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We describe a series of stringent relationships between abundance,
solubility and chaperone usage of proteins. Based on these relationships,
we show that the need of Escherichia coli proteins for the chaperonin GroEL
can be predicted with 86% accuracy. Furthermore, from the observation that
the abundance and solubility of proteins depend on the physicochemical
properties of their amino acid sequences, we demonstrate that the
requirement for GroEL can also be predicted directly from the sequences
with 90% accuracy. These results indicate that the physicochemical
properties of the amino acid sequences represent an essential component
of the cellular quality control system that ensures the maintenance of
protein homeostasis in living systems.
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Introduction

The presence of misfolded or incompletely folded
proteins, which almost invariably lack all activity,
not only represents an energetic drain on the cell
but, in the case of the malfunctioning of cellular
quality control mechanisms, can also result in the
accumulation of aggregates that range from inclu-
sion bodies in bacteria to amyloid fibrils in
mammals.1,2 Such assemblies can cause the impair-
ment of biological processes and affect the viability
of the organism.1–5 Indeed, protein misfolding and
aggregation phenomena are known to be associated
with more than 30 human diseases, and amyloid
fibrils or their oligomeric precursors have been
found to be involved in many of the most
debilitating, feared and rapidly proliferating pathol-
ogies of the modern world, including Alzheimer's
disease, Parkinson's disease, Huntington's disease,
Creutzfeldt–Jakob disease and type II diabetes.1,6

It is becoming increasingly clear that the mainte-
nance of protein solubility and hence the avoidance
ess:

nentially modified
lase; METK,
ATD, galactitol-1-
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of misfolding and aggregation are crucial require-
ments for proteins to perform their functions in the
crowded environment of the cell.7,8 A recent
analysis of a set of human proteins has revealed a
close relationship between the aggregation rates of
the proteins and the expression levels of their
corresponding mRNA molecules.9 Since the aggre-
gation propensities of proteins can be accurately
predicted from their amino acid sequences,10–12 the
link between expression level and aggregation
propensity offers a series of opportunities to
understand the factors defining the behaviour of
proteins in a cellular context. In an initial study
based on this conclusion, we have shown that it is
indeed possible to predict the order of magnitude
of mRNA expression levels using the physicoche-
mical properties of the corresponding amino acid
sequences.13
In this study, we have explored the possibility of

identifying the physicochemical principles that un-
derlie the interactions between proteins and molec-
ular chaperones. This study has been prompted by
recent reports in which the level of abundance of
specific proteins in living systems has been linked to
their requirements for chaperones in order to fold
successfully14 and to maintain their solubility.15 As
the solubility and abundance of proteins can be
predicted from their amino acid sequences,12,13 it
should be possible to define specific properties of the
sequences that determine their dependence on
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chaperones. We show here that this conclusion is
correct and we formulate methods to predict the
DnaK and GroEL requirements of Escherichia coli
proteins from their amino acid sequences.
We have considered E. coli proteins in order to

establish these principles since the proteome of this
organism is relatively small and characterized in great
detail. The most extensively studied molecular cha-
perones in E. coli are the ATP-dependent DnaK/
DnaJ/GrpE and GroEL/GroES systems that are
required for the folding of a subset of proteins,
including anumber of essential enzymes.16–19 Accord-
ing to current models for chaperone-assisted protein
folding, substrate proteins released from DnaK/
DnaJ/GrpE either fold into their native conformations
or are transferred into the central cavity of GroEL.20

When the latter binds to its cofactor GroES, a large
complex that can prevent aggregation by encapsulat-
ing individual proteins inside a molecular cage is
created; in this environment, the polypeptide chain
has the opportunity to find its native statewithout the
risk of inappropriate interactions with other mole-
cules. A detailed characterization of the proteins that
bind to GroEL/GroES in vivo has been performed by
lysing E. coli cells in the presence of glucose and
hexokinase in order to convert cellular ATP to ADP,14

which stabilizes GroEL/GroES as a complex with its
substrate enclosed. Peptide analysis by mass spec-
trometry enabled the identification of the extent of
complexation with GroEL for 250 mainly cytosolic
proteins. On the basis of its dependence on GroEL/
GroES deduced from in vitro and in vivo refolding
assays,14 each of these proteinswas assigned to one of
three classes: (i) class I, inwhich substrates fold largely
independently of GroEL/GroES but may use it to
optimize their folding yield; (ii) class II, in which
substrates are highly chaperone dependent, at least
under mildly unfavourable environmental condi-
tions, but can utilize either DnaK/DnaJ or GroEL/
GroES for folding; and (iii) class III, in which
substrates have an absolute requirement for the
GroEL/GroEL system in order to fold correctly.
In this work, we have explored the origin of these

observations through an analysis of the solubility,
abundance and chaperone requirements of E. coli
proteins,which have revealed that these properties are
closely linked. We show further that it is possible to
predict them with high accuracy from the physico-
chemical properties of their amino acid sequences.
Results

Relationship between protein aggregation
propensity and GroEL requirement

We have recently shown that it is possible to
estimate the intrinsic propensity of a protein to
aggregate;21 this propensity is defined in the
unfolded state when the regions that contribute to
intermolecular association are exposed to the sol-
vent. When proteins are structured, however, it
becomes necessary to take into account the fact that
at least some of the most aggregation-prone regions
will be buried within the native structure.12,22 Since
the conformations that are more likely to interact
with GroEL are neither completely unfolded nor in
their native states,23–26 we introduce here an
approach for calculating aggregation propensities
that takes into account the effects of the formation of
intramolecular interactions on the aggregation
process (see Eq. (4) in Methods). We applied this
method to predict the aggregation propensities of
proteins in the set of experimentally identified
GroEL substrates described above14 (Fig. 1). We
found that class I proteins have on average
substantially lower aggregation propensities than
class II and class III proteins. The aggregation
propensities of class II and III proteins are found
to be similar, consistent with the fact that proteins
belonging to these two classes are largely chaperone
dependent, while the lower aggregation propensi-
ties of class I proteins correspond to their less
stringent chaperone requirements.
Comparison of the aggregation propensity profiles

of class I and class III proteins revealed that the latter
exhibit a larger number of aggregation-prone
regions; this result is illustrated in Fig. 1a, consider-
ing the cases of a class I protein (enolase, ENO) and a
class III protein (S-adenosylmethionine synthetase,
METK). We have also predicted the aggregation
propensities of an extended set of 1158 cytosolic
proteins whose GroEL requirements using a method
described below (see Section 'Prediction of GroEL
requirement'). Analysis of the aggregation propen-
sities of these proteins (Fig. 1b, red bars) confirmed
the conclusions just described for the proteins whose
classification is known experimentally.
In addition to confirming the existenceof a close link

between the GroEL requirement and the aggregation
propensity of proteins,14 the approach that we have
taken in this study enables insight about the type of
structures adopted by GroEL substrates to be
obtained. We found that the aggregation propensity
estimated from fullyunstructured conformations,21 or
from nearly native conformations,12,22 provides less
accurate predictions of the GroEL classes (see Predic-
tion of GroEL requirement), consistent with the idea
that the conformations that are most prone to interact
with GroEL are partially structured.23–26

Relationship between protein solubility and
GroEL requirement

By exploiting the link between aggregation rates
and mRNA expression levels, we have recently
introduced the CamEL algorithm to predict the
solubility of proteins expressed in E. coli.13 Here,
we used CamEL to analyse the relationship between
protein solubility and GroEL requirements. In
agreement with the results reported by Kerner
et al.14 for a small number of proteins whose soluble
fraction was measured in vivo, we found that the
number of highly soluble proteins decreases from
class I to class III, while the number of poorly soluble



Fig. 1. Relationship between ag-
gregation propensity and GroEL
requirement. (a) Comparison of
typical aggregation propensity pro-
files (Z Profile12) a class I and a class
III proteins; we present the cases of
ENO (class I) and METK (class III).
The aggregation propensity profile
of METK exhibits several peaks
above zero, indicating that this
protein has a high tendency to
aggregate. By contrast, the aggrega-
tion propensity profile of ENO pre-
sents only one small aggregation
peak, indicating a low aggregation
propensity. (b) Sequence-based pre-
dictions of aggregation propensities
(Z scores12). In addition to the 250
proteins whose GroEL requirements
were originally classified by Kerner
et al.14 ('kerner', black bars), we also
present the aggregation propensities
('cytosol', red bars) of a set of 1158
cytosolic proteins for which we
predicted a GroEL class (690 of
class I, 297 of class II and 171 of
class III).
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proteins increases from class I to class III (Fig. 2a).
These trends are confirmed by the properties of the
1158 cytosolic proteins for which we predicted their
individual GroEL classification (see Prediction of
GroEL requirement) (Fig. 2b).

Relationship between protein abundance and
GroEL requirement

The highly crowded environment of a living cell,
typically corresponding to about 300 mg/ml of
macromolecules, imposes stringent conditions on
the properties of the amino acid sequences of
proteins that function within the cell.6 By investi-
gating the nature of these conditions, we have
recently found a close relationship between in vivo
mRNA expression levels and in vitro protein
aggregation rates9 for a group of human proteins
for which the latter have been measured under near-
physiological conditions. We suggested that this
relationship is the consequence of balance between
the evolutionary pressure acting to decrease the risk
of aggregation in the cell, which can give rise to
cellular malfunction and disease,1–5 and the effects
of random mutations, which show a marked
tendency to destabilize the native folds of proteins
and enhance their propensity to aggregate.28,29
Since the maintenance of solubility is an essential
requirement for homeostasis in living organisms,
the presence in the cell of factors capable of
responding to the initial stages in the formation of
protein aggregates is crucial, especially under
conditions that promote aggregation. Indeed, an
inverse relationship between GroEL requirement
and abundance in the cytosol has been observed,15

and it has also been reported that the aggregation
propensity and the exponentially modified protein
abundance index (emPAI) are anticorrelated for
cytosolic proteins in E. coli.14

As mRNA expression levels and protein abun-
dances are known to be correlated in E. coli,30 we
investigated the relationship between these quanti-
ties and the GroEL requirement of proteins; by
simultaneously considering these quantities, we can
reduce the intrinsic noise associated with abundance
measurements31,32 and achieve a more accurate
description. By using a consensus of mRNA levels33

and protein abundances,14 we observed that both
mRNA expression levels (Fig. 3a, black bars) and
protein abundances (Fig. 3b, black bars) decrease
when the GroEL requirements increase. We have
also analysed the mRNA expression levels and
protein abundances of the 1158 proteins for which
we predicted the GroEL classification (see Prediction



Fig. 2. Relationship between protein solubility and
GroEL requirement. (a) We used the CamEL algorithm13 to
predict the solubility of the set of 250 E. coli proteins whose
GroEL requirements were determined experimentally by
Kerner et al.14 ('kerner'). We found that the number of
proteins of low solubility exhibits a significant increase in
going from class I to class III, while the number of proteins
with moderate to high solubility shows a significant
decrease in going from class I to class III. The three
categories of low solubility, moderate solubility and high
solubility follow the definition given in a previous paper.27

(b) Similar trends were found for an extended set of 1158
cytosolic proteins ('cytosol') whose GroEL requirements
are predicted in this work.

Fig. 3. Relationships between mRNA expression
levels, protein abundance (emPAI score) and GroEL
requirement. (a) mRNA expression levels refer to the log
phase of the cell cycle; values are reported in a log scale,
and the mRNA level is calculated as discussed by Selinger
et al.33: Level=13,000⁎ln(mRNA Copies)+39,000. Black
bars: Kerner et al.14 ('Kerner et al.'), red bars: this work
('cytosol'). (b) Protein abundances are reported on the
scale of the emPAI score.14
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of GroEL requirement), and we found similar results
(Fig. 3a and b, red bars).

Relationship between DnaK and GroEL
requirements

The function of the Hsp70 system of E. coli (DnaK/
DnaJ/GrpE) is to prevent aggregation and to
promote the correct folding or refolding of pro-
teins.20,34,35 It has been suggested that DnaK binding
sites generally occur at rather regularly spaced
positions in protein sequences and that the binding
motif consists of a hydrophobic core of four or five
residues enriched in Leu, Ile, Val, Phe and Tyr
residues, with two flanking regions enriched in basic
residues;36 on the basis of this analysis, an algorithm
for predicting the DnaK binding propensity has been
established.36 In this work, we have considered the
effects of the formation of partially structured
conformations on the DnaK binding propensities
(see Eq. (5) in Methods) by using a procedure similar
to that adopted for the aggregation propensities (see
Eq. (1) in Methods). By using these DnaK require-
ment predictions, we have found that class I and
class III proteins have lowDnaK requirements, while
class II proteins have significantly higher DnaK
requirements (Fig. 4a and b). These results are
consistent with the finding that class II proteins
exhibit a strong tendency to use the DnaK system for
folding, while class III proteins use DnaK for
preventing aggregation but GroEL to fold.14 Our
results (Table S2, “DnaK–GroEL” scale) indicate that
these two classes are mainly differentiated by higher
hydrophobicity and secondary structure propensity
and by lower flexibility and charge of class II
proteins with respect to class III proteins. Two
examples of DnaK binding propensity profiles are
shown in Fig. 4a for ENO (class I) and galactitol-1-
phosphate 5-dehydrogenase (GATD, class II). We
observed that exposed regions with a strong
hydrophobic character have a high tendency to
promote protein aggregation.

Prediction of GroEL requirement

We have developed two complementary methods
for predicting the GroEL requirement of proteins.
The first method, which is presented in this section,
is based on the observation that GroEL requirements
are closely related to aggregation propensities,
DnaK requirements, mRNA expression levels and
protein abundances. The second method, which is
described in the next section, uses only the knowl-
edge of the amino acid sequences to predict the
GroEL requirement of proteins.
The trends that we found for protein aggregation

propensities (Fig. 1), mRNA expression levels (Fig.
3a), protein abundances (Fig. 3b) and DnaK
requirements (Fig. 4) suggest that these quantities
could be combined to predict GroEL requirements.
As experimental GroEL requirements are reported
in terms of a classification,14 a support vector



Fig. 4. Relationship between
DnaK and GroEL requirements. (a)
DnaK requirement profiles (D
Profile) were calculated using Eq.
(5). We provide examples of these
profiles for ENO (class I) and
GATD (class II). No region with a
significant propensity to interact
with DnaK was predicted for
ENO, in agreement with the fact
that this protein does not require
DnaK to fold. By contrast, many
regions of GATD were found to
have a high propensity for interact-
ing with DnaK. The sign of the D
profile is reversed to facilitate the
visualization of the predicted DnaK
binding sites in analogy with the
Zagg profiles. (b) Average DnaK re-
quirement (D score) for the proteins
in the three GroEL classes; experi-
mental GroEL classification (black
bars, Kerner et al.14, 'Kerner et al.')
and predicted GroEL classification
(red bars, this work, 'Cytosol') are
shown.
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machine was used for fitting the data because it
provides an efficient algorithm when dealing with
discrete data points.37 We adopted a Gaussian
radial-basis function for training the support vector
machine and then performed a leave-one-out test for
the probability of assigning a correct class. This
method achieved an 86% accuracy level in assign-
ing proteins to their experimental GroEL class
(Fig. 5). It is possible to monitor the error
associated with the predictions and thus establish
a confidence parameter for testing by modifying
the penalty term in the training phase of the
method. We found that our classification only
slightly changes by increasing the penalty term,
indicating that the algorithm is stable and reaches
convergence after a few optimization cycles.
We then used this approach to perform a GroEL

classification of a set of 1158 cytosolic proteins for
which mRNA and protein abundances are known
(Table S1). The results indicate that a small fraction
of these proteins (14%) is likely to require GroEL for
folding under normal growth conditions (class III).
We also found that the number of essential proteins
is strongly depleted in class III proteins (2%), in
agreement with expectations based on the lethality
of their misfunction.14 We observed that proteins
characterized by a high β-sheet content are enriched
in class III proteins, suggesting a higher propensity
to form ordered aggregates (Table S1). We also
predicted that the fraction of GroEL independent
proteins (class I) is 59%, which is substantially
enriched with respect to the percentage of class I
proteins in the original classification (16%), which
was obtained by using a detection method more
sensitive to abundant proteins. Overall, we found
that class II and class III comprise a small fraction
(297 and 171 proteins, respectively) of them and that
class I (690 proteins) contains the majority. In
addition to the 85 class III proteins described in the
original study by Kerner et al.,14 we identified 86
other ones. There are two possible explanations for
these results—the first is that the prediction method
should be improved, and the second is that the
abundance of the extra 86 class III proteins was too
low to enable experimental detection in the study by
Kerner et al.14 The latter explanation is supported by
the finding that the average abundance of the 86
extra class III proteins is 50-fold lower than that of
the 85 original class III proteins.

Sequence-based prediction of GroEL
requirements

We introduce in this section a method for
predicting the requirement of proteins for GroEL
from the physicochemical properties of their amino
acid sequences. This method, in addition to provid-
ing insights into the physicochemical determinants
of the interactions between GroEL and its substrates,
is particularly useful in cases for which experimental



Fig. 6. Characteristic physicochemical properties of
class III proteins. Class III proteins exhibit physicochem-
ical properties distinct from those of other cytosolic
proteins. Our results indicate that cytosolic proteins have
higher degree of hydrophobicity and burial than class III
proteins; by contrast, class III proteins have lower
flexibility than other cytosolic proteins.
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information about protein and mRNA concentra-
tions is not available, and therefore the method
presented in the previous section is not applicable.
We note first that class III proteins are character-

ized by an overall higher flexibility, lower hydro-
phobicity and lower burial than other cytosolic
proteins (Fig. 6), suggesting that GroEL substrates
tend to populate highly dynamic intermediate
states. These results reinforce the expectation that
an analysis of the physicochemical properties of the
amino acid sequences should enable the prediction
of their propensity to interact with GroEL. To
perform such sequence-based GroEL requirement
predictions, we thus calculated an amino acid
propensity scale (Eq. (7) and Table S2) that enables
the overall preference of a given sequence to be
assigned to one of two classes (see Eq. (10) in
Methods). By using this method, we obtain a correct
assignment for 97% of class I proteins with respect to
class III proteins and a correct assignment for 90% of
class I proteins with respect to class II proteins
(Table S2). A slightly lower accuracy, 78%, is found
for the discrimination between classes II and III,
suggesting that the physicochemical properties of
the proteins included in these classes tend to be
rather similar (Table S2). We found that charge and
flexibility give positive contributions that help
discriminate class I from class II and class III and
that secondary structure is associated with a
negative contribution (Table S2). By contrast, charge
and β-sheet propensity give positive contributions
to discriminate class II from class III, while
hydrophobicity and flexibility are associated with
negative contributions (Table S2). It is possible to
assign correctly the GroEL class with an accuracy of
90% by using a consensus of the three scales.
Fig. 5. Prediction of GroEL requirement. The GroEL
requirement score is obtained by using a support vector
machine approach to combine aggregation propensities,
DnaK requirements, mRNA expression levels and protein
abundance emPAI scores. We used this method to partition
the 250 proteins studied by Kerner et al.14 into the three
classes that were originally identified by experiment. We
tested the predictive power of the algorithm by using a
leave-one-out procedure that indicates an accuracy level
('match frequency') of 86% in assigning the correct class.
Examples of amino acid GroEL requirement scores
(G profiles) are shown in Fig. S1. We observed that
both the number and the height of the negative
peaks increase with the GroEL requirement.
We also considered the efficiency of predictions

based on the individual properties included in the
sequence-based GroEL requirement predictions (see
Eq. (7) in Methods), such as flexibility, burial or
hydrophobicity (Fig. 6); the latter is also known to be
weakly anticorrelated with chaperone requirements
in Saccharomyces cerevisiae.38 Although in these cases
we found that predictions were still possible, the
accuracy was never higher than 70%, indicating that
the particular combination of factors that we
employed describes more accurately the behaviour
of these proteins.
Discussion and Conclusions

In this study, we have explored the relationships
between protein solubility, abundance and chaper-
one usage. Our results indicate that these relation-
ships impose stringent conditions on the amino acid
sequences of proteins (Fig. 7). The existence of a link
between protein solubility and protein abundance
(arrow A) had already emerged from a study in
which the in vitro aggregation rates of a set of human
proteins were shown to be correlated with the
maximal levels of mRNA expression;9 further
evidence for this correlation has also been provided
by Ishihama et al.15 Similarly, a link between protein
abundance and chaperone requirements (arrow C)
has been discussed by Kerner et al.14 In the light of
these results, we suggest that a link between protein
solubility and chaperone requirements must exist
(arrow B), a conclusion that we have investigated in
the present study. Our results (Figs. 1 and 2),
together with complementary recent studies,39,40

provide evidence that such a link indeed exists. We
have exploited the relationships between these
quantities (arrows A, B and C in Fig. 7) to show
that GroEL requirements can be predicted with 86%



Fig. 7. Schematic relationships between protein solubi-
lity, protein abundance and chaperone requirements. The
results discussed in this article (green arrows) and those
already established in the literature (blue arrows) suggest
that all these quantities are closely linked and that they can
all be predicted from amino acid sequences. We identify the
links by letters: A,13,15 B39,40 (see Sections 'Relationship
between protein aggregation propensity and GroEL re-
quirement, Relationship between protein solubility and
GroEL requirement', and Figs. 1 and 2), C14 (see Sections
'Relationship between protein abundance and GroEL
requirement' andFig. 3),D10–12,22 (see Sections 'Relationship
between protein aggregation propensity and GroEL re-
quirement'), E13 and F38,41,42 (see Sections 'Sequence-based
prediction of GroEL requirement', Fig. 5 and Table S1).
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accuracy (Fig. 5 and Table S1) from the knowledge
of protein solubility and abundance, mRNA expres-
sion levels and DnaK requirements.
We have also discussed the relationships between

amino acid sequence and protein solubility, abun-
dance and chaperone requirements (arrows D, E and
F, respectively, in Fig. 7). Since solubility and
abundance can be predicted from the amino acid
sequence,13 we investigated whether GroEL require-
ments can also be predicted in this manner. Our
results indicate that the accuracy in the classification
that can be obtained by following this strategy is of
90% (Fig. S1 and Table S2).
The results presented in this study indicate that the

behaviour of proteins in the cell is regulated at two
levels: The first is a “molecular” level, in which the
properties of the amino acid sequences safeguard
protein solubility at the concentrations required by
the cell for optimal function. The second is the
“cellular” level, in which quality control mechanisms
are in place to maintain homeostasis, with the
chaperone response ensuring that any incipiently
misfolded assemblies are prevented from developing
further. These two levels of regulation are highly
complementary. Since there is essentially no evolu-
tionary pressure on the amino acid sequences to be
selected to increase the solubility beyond the con-
centrations required for their optimal function,
cellular quality control mechanisms should be in
place to balance the increase in the propensity to
aggregate caused by variations in the normal condi-
tions, such as those associated with stress. In essence,
therefore, our results indicate that evolution has
exploited both the chemical properties of proteins
and the properties of their environments in order to
optimize their activity in the cell.
Our results therefore suggest that the complex

behaviour of proteins in the cell can be predictedwith
rather high accuracy from their amino acid sequences.
With this conclusion, we are not suggesting that the
complex processes that regulate the abundance and
solubility of proteins in the cell are not important, but
rather that amino acid sequences have coevolvedwith
their cellular environments to maintain solubility and
ensure homeostasis.
Methods

Sequence-based prediction of protein
aggregation propensity

We have introduced a correction to the intrinsic
aggregation propensity Z0i

agg21 to take account of the
conformational properties of partially structured
states of proteins. In order to estimate these
properties, we considered the burial b43 and
flexibility f44 propensities, which are two values
that can be predicted from the amino acid
sequences. We thus estimated the aggregation
propensity of partially structured proteins as:

Zagg
i = wbT bið Þ + wfT fið Þ + waggT Zagg

0i

� � ð1Þ
In this equation, bi and fi are the burial and the
flexibility of residue i, respectively, and the function
T(x) is the hyperbolic tangent ofα+βx, whereα andβ
are two parameters used to normalize the variable x.
The aggregation propensity Z0i

agg was defined as:12,22

Zagg
0i = w0 + whydrI

hydr
i

+ wssIssi + wchIchi + wpatI
pat
i + wgkI

gk
i

ð2Þ

where Ii
hydr is the hydrophobicity of residue i, Ii

ss is its
secondary structure propensity, Ii

ch and Ii
gk are

functions for charged amino acids and Ii
pat takes

into account the effects of patterns of polar and
nonpolar residues; wA, wB, wF, wH, wR and wP are the
relative coefficients.
The parameters wb and wf were determined by

minimizing the function
P

i jwpT pið Þ − wbT bið Þ −
wfT fið Þ j on a data set of proteins used in a previous
study,12 where pi represents the amplitude of the
native fluctuations45 and the parameter wP repre-
sents the corresponding weight, which was deter-
mined by fitting

Zagg pð Þ = w̃ll + cð Þ−1
X

i
wpT pið Þ + w̃aggT Zagg

0i

� �h i

ð3Þ
to the experimental aggregation rates for the same
set of proteins.12
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We the define the overall aggregation propensity
of an amino acid sequence as:

Z = wll + cð Þ−1
X

i
Zagg
i ð4Þ

where l is the protein length and (wll+c)
−1 is a

normalization factor.

Sequence-based prediction of DnaK
requirement

In order to carry out sequence-based predictions
of the DnaK requirement of proteins, we used a
modified version of the method of Rudiger et al.,36

which provides the propensity Di
0 of residue i to

interact with DnaK. Since DnaK binding sites are
likely to be inaccessible when a protein is folded,
we followed the procedure introduced above to
enable the estimation of the aggregation propen-
sity of partially folded proteins and use the burial
and flexibility propensities to modify the D0i
profiles:

Di = wbT bið Þ + wfT fið Þ + wDT D0ið Þ ð5Þ
where bi and fi are the burial and the flexibility
propensities, respectively. We then define the
overall D score for the DnaK requirement by
summing over the entire sequence,

D = wll + cð Þ−1
X

i
Di ð6Þ

where l is the protein length and (wll+c)
−1 is a

normalization factor.

Sequence-based prediction of GroEL
requirement

As a first step in establishing the method, we
define a GroEL requirement score for an amino
acid i as,

G0
i = wAAi + wBBi + wFFi + wHHi + wRRi + wPPi

ð7Þ
The variablesA, B, F,H,R and P account for α-helical
propensity,46 β-sheet propensity,47 flexibility,44

hydrophobicity,48 aromatic clustering49 and polar/
nonpolar patterns, respectively;50 wA, wB, wF, wH, wR
and wP are the relative coefficients.
Gi profiles are then calculated from the Gi

0 scores
averaging over a sliding window of 15 amino acids
that moves from the N-terminus to the C-terminus.
In Fig. 7, we report examples of Gi profiles for six
proteins studied by Kerner et al.14

We define an overall GroEL requirement score (G
score) by summing over the individual amino acid
propensities and scaling with a function of the
negative peaks and of the protein length,

G = w
X

i
GiT Gið Þ ð8Þ
The normalization function w is defined as:

log wð Þ = alog lð Þ + hlog
X

i
T Gið Þ ð9Þ

where l is the protein length.
In order to determine parameters wA, wB, wF, wH,

wR and wP in Eq. (7) capable of discriminating
between two GroEL requirement classes, we define
a relative fitness function,

F X;Yð Þ =
X
aaX

X
baY

h −G að Þ + G bð Þ½ � ð10Þ

where the indices a and b run on the proteins of
GroEL classes X and Y, respectively, and the step
function ϑ(x) is defined as 1 for x≥0 and 0 for xb0.
For each pair of classes I/II, II/III and I/III, we used
a Monte Carlo approach to estimate the parameters
wA,wB, wF, wH, wR and wP that maximize the relative
fitness function F(X,Y)—i.e., that separate the two
classes more efficiently. We used a leave-one-out
procedure to estimate the predictive power of the
method.
A web server is available to use this method†.
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