

tions we do not expect this to be the case. For example, the

Fig. 1 Aggregation propensity profile of Ab1–42. The vertical

bars indicate the intrinsic aggregation propensity profile, Zi
agg.

The green and blue horizontal bars indicate regions of the sequence

found to form the core of the fibrils as determined with NMR

measurement35,36 and site-directed spin labelling coupled to EPR,37

respectively.
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addition of TFE changes rather dramatically the secondary

structure propensities of individual amino acids. These

changes are unlikely to be accurately accounted for by adding

up extrinsic contributions to the corresponding intrinsic scales

used in eqn (1).

The strategy that we have used in the Zyggregator algorithm

to carry out predictions of aggregation propensities in the

presence of TFE is to refit the parameters of eqn (2) using a

database of in vitro aggregation rates for a set of polypeptide

chains whose aggregation was monitored in the presence of

TFE. We thus obtained a Zi
TFE score analogous to the Zi

agg

score defined in eqn (8) but applicable to cases in which

aggregation takes place in the presence of TFE.27

Aggregation-prone regions in globular states

When a protein is folded, the propensity to form amyloid

structures is often inversely related to the stability of its

native state.44 This finding suggests that regions with a high

intrinsic propensity for aggregation are buried inside

stable and often highly cooperative structural elements, and

therefore unable in such states to form the specific intermole-

cular interactions that lead to aggregation, although,

following mutations that destabilize the native structure, they

might acquire this ability. A region of a polypeptide

sequence should meet two conditions in order to promote

aggregation: (1) it should have a high intrinsic aggregation

propensity and (2) it should be sufficiently unstructured

or unstable to have a significant propensity to form inter-

molecular interactions.

In order to be able to take into consideration the tendency

of a given region of a protein sequence to adopt a folded

conformation, we use the CamP method, which provides a

position-dependent score, denoted as lnPi, that characterises

the local stability at that position.45 This method enables the

high accuracy prediction from the knowledge of amino acid

sequence of the regions that are buried in the native state of a

protein and of the protection factors for native hydrogen

exchange.45

By combining the predictions of the intrinsic aggregation

propensity profiles with those for folding into stable struc-

tures, we account for the influence of the structural context on

the aggregation propensities. We thus define26 a new aggrega-

tion propensity profile Z̃i
agg, by modulating the intrinsic

aggregation propensity profile, Zi
agg with the local stability

score, lnPi

~Zagg
i ¼ Zagg

i 1� lnPi

15

� �
ð12Þ

These modulations on the Zi
agg profile are made only when

Zi
agg 4 0 since we consider only the effects on the regions of

high intrinsic aggregation propensity, which are those that

effectively drive the aggregation process.

From the Z̃i
agg score it is possible to define an overall

aggregation propensity by summing over all the amino acids

of a sequence that have aggregation propensities higher than

those of random sequences26

~Zagg ¼

PN
i¼1

~Zagg
i Wð ~Zagg

i Þ

PN
i¼1

Wð ~Zagg
i Þ

ð13Þ

We illustrate this approach in the case of the human prion

protein (hPrP), which is involved in sporadic, inherited or

infectious forms of Creutzfeldt-Jakob disease (CJD), Gerst-

mann-Straussler-Sheinker disease (GSS) and fatal familial

insomnia (FFI).46 The key event in the pathogenesis of these

human diseases is the conversion of the normal a-helical
protease-sensitive cellular form of the prion protein (hPrPC)

into a b-rich form (hPrPSc) that possesses distinct features such

as protease resistance, insolubility and toxicity.47 Further-

more, hPrPSc itself appears to mediate the transmission of

TSEs by promoting the conversion of hPrPC into its modified

and pathogenic aggregated state.

While the mechanism of conversion of hPrPC to hPrPSc is

not known in detail, specific regions of the hPrPC sequence

appear to be particularly important in modulating the inter-

action with hPrPSc and promoting the process of amyloid

formation.47 In Fig. 3 we show the intrinsic aggregation

propensity profile Zi
agg for the sequence of hPrP(23–231).

We then took into account the effects of the intrinsic propen-

sities of the various residues to be structured, and hence

protected from aggregation resulting in the Z̃i
agg profile. The

similarity of the Zi
agg and the Z̃i

agg profiles for residues 23–125

is in agreement with the experimental observation that this

region is not structured.48 When considering both intrinsic

sequence-based propensities and specific structural factors, the

region spanning residues 120–126 corresponds to the highest

peak in the entire sequence and the only one to have Z̃i
agg 4 1,

suggesting that this region is the most aggregation-prone

region in the hPrPC form. This prediction correlates well with

experimental data on the in vitro aggregation behaviour of

Fig. 2 Aggregation propensity profile of human a-synuclein. The

vertical bars indicate the intrinsic aggregation propensity profile, Zi
agg.

The blue, red and pink horizontal bars indicate the region of the

sequence that appears to be structured in the fibrils from site-directed

spin labelling coupled to EPR,42,43 hydrogen–deuterium exchange41

and limited proteolysis respectively.39,40 The regions adopting a b-
strand conformation within such a region, as revealed by solid-state

NMR measurements, are indicated by green horizontal bars; due

to experimental uncertainties the boundaries of such strands are

approximate.
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hPrP fragments. Peptides hPrP106–114, hPrP106–126, hPrP113–126

and hPrP127–147 of recombinant hPrP all have high propensi-

ties to form amyloid fibrils.47

Crucially, the aggregation propensity of the region 175–193,

which includes a-helix II in the hPrPC form, is predicted to

be very high. Indeed, the intrinsic aggregation propensity

profile Zi
agg (Fig. 3) identifies this region as the most

amyloidogenic one. However, using the CamP method we

also predicted, in agreement with experimental data, that this

region is highly structured in the hPrPC form.48 Therefore

when the aggregation propensity profile Z̃i
agg is considered,

the region of residues 175–193 results to be less aggregation-

prone in the hPrPC form than the region of residues 118–128.

In addition, the presence of the disulfide bond C179–C214

appears to play an important role in stabilizing the region

175–193 in the hPrPC form by inhibiting the formation of

intermolecular interactions from this state. However,

recent hydrogen/deuterium exchange experiments49 have

indicated that the region corresponding to the structural core

of the amyloid fibril corresponds to residues 169–213 (black

bar in Fig. 3), a result in close agreement with our predictions

using the intrinsic aggregation propensity profile Zi
agg.

Therefore the comparison of the Zi
agg and Z̃i

agg profiles

suggests that the region of residues 175–193 is involved in

the stabilization of the hPrPSc forms after the hPrPC form

has been destabilized.

Toxicity of protein assemblies

A question of central importance is whether the possibility of

predicting aggregation rates based on the physico-chemical

properties of the amino acids is relevant to understand the

causes of the toxicity of the aggregates. It is thus crucial to

understand the relationship between the toxicity of misfolded

assemblies measured in vivo, the aggregation rates measured

in vitro, and the aggregation propensities estimated by com-

putational methods.

We investigated this relationship by carrying out experi-

ments on a transgenic Drosophila model of Alzheimer’s dis-

eases.21 By designing a series of mutational variants of the Ab
peptide we established a link between the physico-chemical

properties of the sequences of the peptides and the conditions

of the flies expressing them in the central nervous system.21

Since increasing evidences suggests that the most toxic protein

aggregates are b-rich oligomeric assemblies known as proto-

fibrillar species,50–53 we defined a position-dependent toxicity

score, Zi
tox, that accounts for the propensity to form proto-

fibrillar assemblies21

Ztox
i ¼

Ptox
i � mtox

stox
ð14Þ

In this equation, the terms contributing to Zi
tox are the same as

in eqn (8), but with the difference that the parameters are fitted

on a database of polypeptide chains whose aggregation re-

sulted in protofibrillar species, rather than amyloid fibrils.21

The Zi
tox is shown in the case of Ab1–42 in Fig. 4.

In order to compare the predictions with the experimental

results we defined an over toxicity score as21

Ztox ¼
XN
i¼1

Ztox
i ð15Þ

The correlation between the Ztox score and the toxicity of the

of Ab1–42 mutants was found to be very high (r = 0.83) and

better than the correlation obtained with the aggregation

propensity score Zagg (r = 0.75), thus supporting the

Fig. 3 Aggregation propensity profiles of the human prion

protein. The black vertical bars indicate the intrinsic aggregation

propensity profile, Zi
agg; the red vertical bars indicate the aggregation

propensity profile, Z̃i
agg, calculated by taking into account the struc-

tural protection provided by the globular structure of hPrPC form of

the protein, as predicted by the lnPi score.26,45 For reference,

the secondary structure elements present in hPrPC are indicated as

blue bars (b-strands) and red bars (a-helices),48 and the position of

the disulfide bond C179–C214 is indicated by a blue line. An experi-

mentally-determined aggregation-prone fragment47 (residues 118–128)

is indicated by a green bar, and it is shown to overlap substantially

with the major region predicted by our method to have a significant

aggregation propensity (Z̃i
agg 4 1) in the hPrPC form. The

region corresponding to the structural core of the amyloid fibril as

determined by hydrogen–deuterium exchange49 (residues 169–213)

is indicated by a black bar, and corresponds to the region of

high intrinsic aggregation propensity (Zi
agg 4 1) formed by

residues 175–193.

Fig. 4 Toxicity profile of Ab1–42.The vertical bars indicate the

toxicity profile, Zi
tox. The positions of the mutants whose toxicity

has been studied in vivo21 are indicated by red circles. See Fig. 1 for the

definition of the blue and green bars.
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observation that protofibrillar species are more toxic than

fibrillar ones.21

The strategy of the Zyggregator predictions

The predictions made with Zyggregator are based on the

possibility to estimate whether a peptide or protein will fold

or aggregate into fibrillar or protofibrillar structures (Fig. 5)

on the basis of combinations of physico-chemical properties of

its amino acids (Table 1). For each of these possible outcomes,

a different propensity is calculated by constructing a different

predictor through a fitting procedure that exploits the experi-

mental knowledge of the rates of the corresponding process, in

this case either folding or aggregation into oligomers or fibrils

(Fig. 5).

Since the physico-chemical properties of the amino acids

change with the environment in which the folding or aggrega-

tion processes take place, the coefficients are fitted on a

database of experimental rates collected for relatively homo-

geneous conditions, and the predictions are made only for in

the vicinity of such conditions.

Starting from the amino acid sequence of a peptide or

protein, the major parameters that determine the propensity

for aggregation or for being locally stable in the folded state

are calculated from the physico-chemical properties of the

amino acids.

Relationship with other methods of predicting

protein aggregation propensities

Since the initial realisation that protein aggregation propen-

sities of peptides and proteins can be predicted from the

physico-chemical properties of their amino acid sequences,4

several sequence-based methods have been proposed to

achieve this goal.5–11 These methods differ in the specific

way in which the properties of amino acids are translated into

phenomenological terms describing the different contributions

to the overall propensity for aggregation. For example, in

addition to the terms described in eqn (1), the TANGO

method considers explicitly the enthalpic and entropic costs

associated to the conformational transition between folded

and aggregated structures,7 and the method by Tartaglia et al.

includes a term to describe the p-stacking contributions to the

stability of the aggregates.8

More recently, it has also been realised that the aggregation

propensities of polypeptide chains can be predicted by follow-

ing two conceptually distinct strategies. In the first, amino acid

sequences are threaded on known cross-b structures, in order

to assess its compatibilty with this type of conformation.12 In

the second, the propensities of polypeptide chain to self-

assemble into ordered cross-b aggregates are estimated by

constructing a knowledge-based residue-residue interaction

potential using a database of native structures.15

These results indicate that there are currently at least three

alternative, almost equivalent strategies for predicting the

aggregation propensities of peptides and proteins. Such pro-

pensities can be estimated either from to the physico-chemical

properties of the amino acid sequences,4 or according to their

compability with the cross-b motif typical of ordered fibrillar

assemblies,12–14 or by considering their tendency of forming b
structures in native states.15 These results strongly support the

view that folding and aggregation are two closely related

processes that depend primarily on the fundamental physico-

chemical properties of polypeptide chains.

Conclusions

We have described the Zyggregator approach for predicting

the aggregation propensities of polypeptide chains based on

their amino acid sequences. The methodology that we have

presented is based on the idea that the sequence of a protein

determines its behaviour in the case of folding, misfolding and

aggregation.

The possibility provided by methods such as the one that we

have presented to predict the regions most important to cause

aggregation and toxicity for natively unfolded polypeptide

chains, for globular proteins and for systems that contain

both folded and unfolded domains should be of significant

value in developing rational approaches to the avoidance of

aggregation in biotechnology and to the treatment of protein

deposition diseases.
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