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Each step in the process of gene expression, from the transcription of DNA
into mRNA to the folding and posttranslational modification of proteins, is
regulated by complex cellular mechanisms. At the same time, stringent
conditions on the physicochemical properties of proteins, and hence on the
nature of their amino acids, are imposed by the need to avoid aggregation at
the concentrations required for optimal cellular function. A relationship is
therefore expected to exist between mRNA expression levels and protein
solubility in the cell. By investigating such a relationship, we formulate a
method that enables the prediction of the maximal levels of mRNA
expression in Escherichia coliwith an accuracy of 83% and of the solubility of
recombinant human proteins expressed in E. coli with an accuracy of 86%.
© 2009 Elsevier Ltd. All rights reserved.
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Introduction

The conversion of 04214 the information stored in
DNA into proteins takes place through a series of
steps that are highly regulated in response to the
functional requirements of the cell.1–3 One of these
requirements is that proteins, once expressed, must
remain soluble and avoidmisfolding and aggregation
in order to function effectively and to avoid cellular
damage.4 In addition to quality-control mechanisms
that act at the cellular level, such as the unfolded
protein response5,6 and the heat shock response,7,8

increasing evidence suggests that the protein se-
quences themselves have evolved to reduce their
intrinsic propensity to aggregate.9–12 Indeed, as a result
of the evolutionary pressure to avoid aggregation,
in vivo mRNA expression levels and in vitro protein
aggregation rates are strongly anti-correlated.13
In this work, we explore further the link between

mRNA expression levels and protein aggregation
behaviour and show that an amino acid scale
developed for characterizing the propensity of
proteins to aggregate can be used to make predic-
tions about the maximal levels of mRNA expression
in Escherichia coli. To complement this result, we also
resses:
.
ridge Predictor of
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show that aggregation propensities can be used to
predict the solubility of recombinant human proteins
expressed in E. coli, a result of considerable value in
biotechnology.
Further, since it has been established that aggrega-

tion rates of proteins can be predicted using the
physicochemical properties encoded in their se-
quences,14–17 we investigate the extent to which such
properties can be used to predict mRNA expression
levels in E. coli. We thus introduce the CamEL
(Cambridge Predictor of Expression Levels) method
that enables the prediction of the maximum levels of
mRNA expression in E. coli using the information
extracted from hydropathy scales, secondary-struc-
ture propensities and co-translational factors.We then
show that the CamEL approach can be used also to
predict the solubility of human proteins expressed in
E. coli with a high degree of accuracy.
Taken together, our results provide an illustration

of the link between the maximal levels of mRNA
expression and the solubility of the corresponding
proteins in E. coli.

Results

Relationship between protein aggregation
propensities and mRNA expression levels

The average number of mRNA molecules per cell
during the log phase of bacterial growth varies
d.
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between10−1 and 105 during the logphase of bacterial
growth18 (Fig. 1a). This high variability arises from
the different functional requirements of proteins and
is tightly regulated at the cis regulatory19 and post-
translational levels.19,20 There is a strong bias to
maintain the solubility of proteins in the cell because
of the potential toxicity of misfolded and aggregated
assemblies.4,13 However, decreased solubility is the
result of random mutations,21 defective posttransla-
tional modifications such as phosphorylation22 and
glycosylation23 or inefficient interaction with mole-
cular chaperones such as DnaJ and DnaK as well as
GroEL and GroES.7 As aggregation rates of proteins
can be predicted using the physicochemical proper-
ties of their amino acid sequences,14,16,17 we investi-
gate here their relationshipwith expression levels on a
proteomic scale.
We use a database of cytosolic proteins in the E.

coli proteome because their abundance enables very
accurate statistics to be obtained.24 Moreover, in the
highly regulated environment of the cytosol, varia-
tions of pH or ionic strength are not significant
and their effects on aggregation are negligible.25,26
We then divide protein sequences into fragments
and calculate the aggregation propensity of each
fragment using a scale that has been recently
described.16 In agreement with other experimental
scales,12,27 high aggregation propensities are asso-
ciated with hydrophobic amino acids such as I, F, V,
L, W, Y, and M and low aggregation propensities are
associated with polar amino acids such as D, E, N, R,
Q, H and K. As we move from protein expressed at
low levels to those expressed at high levels, we
terised by low hydrophobicity and high polarity. (d) The inf
fragments is used to formulate a method (Materials and Methods
The parameters are derived using a set of 100 cytosolic proteins
69%. The samemethod has an accuracy of 72% in predicting the so
one-out procedure was used to establish the performance of the
observe that the number of hydrophobic fragments
(agg+) is progressively depleted in comparison with
the number of polar fragments (agg−), and as a
consequence, the aggregation propensities tend to
decrease (Fig. 1b).
Having made this observation, we provide an

illustration of the relationship between gene expres-
sion and protein aggregation by discussing a
method for discriminating between high and low
mRNA expression levels using the aggregation
propensities of proteins. For this purpose, we exploit
the information contained in the aggregation pro-
pensities of 50 sequences associated with the highest
expression levels and 50 sequences associated
with the lowest expression levels in our database
(Supplementary Information).18 As the difference
between the aggregation propensities of these two
groups is large (Fig. 1b), we have an ideal data set
for deriving the parameters required for such a
method to succeed (Materials and Methods). We use
the distribution of agg+ and agg− aggregation
propensities (Fig. 1c) to fit the parameters needed
to successfully discriminate between sequences
associated with low and high expression levels
(Materials and Methods). Using a leave-one-out
procedure, we establish that 69% of the entries in
our data set can be correctly allocated to one of the
two classes (Fig. 1d). Our results indicate that low
and high mRNA expression levels can be predicted
rather accurately by using only the aggregation
propensities of the corresponding proteins. We have
shown here in quantitative terms that hydrophilic
proteins are particularly associated with high
Fig. 1. Relationship between
mRNA expression levels and protein
aggregation propensities. (a) Distri-
bution of mRNA expression levels of
E. coliproteins during the logphaseof
bacterial growth. (b) Analysis of the
aggregation propensities of protein
sequences associated with mRNA
expression levels above a specific
threshold θ [see (a)]. For each protein,
we compute the number of protein
fragments characterised by high
(agg+) and low (agg−) aggregation
propensities. By moving the thresh-
old θ from low to high expression
levels, we observe that the number of
low aggregation propensity frag-
ments agg− is enriched with respect
to the number of high aggregation
propensity fragments agg+. (c) The
distribution of agg+ and agg− frag-
ments is shown for the 50S ribosomal
protein L35 (SwissProt entryRL35_E-
COLI); this gene is highly expressed
(3270 mRNA copies per cell) and its
corresponding protein is charac-

ormation contained in the amino acid composition of the
) that discriminates between high and low expression levels.
and the method assigns the correct class with an accuracy of
luble fraction of humanproteins expressed inE. coli.A leave-
method (Supplementary Information).
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Fig. 2. Prediction of expression levels using physicochemical properties of protein sequences. The average number of
mRNAmolecules per cell ranges from 10−1 to 105, and mRNA expression levels are partitioned into six classes according
to their order of magnitude. Shades of gray are used to indicate the frequency for the classification of experimental versus
predicted expression levels. (a) Hydrophobicity, polarity and hydrophilicity of protein sequences are used to predict the
expression levels. 58% of the predicted expression levels Epred are observed to be within one order of magnitude of the
experimental expression levels (Eexp) and 77% within two orders of magnitude. (b) Polarity and hydrophilicity show
individual correlations of 54% and 57% with expression levels, respectively, while hydrophobicity shows an anti-
correlation of −54% (Materials and Methods). (c) Prediction of mRNA expression levels using α-helix, β-sheet and
random coil propensities. 66% of the expression levels are predicted within one order of magnitude of the experimental
expression levels (Eexp) and 88% within two orders of magnitude. (d) α-Helical and random show individual correlations
of 64% and 75% with expression levels, respectively, while β-sheet propensity shows an anti-correlation of −74%
(Materials and Methods).
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expression levels, a result in agreement with
previous observations.28

To assess further the validity of this approach, we
here used it to predict the soluble fractions of
recombinant human proteins (clones) in E. coli. This
case is of particular interest because a lack of
solubility represents a major bottleneck in biotech-
nology, including functional and structural geno-
mics projects.29,30 For example, low success rates
have been reported for the expression of eukaryotic
proteins in E. coli and indeed only a small propor-
tion of proteins can be successfully prepared and
purified in this way.31 From the hEx1 expression
library of human proteins in E. coli,32 we selected all
72 proteins with the lowest solubility and all 112
proteins with the highest solubility (Materials and
Methods). We then classified these human proteins
by following the procedure introduced above for
distinguishing between sequences encoding high
and low expression levels. By using a leave-one-out
validation procedure (see Supplementary Informa-
tion), we found that it is possible to discriminate
between high solubility and low solubility clones
with an accuracy of 72% (Fig. 1d). These findings
indicate that the same physicochemical principles
can be used to distinguish between high and low
mRNA expression levels and between high and low
solubilities of proteins in E. coli.
Analysis of physicochemical determinants of
mRNA expression levels

In the previous section, we have described a
method to discriminate between high and low
expression levels of genes using the aggregation
propensities of proteins. Using a database of cyto-
solic proteins,18,24 we now investigate the relation-
ship between mRNA expression levels and a variety
of physicochemical properties of proteins. We for-
mulate the CamEL method†, which enables predic-
tion of the maximal levels of mRNA expression in E.
coli. We focus on the order of magnitude of the
prediction rather than on the specific values of the
expression levels as an intrinsic error is associated
with microarray data33 and because of the stochastic
nature of gene expression process itself.34 As in the
previous section, we divide protein sequences into
fragments and then calculate their physicochemical
properties (Supplementary Information).
We first consider a combination of physicochem-

ical properties of the amino acid sequences, includ-
ing hydrophobicity, polarity and hydrophilicity, to
predict the order of magnitude of the expression
levels (Materials and Methods). We find that 58% of



Fig. 3. Prediction of mRNA expression levels using
data on GC content, low codon usage and metabolic costs.
Shades of gray are used to indicate the frequencies of the
classification of experimental versus predicted expression
levels. (a) The calculated expression levels Epred are
predicted in 61% of cases within one order of magnitude
and in 70% of cases within two orders of magnitude from
the experimental expression levels Eexp. (b) Low codon
usage bias and GC content show an anti-correlation of
−35% and −45% with expression levels, respectively.
Expression levels and low metabolic cost show a positive
correlation of 45% (Materials and Methods). We use a
database of 2800 cytosolic proteins.24
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the mRNA expression levels can be predicted within
one order of magnitude and 84% within two orders
ofmagnitude of the experimental values (Fig. 2a).We
also observe that underestimation is more frequent
that overestimation, because, in our database, the
number of sequences associatedwith low expression
levels exceeds the number associated with high
expression levels; this slight asymmetry is reflected
in the parametrisation of the CamEL method and,
hence, in its performance. An increase in expression
level is associated with an increase in polarity and
hydrophilicity, while an increase in hydrophobicity
correlateswith a decrease in the predicted expression
level (Fig. 2b and Materials and Methods).
We also find that by using a combination of α-

helical, β-sheet and random coil propensities, it is
possible to predict 66% of the expression levels
within one order of magnitude and 88% within two
orders of magnitude from the experimental values
(Fig. 2c). When such propensities are considered
individually, β-sheet contributions show an anti-
correlation with expression levels, whereas α-helical
and coil propensities have a positive correlation (Fig.
2d). We observe that most of the regions charac-
terised by high β-sheet propensities are also aggre-
gation prone and that an increase in polarity is linked
to an increase in random coil and α-helical propen-
sities (Supplementary Information). Overall, we find
that high levels of gene expression are associated
with low values of the aggregation propensity in the
corresponding protein sequence.
These results show that hydropathy scales and

secondary-structure propensities of amino acid
sequences are quantitatively linked with the expres-
sion levels of the corresponding genes. By combining
these two parameters, we achieved a correlation of
75% in predicting the mRNA expression levels
within one order of magnitude of the experimental
values. As the physicochemical properties consid-
ered here are also those that are important for
predicting aggregation rates,14,35,36 the observed
correlations can be attributed to the relationship
that has already been established between mRNA
expression levels and protein aggregation rates.13

Translation-related determinants of mRNA
expression levels

Newly synthesised polypeptide chains are parti-
cularly vulnerable to misfolding and aggregation,
indicating that co-translational strategies to avoid
these events must have evolved within the cell to
assist the folding process.7 A series of remarkable
correlations has recently been reported for genomic
sequence evolution, codon usage and mRNA
levels.20,36–41 According to the “translation robust-
ness” hypothesis, highly expressed proteins are
subjected to a pressure to fold despite transcrip-
tional errors that lead to the accumulation of toxic
species.37,38 In agreement with this hypothesis, it has
been observed that translational pausing at rare
codons might induce a time delay that enables
independent and sequential folding of defined
portions of the nascent polypeptide chain emerging
from the ribosome.20,39,40 In analogy with punctua-
tion marks in written language, specific codon pairs
appear to dictate the timing of protein expression by
slowing the translation with induced pauses.41,42

To take into account the translation-related con-
tributions in the prediction of expression levels, we
adapted our approach to perform predictions based
on GC content, codon usage and metabolic costs
(Supplementary Information). We observe that 61%
of the predicted expression levels arewithin oneorder
of magnitude and 85% are within two orders of
magnitude of the experimental values (Fig. 3a). An
interesting observation that emerges from these
findings is that the expression levels increase as (a)
the GC content decreases, (b) the codon usage of the
sequence is optimised and (c) the metabolic costs are
reduced (Fig. 3b). Intriguingly, the GC content is
significantly higher for hydrophobic amino acids,43,44

while the metabolic costs are significantly lower for
hydrophilic amino acids.45 These data suggest that an
evolutionary pressure acts to avoid aggregation
(Supplementary Information). We also observe that
polar amino acids aremore frequent in loops and tend



Fig. 4. Prediction of mRNA expression levels and soluble fractions of recombinant human proteins in E. coli by
analysing the physicochemical properties of proteins and translation factors. (a) Expression of E. coli genes. E. colimRNA
expression levels are partitioned into six classes according to the order of magnitude of the molecules expressed. We
predict 83% of the expression levels within one order of magnitude and 92% within two orders of magnitude from the
experimental values. (b) Expression of recombinant human proteins in E. coli. The predicted expression levels are
partitioned into four classes according to the soluble fraction score and plotted against the experimentally measured
soluble fraction of recombinant human proteins. We predict the soluble fraction of recombinant proteins with an accuracy
of 86% for a total of 746 proteins. Shades of gray are used to indicate the classification frequencies.
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to be encoded by low-usage codons, which suggests
that flexible regions and structured regions are
subjected to different evolutionary pressures, as
suggested by Thanaraj and Argos20 (Supplementary
Information).

Prediction of mRNA expression levels in E. coli

In the previous sections, we used individual
physicochemical properties of amino acid sequences,
such as hydropathy, secondary-structure propensi-
ties and translation factors, to predict the maximal
levels of mRNA expression in E. coli. Using a support
vector machine to combine these factors (Materials
and Methods and Supplementary Information), we
generated a version of the CamEL method capable
of predicting 83% of expression levels within one
order of magnitude and 92% within two orders of
magnitude of the experimental values (Fig. 4a).

Prediction of the solubility of recombinant
human proteins in E. coli

Since our initial aim is to investigate the relation-
ship between mRNA expression levels and the
solubility of the corresponding proteins, we apply
the CamEL method to predict the soluble fraction of
human proteins expressed in E. coli. The soluble
fraction of a protein is defined here as an integer that
ranges from 0 (no expression) to 3 (high soluble
expression).32 Hence, to predict this variable, we
partition the output into four classes rather than into
six (Materials andMethods).We find that the soluble
fraction can be correctly predicted in 86% of cases for
a total of 746 human proteins. These results suggest
that the same physicochemical principles can be
used to predict both the maximal levels of mRNA
expression levels of E. coli proteins and the soluble
fraction of human proteins expressed heterologously
in E. coli.
Discussion and Conclusions

In this work, we have shown that it is possible by
using the CamEL method to achieve an accuracy of
83% in predicting the order of magnitude of mRNA
expression levels in E. coli by considering the
physicochemical properties of the amino acid
sequences of the corresponding proteins, and an
accuracy of 86% in the prediction of the solubilities
of recombinant human proteins in E. coli. Thus,
although the CamEL method has been para-
metrised for predicting mRNA expression levels
in E. coli, it can also be used to predict the solubility
of recombinant proteins when the organism is
employed as an expression system. Indeed, our
findings complement and extend those recently
reported for the predictions of yeast gene expres-
sion levels with an accuracy of 70% using the amino
acid compositions of di- and tripeptide fragments
of the corresponding proteins.46,47
Our results provide an illustration of the close

relationship between mRNA expression levels and
protein solubility, which arises from the evolution-
ary pressure for E. coli proteins to avoid aggrega-
tion when expressed at their maximal levels during
the cell cycle. As a consequence of such evolu-
tionary pressure, the link between mRNA abun-
dance and the physicochemical properties of the
sequences can be established only for the log phase
of bacterial growth and not the stationary phase.28

Since recombinant proteins expressed in E. coli are
not subject to a similar evolutionary pressure, they
often aggregate at least in part when their produc-
tion is forced to take place at very high levels.
Nevertheless, we have shown that the fraction of a
given protein that remains soluble can be predicted
from its amino acid sequence, as a consequence of
the existence of a relationship between mRNA
expression levels and protein solubility. It has also
been observed that recombinant proteins tend to
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form amyloid-like aggregates in E. coli inclusion
bodies.48,49 This finding indicates that the propen-
sity to form ordered aggregates9,16 is a crucial
factor in determining protein expression, as
expected on the basis of this as well as previous
work.13

Since a relationship between mRNA expression
levels and protein solubility is implied by the
need to avoid aggregation at the protein concen-
trations required for optimal cellular function,13 it
is expected to be at least to some extent specific
for given organisms, since it is likely to be the
result of a coevolution of the regulatory processes
at the cellular level and of the protein sequences
at the biochemical level. It thus remains to be
established if a different set of parameters for
the CamEL method needs to be obtained when
a different expression system or specific stress
conditions are used. Through microarray expres-
sion technology, such parametrisation can now be
carried out with relative ease.50 In the light of the
limitations of existing approaches for predicting
the solubility of proteins in heterologous en-
vironments,47,51,52 the CamEL method should be
of considerable value in high-throughput expres-
sion programmes.
The up-regulation and down-regulation of genes

are crucial for all cellular functions and for adapta-
tion to environmental changes.53 Since detailed
regulatory mechanisms have been established for
several genes, and a general understanding of
structural and dynamical properties of transcrip-
tional networks is emerging,54 it will be interesting
to investigate whether the approach that we have
described could be extended to the prediction of the
changes in expression levels under varying environ-
mental conditions. In addition, we expect that, by
taking into account the subcellular localisations of
the proteins,55 it might be possible to improve yet
further the quality of the predictions. Thus, the
CamEL method of predicting mRNA expression
levels can be expected to be complementary to those
that exploit our rapidly increasing knowledge of the
regulatory network at the cellular level,19,56,57 since
we look at the chemical building blocks that make
up the molecules that have evolved to participate in
these processes.
In summary, the results that we have described in

this article provide further support for the idea that
the physicochemical properties of proteins have
coevolved with their cellular environments to
optimise the efficiency of the biochemical processes
on which all living systems depends.13,58
Materials and Methods

Prediction of mRNA expression levels from the
aggregation propensities of the corresponding
proteins

Weanalyze the information contained in the aggregation
propensities of 50 protein sequences associated with the
highest expression levels and 50 protein sequences
associated with the lowest expression levels in the
database of 2800 cytosolic proteins that we have used.24

Each protein sequence is cut in 25 fragments, and the
predicted mRNA expression levels are then written as a
function of the distributions of aggregation-prone and
aggregation-resistant properties of the fragments

Epred =
X

i
aiD

agg
i � biD

agg�
i

� � ð1Þ

where Dagg− and Dagg+ are the distribution of negative and
positive aggregation propensities, respectively. Theweights
a and b are determined, requiring that the scores of
proteins associated with high expression levels are higher
than the scores of proteins associated with low expression
levels

Epred high expression
� �

NEpred low expressionð Þ ð2Þ

Prediction of mRNA expression levels from the
physicochemical properties of the amino acid
sequences of the corresponding proteins

For each fragment k, three chemical properties are used
as input of a neural network

ik = i1k ; i
2
k ; i

3
k

� � ð3Þ

Between the inputs ik and the output o, we introduce a
hidden layer hk to combine the individual contributions

hk = tanh
X

ja
Bjakiaj + gaj

� �
ð4Þ

o = tanh
X

k
ckhk + yk

� �
ð5Þ

The weights φjak, γj
a, ψk and δk are estimated using a

back-propagation algorithm. To avoid proliferation of
internal variables, we reduce the number of the internal
variables proportionally to the number of data points.
For c=25, we observe the highest predictive power (Fig.
S1a in Supplementary Information). As indicated in Eq.
(4), the contribution of each fragment is associated with
a different weight, which makes our model position
dependent.
Estimation of the importance of individual
physicochemical properties

To estimate the relationship between a physicochemical
property of an amino acid sequence and the level of
expression of the corresponding gene, we introduce the
concept of individual contribution. For each fragment nak)
weights related to the chemical property a

pak =
P

j uð + BjakÞuð + cjÞ + uð + BjakÞuð�cjÞ
nak =

P
j uð�BjakÞuð + cjÞ + uð + BjakÞuð�cjÞ ð6Þ

where the function θ is defined as θ(x)=0 if xb0 and θ(x)=1
if xN0.
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The variables pak and nak correlate the output with the
sign of the weights of the property a at position k. We
count all the signs associated with the property a

pa =
P

k pak
na =

P
k nak

ð7Þ

We define the correlation for the individual contribution
ρa of the property a

qa = pa � nað Þ=ta ð8Þ
where ta is the total number of internal weights.

Optimisation of the number of fragments

By increasing the number of fragments from 1 to 20, we
observe that the accuracy in the predictions improves
from 46% to 80% (Fig. S1a in Supplementary Information).
If the number of cuts is beyond 25, the performance
decreases, indicating that the best accuracy permitted by
the model and the data is obtained when the number of
fragments is 25 (Fig. S1b in Supplementary Information).

Prediction of the order of magnitude

For the prediction of the order of magnitude of the
expression levels, the experimental data set is partitioned
into six classes, while for the prediction of the solubility,
the data set is partitioned into four classes.

Cross-validation

The data set of cytoplasmic proteins is randomly
partitioned into five subsamples requiring the condition
that each partition carries the same distribution of expe-
rimental expression levels. One subsample is retained for
testing, and the remaining four are used for training the
algorithm. The cross-validation process is repeated five
times with each of the five subsamples used exactly once
as the validation data.

Combination of different predictors

Support vector machines are used to combine the
information from the different algorithms trained on
hydropathy properties, secondary-structure propensities
and translation factors. An additional 5-fold cross-valida-
tion is used to estimate the performance of the support
vector machine (see Supplementary Information).

Protein solubility and the hEx1 database

In the hEx1 library, the soluble fraction of a protein is
defined as an integer that ranges from 0 (no soluble
expression) to 3 (strong soluble expression).32 The library
contains 1287 recombinant proteins (clones), but often
more than one clone is associated to a specific gene. We
use a consensus of the different expression data to ge-
nerate a reference data set. For instance, for the Ensembl
transcript ENST00000315491, we assume that the soluble
expression strength is 0, because 6 clones are associated
with soluble expression strength 0 and only 1 clone has
soluble expression strength 1. The database was generated
using the same vector, strain and helper plasmid for all the
genes (vector: pQE30NST, strain: SCS1 and helper
plasmid: pSE111), which eliminates the contribution of
exogenous factors to gene expression (see Supplementary
Information).
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