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With the advent of proteomics, there is an increasing need of tools for
predicting the properties of large numbers of proteins by using the
information provided by their amino acid sequences, even in the
absence of the knowledge of their structures. One of the most important
types of predictions concerns whether proteins will fold or aggregate.
Here, we study the competition between these two processes by
analyzing the relationship between the folding and aggregation
propensity profiles for the human and Escherichia coli proteomes.
These profiles are calculated, respectively, using the CamFold method,
which we introduce in this work, and the Zyggregator method. Our
results indicate that the kinetic behavior of proteins is, to a large extent,
determined by the interplay between regions of low folding and high
aggregation propensities.

© 2010 Published by Elsevier Ltd.
Introduction

The amino acid sequences of proteins play a crucial
role in determining their folding behavior.1,2 Indeed,
substantial progress has been made in the prediction
of native-state structures of proteins by using only
the information provided by their sequences, so that
it is currently possible to generate models for the
structures of small globular proteinswith a relatively
high degree of confidence and accuracy, as shown by
the increasing quality of the results of the CASP
exercise.3 It has also been shown that from the
knowledge of the amino acid sequence of a protein it
is possible to predict its folding rate;4–8 in principle,
the folding pathway of a protein should be predict-
able by just considering its sequence, at least after
deriving from the sequence itself a model of the
native state topology.9,10
It has also been established that the amino acid

sequences of proteins determine, to a large extent,
ublished by Elsevier Ltd.
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also their aggregation behavior.11–18 One particularly
interesting aspect of such predictions is that it is
possible to differentiate the aggregation propensity
from the unfolded state, or “intrinsic aggregation
propensity”,13 from that from the folded state, or
“structure-corrected aggregation propensity”.16 The
latter type of aggregation propensity takes into
account the fact that, in the folded state, regions
that are highly aggregation prone are protected from
aggregation because they are buried within the
native structure and hence not exposed to the solved
and unavailable to form intermolecular interactions.
Consistent with these ideas, several recent studies

have suggested that there should be a competition
between folding and aggregation,16,19–24 in the sense
that, in order to avoid aggregation, the regions of the
amino acid sequence that are highly aggregation
prone should be protected during the folding process
and in the folded state. In order to investigate this
competition, we introduce in this work the concept
of “folding propensity profile” of amino acid
sequences. We define this property in terms of the
physicochemical properties of the amino acids—the
folding propensity of a given region of a polypeptide
sequence is defined in terms of its hydrophobicity,
secondary-structure propensity, and electrostatic
charge. The resulting Zi

fold score gives the folding
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Fig. 1. Relationship between
folding and aggregation propensity
profiles. (a) Comparison between
Zi
agg, the aggregation propensity

profile, and Zi
fold, the folding pro-

pensity profile, for AcP; an anti-
correlation (coefficient of correlation,
−0.5) is observed between the two
profiles. (b) Relationship between
folding and aggregation propensity
profiles in the human proteome. The
distribution of the coefficients of
correlation between the Zi

agg and
theZi

fold profiles has amean of 0.3 and a variance of 0.1. These findings indicate that the rate-limiting regions for folding tend
to have high aggregation propensities.
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propensity as a function of the residue number along
the amino acid sequence. The parameters used to
define the Zi

fold profiles are determined by compar-
ing the experimental folding rates for a set of proteins
with the corresponding overall Zfold scores, which
are obtained by summing the Zi

fold scores over all
amino acid sequences.
Our analysis of the human proteome indicates that

the folding propensity profiles are anticorrelatedwith
the intrinsic aggregation propensity profiles and that
at the same time the intrinsic aggregation propensity
scores are anticorrelated with the structure-corrected
aggregation propensity scores. These results suggest
that the kinetic behavior of proteins is to a large extent
determined by the balance between regions that are
rate-determining for folding and have high intrinsic
aggregation propensities.
Table 1. Summary of the propensity scores for the
transitions between the native, unfolded, and fibrillar states

Native Unfolded

Native — ZUN (Zfold)
Unfolded ZNU (Zunfold) —
Fibril ZNF (Zagg

SC ) ZUF (Zagg)

In this work, we defined a propensity score to fold, that is, to go
from the unfolded (U) to the native state (N), ZUN, or Zfold.
Previously, we defined the propensity score to go from the
unfolded to the fibrillar state (F),13,28 ZUF, or Zagg, as well as the
propensity score to go from the folded to the fibrillar state,16,27

ZNF, or Zagg
SC (structure-corrected Zagg score). In principle, it is also
Results

A relationship between folding and intrinsic
aggregation propensities

The folding propensity profile of a given amino acid
sequence is defined in this work using its physico-
chemical properties, including hydrophobicity,
secondary-structurepropensity, and electrostatic charge
(see Methods). Folding propensity profiles are calcu-
lated by using the CamFold method† (see Methods),
which provides them in terms of Zi

fold scores.
Since the overall folding rate of a protein is defined

as the sum over the sequence of the Zi
fold scores of

individual amino acids (seeMethods), regions of low
Zi

fold scores tend to lower the folding rate, and
therefore, they are expected to correspond to the
rate-limiting steps of the folding process. We
illustrate this point by considering the regions that
play an important role in the folding process of
†http://www-vendruscolo.ch.cam.ac.uk/camfold.php
acylphosphatase (AcP). The folding kinetics of AcP
has been studied by protein engineering methods,
and the key residues for folding have been identified
as Y11, P54, and F94;25,26 residues are considered key
for folding if they are required for defining the
topology of the native state.26 The folding propensity
profile, which was calculated using Eqs. (1)–(3) (see
Methods), exhibits minima in correspondence of
these regions (Fig. 1a).
Further, in order to address the main goal of this

work, which is to analyze the relationship between
folding and aggregation propensities of proteins, we
compared the folding propensity profile of AcP with
its aggregation propensity profile. The aggregation
propensity profiles were calculated by using the
Zyggregator method,16,27 which was introduced to
identify the regions that play a major role in the
aggregation process. The comparison of the folding
and the aggregation propensity profiles in the case of
AcP suggests that regions of low folding propensity
tend to have a high aggregation propensity (Fig. 1a).
Similar results are found in a series of additional
examples (see Supplementary Data, Figs. S1–S3).
To confirm the insight provided by the analysis of

these initial cases, we carried out a proteome-level
analysis of the correlation between folding and
possible to define the propensity score to unfold, ZNU, or Zunfold,
that is, to go from the native to the unfolded state.



Fig. 2. Relationship between the Zagg and Zagg
SC

aggregation propensity scores. The intrinsic aggregation
propensity (i.e., the tendency to go from the unfolded to
the fibrillar state, ZUF, or Zagg) is anticorrelated with the
aggregation propensity with structural corrections (i.e.,
the tendency to go from the folded to the fibrillar state,
ZNF, orZagg

SC ). Each point represents a protein in the human
proteome; the coefficient of correlation is −0.5.
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aggregation propensity profiles, which indicates the
presence of a significant anticorrelation between these
two profiles (Fig. 1b). The presence of a detectable
anticorrelation at the proteome level is particularly
interesting in the view that folding andaggregation are
helical, β-sheet, and turn/coil regions present similar wid
associated with a high content of polar amino acids and pre
(inset). Z+

fold values for β-sheet elements and overall Zfold sc
values for α-helical elements present a broader distribution a
algorithm29 was used to assign secondary-structure elements
likely to be encoded differently in the amino acid
sequences of proteins, the former at a global level,
while the latter at a local level. As noted above, our
current understanding indicates that the aggregation
process is often driven by the formation of intermo-
lecular interactions involving specific regions of the
amino acid sequence of a protein.11–18 By contrast, the
folding process, at least within individual protein
domains, is instead often more cooperative and
involves the participation of the whole polypeptide
chain. In terms of propensity profiles, therefore, it
would seem much more straightforward to define an
aggregation propensity profile to identify aggregation-
prone and aggregation-resistant regions, than a
folding propensity profile, a difficult task that requires
to single out fast-folding and slow-folding regions in
sequences that behave to a large extent cooperatively.
We have shown (Fig. 1a) that in the case of AcP, a
protein that folds in a nucleation–condensation mech-
anism, it is possible to characterize the regions that
play a key role in the rate-limiting step as having low
folding propensity scores. Such regions could involve
the specific amino acids that form the folding nucleus,
as in AcP or TI I27 (see Supplementary Data, Fig. S1),
or structuralmotifs inwhich the amino acids that form
the folding nucleus are located, as in CI2 (see
Supplementary Data, Fig. S2). More in general,
however, particularly for proteins that fold in a
modular manner rather than cooperatively (see
Fig. 3. Structural characteriza-
tion of the contributions to the
Zfold score. Histograms of the
Z−
fold (a) and Z+

fold (b) values calcu-
lated separately for different sec-
ondary-structure elements: α-
helices (black), β-sheets (red), and
turns/coils (green). The correla-
tions of the overall Zfold scores
with the Z−

fold and Z+
fold scores for

different secondary-structure ele-
ments are shown in the insets. (a)
β-Sheet regions give the largest
contributions to the Z−

fold scores.
β-Sheet and turn/coil regions pres-
ent broad distributions of Z−

fold

values and have coefficient of
correlations of, respectively, 0.10
and 0.24 with the overall Zfold
scores (inset). By contrast α-helical
elements show a narrower distibu-
tion of Z−

fold values and a coefficient
of correlation of 0.47 with the
overall Zfold scores (inset). (b) The
distributions of Z+

fold values for α-
ths as the case of Z−

fold values. Coil/turn elements are
sent a coefficient of correlation with Zfold scores of 0.64
ores show a coefficient of correlation of 0.44, while Z+

fold

nd a coefficient of correlation of 0.1 (inset). The STRIDE
using the three-dimensional structures.

image of Fig. 2
image of Fig. 3


Table 2. Analysis of the amino acid composition of the
regions of the sequence that give positive and negative
contributions to the Zfold score, that is, of high and low
folding propensity, respectively

Amino acid
type

Composition
(scale 1)a b0 (scale 2)b N0 (scale 3)c

A 0.96 0.64 0.36
C 0.00 0.36 0.64
D 0.64 0.41 0.59
E 0.96 0.57 0.43
F 0.34 0.62 0.38
G 0.91 0.51 0.49
H 0.15 0.38 0.62
I 0.59 0.62 0.38
K 0.96 0.65 0.35
L 1.00 0.39 0.61
M 0.11 0.29 0.71
N 0.39 0.26 0.74
P 0.38 0.00 1.00
Q 0.34 0.68 0.32
R 0.48 0.48 0.52
S 0.59 0.55 0.45
T 0.63 0.55 0.45
V 0.82 0.77 0.23
W 0.07 1.00 0.00
Y 0.28 0.83 0.17

a Average amino acid composition score (scale 1) for the
proteins used to validate the algorithm; compositions are
normalized from 0 to 1for each amino acid type, so that L and C
are the most and less frequent amino acid types in the database,
respectively (Table S1).

b Negative Zfold contribution score [scale 2, see Eq. (7)]; amino
acids that give the most negative contributions to the overall Zfold
score tend to have high hydrophobicity30 andβ-sheet propensity31

(see also Table 3); scores are normalized between 0 and 1 using the
normalized amino acid composition (scale 1), so thatW and P give
the largest and smallest negative contributions, respectively, to the
overall Zfold score.

c Positive Zfold contribution score [scale 3, see Eq. (8)]; amino
acids that give the most positive contributions to the overall Zfold
score tend to have high polarity37 and turn/coil propensity36 (see
also Table 3); as in the case of negative Zfold contributions, scores
are normalized between 0 and 1 using the normalized amino acid
composition (scale 1), so that P andWgive the largest and smallest
positive contributions, respectively, to the overall Zfold score.

Table 3. Characterization of the contributions to the overall
Zfold scores of the different amino acid types in terms
of their β-sheet, aggregation, and disorder propensities

Scale 1 Scale 2 Scale 3

β-Sheet 0.6431 0.5532 0.5033

Aggregation 0.4513 0.4034 0.3212

Disorder −0.6035 −0.5636 −0.4732

The amino acid scale of negative contributions to Zfold (scale 2, see
Table 2) correlates with the β-sheet (coefficient of correlation of
0.55) and aggregation propensity scales (coefficient of correlation
of 0.40) and anticorrelates with the disorder propensity scale
(coefficient of correlation of −0.56). Opposite trends are found for
positive contributions to Zfold (scale 3, see Table 2).
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Supplementary Data, Fig. S4), or that form macromo-
lecular complexes after folding (see Supplementary
Data, Fig. S2), low folding propensity scores might
also be associated with other molecular processes,
such as the docking of preformed domains.
Taken together, the results presented in this

section suggest that, as a general trend at the pro-
teome level, regions that are rate limiting in the
folding process tend also to promote aggregation,
thus indicating that regions that are important for
determining the folding process are also important
for determining the aggregation process.

A relationship between folding and
structure-corrected aggregation propensities

In order to understand why under normal condi-
tions proteins fold instead of aggregating, given that
similar regions play an important role in promoting
both processes, we analyzed the aggregation propen-
sity with structural corrections,16,27 that is, the aggre-
gation propensity profiles in the native state. For
clarity, we first summarize the three types of propen-
sities that we consider in this work (Table 1): first, the
propensity score to fold, ZUN, or Zfold, that is, to go
from the unfolded (U) to the native state (N); second,
the propensity score to convert from the unfolded to
the fibrillar state (F),13,28 ZUF, or Zagg; third, the
propensity score to convert from the folded to the
fibrillar state,16,27ZNF, orZagg

SC (structure-correctedZagg
score).Wealsomention that, in principle, it should also
be possible to formulate a method of calculating the
propensity score to unfold,ZNU, orZunfold, that is, to go
from the native to the unfolded state.
We found that the intrinsic aggregation propensity

(i.e., from the unfolded to the fibrillar state, ZUF or
Zagg) is anticorrelated with the structure-corrected
aggregation propensity (i.e., from the folded to the
fibrillar state, ZNF or Zagg

SC ) (Fig. 2). These results,
taken together with that discussed in the previous
section that folding propensity is anticorrelated with
the intrinsic aggregation propensity, indicate that the
regions that play an important role in the folding
process have also a high aggregation propensity, but
this propensity tends to be suppressed by the folding
process itself.

Regions of low folding propensity tend to have
low disorder and high β-sheet propensities

In this section, we characterize the contributions
from different secondary-structure elements to the
overall Zfold scores. We first distinguish negative
(Z−

fold) and positive (Z+
fold) contributions to the Zfold

scores for different secondary-structure elements [see
Methods, Eqs. (5) and (6)]. We found that β-sheet
regions tend to provide the largest contributions to
Z−
fold scores (Fig. 3). More in general, our results

indicate that negative contributions to the Zfold score
are associated with a high content of residues with
high hydrophobicity and β-sheet propensity, while
positive contributions to the Zfold score are associated
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with a high content of residues with high polarity
and turn/coil propensity (Table 2).
The characterization of the regions that give

positive and negative contributions to the overall
Zfold scores in terms of their β-sheet, aggregation, and
disorder propensities indicates that the rate-deter-
mining regions for folding, which tend to have low
Zfold scores, have also a low disorder propensity score
and a high aggregation propensity score (Table 3).
Our results thus indicate that the rate-limiting regions
for folding are characterized by a low propensity to
be disordered and a significant aggregation propen-
sity. By contrast, low-aggregation propensity re-
gions tend to have high folding propensity scores.
We also observe that negative Zfold regions are less
abundant than Zfold positive regions, which might
result as a consequence of a selective pressure acting
to reduce the aggregation potential of proteins.
A relationship between folding, aggregation,
and GroEL/ES requirements

In this section, we present an analysis of the
role played by molecular chaperones in the
competition between aggregation and folding.
We analyzed a set of 250 Escherichia coli proteins
whose GroEL/ES requirements were determined
experimentally.38 These proteins were divided in
three classes, according to their level of depen-
dence on GroEL/ES, which was deduced from in
vitro and in vivo refolding assays: (i) class I, in
which proteins fold largely independently of
GroEL/ES but may use it to optimize their
folding yield; (ii) class II, in which substrates are
highly chaperone dependent, at least under mildly
unfavorable environmental conditions, but can
utilize either DnaK/DnaJ or GroEL/ES for
Fig. 4. (a) Comparison of the
aggregation propensity profiles for
three E. coli proteins representative
of the GroEL interaction classes38:
TPX (class I), ISCS (class II), and
METK (class III). (b) Average values
for the E. coli proteins in the three
GroEL interaction classes of the
coefficient of correlation, ρ, be-
tween the folding and the aggrega-
tion propensity profiles.

image of Fig. 4


Table 4. Folding propensity and physicochemical scales
at pH 7

AA Zfold Hydrophobicity Turn α-Helix β-Sheet

A 0.34 0.69 0.22 0.57 0.34
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folding; and (iii) class III, in which substrates have
an absolute requirement for the GroEL/EL system
in order to fold correctly.
By considering initially three proteins represen-

tative of each GroEL/ES class (Fig. 4a), we
identified regions of negative Zfold and positive
Zagg scores (green segments in Fig. 4a, which
indicate significant correlation between the two
values), as well as the regions of positive Zfold and
negative Zagg scores (blue segments in Fig. 4a). The
negative peaks of Zfold associated with the positive
peaks of Zagg correspond to regions that remain
exposed for a long time during the folding process
despite having a high aggregation propensity. The
analysis of these three proteins suggests that the
regions of low Zfold and high Zagg scores (green
regions in Fig. 4a) tend to be more abundant in
proteins of classes II and III. In order to generalize
this result, we analyzed the correlation over the
entire set of 250 proteins whose GroEL/ES class
was determined experimentally, finding the antic-
orrelation between Zfold and Zagg scores to be
more significant in proteins of classes II and III
(Fig. 4b), consistent with the idea that the presence
of regions of high aggregation and low folding
propensities tend to reduce the reliability of the
folding process and to increase the level of
dependence on molecular chaperones.
C 0.97 0.8 0.70 0.62 0.23
D 0.61 0.17 0.74 0.67 0.35
E 0.73 0.43 0.32 0.63 0.14
F 0.31 0.75 0.20 0.56 0.92
G 0.58 0.55 0.95 0.00 0.13
H 0.47 0.48 0.56 0.48 0.14
I 0.55 0.97 0.00 0.45 0.99
K 0.50 0.00 0.60 0.87 0.07
L 0.65 1.00 0.21 0.48 0.87
M 0.55 0.95 0.21 0.32 0.40
N 0.48 0.35 1.00 0.32 0.90
P 1.00 0.88 0.66 0.44 0.00
Q 0.35 0.47 0.47 0.51 0.72
R 0.63 0.34 0.46 1.00 0.22
S 0.73 0.39 0.79 0.45 0.06
T 0.44 0.49 0.34 0.30 0.14
V 0.55 0.95 0.09 0.45 0.78
W 0.00 0.49 0.40 0.00 0.62
Y 0.21 0.43 0.50 0.54 1.00

The scales for hydrophobicity, turn, α-helix, and β-strand
propensities were obtained from a consensus of experimentally
determined propensities.32,33,36,39–45 We used a linear combina-
tion of these scales to determine the Zfold scale. The β-sheet
propensity is associated with a negative weight with the Zfold
scale, while hydrophobicity and charge and the turn and α-helix
propensities have positive weights. The individual coefficients of
correlation with the Zfold scale are −0.49 for the β-strand
propensity, 0.30 for the α-helix propensity, 0.26 for the turn
propensity, and 0.22 for hydrophobicity. The hydrophobicity
scale used here has a correlation of 0.85 with the hydrophobicity
scale determined by Cowan and Whittaker at pH 7;39 the turn
propensity has a coefficient of correlation of 0.90 with the Deleage
and Roux turn scale;36 the α-helix and β-strand propensities show
coefficients of correlation of 0.55 and 0.64, with the respective
scales determined by Chou and Fasman.33 All the scales are
normalized between 0 and 1.
Discussion

In this work, we have studied the relationship
between the folding and aggregation propensities
of the different regions of amino acid sequences. In
order to perform sequence-based predictions of the
folding behavior of proteins, we have introduced
the CamFold method, which enables the calcula-
tion of the folding propensity profiles of proteins
by using physicochemical properties of the differ-
ent regions of their amino acid sequences. We have
also used the same type of properties to obtain
sequence-based predictions of the aggregation
behavior of proteins, which we performed using
the Zyggregator method.16 As both the CamFold
and the Zyggregator calculations are very fast,
these methods are particularly suitable for pro-
teome-level studies.
We performed an analysis of the human and E.

coli proteomes, finding that the rate-determining
regions for folding also tend to have a high
aggregation propensity. We also described, how-
ever, how such regions do not actually promote
aggregation under normal cellular conditions
because, as the folding process is faster than the
aggregation process, they become buried in the
native state before they can form stable intermo-
lecular interactions.
Methods

Definition of the folding propensity of an amino
acid sequence

We define first a scale of intrinsic folding propensities of
individual amino acids on the basis of their physicochem-
ical properties. The intrinsic folding propensity of an
amino acid of type a (Table 4) is defined as

pfold að Þ = αhh að Þαss að Þαtt að ÞαHH að ÞαCC að Þ ð1Þ
where h(a), s(a), and t(a) are the secondary-structure
propensities (α-helix, β-sheet, and turn, respectively); H
(a) is the hydrophobicity; and C(a) is the electrostatic
charge. For each physicochemical property, we use a
consensus of experimentally determined scales. Four
scales were used to estimate the contribution of
hydrophobicity,39–42 six for the β-sheet propensity,43

eight for the α-helical propensity,32,44 and three for the
propensity to form turns33,36,45 (Table 4). As most of the
scales are correlated (the average coefficient of correlation
is 0.41),43,44 the number of effectively independent
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parameters of our model is estimated to be of about 12. In
addition, the intrinsic folding propensity score is pH
dependent, because all the scales that we used are pH
dependent; hence, our model could be used also to predict
the folding rate at different pH values.
In order to take account of the effect of the local

sequence context on the intrinsic folding propensities,
we calculated a position-dependent folding propensity
score as

Pfold
i =

1
7

X3
j= −3

pfoldi+ j + αaroIaroi + αpatI
pat
i ð2Þ

where pi
fold=pfold(ai) is the intrinsic propensity of the

amino acid a at position i. We considered the average of
the intrinsic folding propensities of a seven-residue
segment of the protein centered at position i. The
window size for the average was reduced for the
segments in proximity of the N-terminus and C-
terminus. The terms and account for the presence,
respectively, of polar/non-polar46 and aromatic47 pat-
terns and are defined to be 1 if residue i is included in a
polar/non-polar or aromatic pattern and 0 otherwise.
These terms are used to characterize the aggregation
r=0.84 (test); (e) r=0.80 (train) and r=0.77 (test); (f) r=0.90 (tra
(seeMethods), we calculate a correlation coefficient r=0.87 for t
set is 10−5, indicating very high significance for the correlation.
propensity of the unfolded aggregated state, which is in
competition with the propensity to fold of the polypep-
tide chain.27

The Pi
fold score is normalized as16

Zfold
i =

Pfold
i − Afold

jfold ð3Þ

whereμfold andσfold are the average and standarddeviation
of thePi

fold score over a set of randomamino acid sequences.
From the Zi

fold score, we define an overall folding
propensity Zfold by summing over the contributions
characterized by high Zi

fold scores and subtracting the
contributions of low Zi

fold scores

Zfold =

PN
i=1

Zfold
i

� �r1# Zfold
i − α

� �
h PN
i=1

# Zfold
i −α

� �im1 Lm0

−

PN
i=1

jZfold
i j m2# −Zfold

i + b
� �

hPN
i=1

# −Zfold
i + b

� �im2 Lm0

ð4Þ
Fig. 5. Fitting of the parameters
of the CamFold method. In order to
determine the parameters to define
the folding propensity profiles, we
matched the overall Zfold scores of
Eq. (4) with the folding rates of 90
proteins (Supplementary Data,
Table S1, and Fig. S2). The folding
rates are partitioned in six groups
according to their secondary struc-
ture and their two- or multi-state
kinetics: (a) two-state α-proteins, (b)
multi-state α-proteins, (c) two-state
β-proteins, (d) multi-state β-pro-
teins, (e) two-state α/β-proteins,
and (f) multi-state α/β-proteins.
Proteins used for training are
marked with asterisks, while pro-
teins employed for testing are repre-
sented with circles. To assess the
statistical significance of the results,
we divided each data set into two
equal parts that were chosen ran-
domly (see also Supplementary
Data). For this test, 100 random
partitions were generated; repre-
sentative examples are reported in
the plots. The individual coefficients
of correlation of the six data sets are
used to estimate the accuracy of the
algorithm: (a) r=0.83 (train) and
r=0.80 (test); (b) r=0.98 (train) and
r=0.92 (test); (c) r=0.85 (train) and
r=0.88 (test); (d) r=0.83 (train) and

in) and r=0.91 (test). (g) Using a leave-one-out procedure
he six data sets combined together. The p value for this data
The unitary slope reference line is reported in all the plots.

image of Fig. 5
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where ϑ(Zi
fold−α) defines the region characterized by

high Zi
fold, ϑ(−Zi

fold+β) defines the region characterized
by low Zi

fold, the function ϑ(Zi
fold) is 1 for Zi

fold≥0 and 0
for Zi

foldb0, α and β are the thresholds, L is the chain
length of the protein, and ν0, ν1, and ν2 and are scaling
factors.
‡http://www-vendruscolo.ch.cam.ac.uk/camfold.php
§http://www-vendruscolo.ch.cam.ac.uk/zyggregator.

php
Determination of the CamFold parameters by a
fitting of known folding rates

In order to define the parameters α in Eqs. (1) and
(2) for the CamFold method for calculating folding
propensity profiles, we matched the overall Zfold
scores given by Eq. (4) with the folding rates using a
database of 90 proteins available in literature4,5,48,49
(Fig. 5, Supplementary Table S1 and Fig. S5). The
coefficient of correlation between the Zfold score and
the experimentally measured folding rates is 0.87 (Fig.
5), which was estimated using a leave-one-out cross-
validation procedure; in this method, the protein
whose Zfold score is to be calculated is not used to
fit the parameters. The results that we obtained are
comparable to those obtained using the information
provided by the secondary structure, which achieves a
coefficient of correlation of 0.82 between calculated
and experimental folding rates for two- and three-state
proteins.5 For comparison, the coefficient of correlation
between the absolute contact order10 and the folding
rates is −0.87 if two-state proteins in our database are
considered and −0.74 if multi-state proteins are
analyzed (see Supplementary Data).
The predictive ability provided by the CamFold

method is significantly separated from the corres-
ponding values obtained upon randomization of the
experimental rates (Fig. S5). The likelihood of obtaining
coefficients of correlation N0.50 with a random set of
folding rates is extremely small (pb10− 5). We also
considered whether the Zfold scores could be used to
predict the differences in folding rates for homologous
proteins; the three families that we considered (α-
spectrins, immunoglobulins, and AcPs) indicate that
there is a high correlation between folding rates and the
Zfold scores in these cases (Fig. S6). In this work, we did
not use the experimental folding rates available for
protein mutants. As a result, the current implementation
of the CamFold method is not biased towards specific
protein classes that are more extensively studied in
literature, but it may require modifications to predict the
effects of amino acid mutations in the different protein
families.
The parameters associated with electrostatic charge,

α-helix, and turn propensities are positive, while β-
sheet propensities present a negative contribution (Table
4). The overall Zfold score increases with the ability of
the polypeptide chain to form α-helices and establish
van der Waals or electrostatic interactions but antic-
orrelates with the β-sheet content. The frequency of
Zi

fold negative minima correlates significantly with the
β-sheet content and might represent the time delay
required to establish tertiary interactions. In addition,
the N- and C-termini often show negative Zi

fold scores,
which is a consequence of the poor ability of these
regions to form strong contacts.
Negative and positive contributions to the
Zfold score

We define the negative Zfold score of a polypeptide
chain of N residues, Z−

fold, by summing the negative Zi
fold

scores of individual amino acids

Zfold
− =

PN
i=1

jZfold
i j m − # −Zfold

i + b−
� �

PN
i=1

# −Zfold
i + b−

� �� �m − ð5Þ

Similarly, we define the positive Zfold score, indicated by
Z+
fold, by summing the positive Zi

fold scores for individual
amino acids

Zfold
þ =

PN
i=1

jZfold
i j m + # Zfold

i − b +
� �

PN
i=1

# Zfold
i −b +

� �� �m +
ð6Þ

where β+, β−, ν+, and ν− are parameters available upon
request.

Negative and positive scales in Table 2

The negative scale (scale 2) in Table 2 is calculated as

Scale− =
Composition Zfold

−
� �

− Composition Zfold
þ

� �
Composition Zfoldþ

� �
+ Composition Zfold

−
� �

ð7Þ

Similarly, the positive scale (scale 3) is calculated as

Scaleþ =
Composition Zfold

þ
� �

− Composition Zfold
−

� �
Composition Zfoldþ

� �
+ Composition Zfold

−
� �

ð8Þ

Software availability

The CamFold method is freely available‡, and the
Zyggregator method is freely available for academic
users§.
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