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The description of protein folding at the proteome level requires

further principles in addition to those that govern this

phenomenon for individual molecules. An important aspect of

the increased complexity of the folding process in the cellular

environment is that proteins tend to be metastable against

aggregation, as they are often expressed at levels at which they

are poorly soluble. The maintenance of the solubility of the

proteome requires the coordinated intervention of a range of

quality control mechanisms, which include molecular

chaperones, trafficking and degradation pathways, post-

translational modifications and transcriptional and translational

control. As these regulatory mechanisms should always be

active to keep proteins in their soluble state, their impairment

upon ageing or environmental stress can lead to the disruption

of protein homeostasis resulting in uncontrolled widespread

aggregation and disease.
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Introduction
Proteins are involved in nearly all the biochemical reac-

tions that take place in living organisms. In order to carry

out their functions the majority of them fold into well-

defined three-dimensional native structures by a spon-

taneous process that is relatively robust against pertur-

bations [1,2]. The task of reaching and maintaining such

native states amongst the vast multitude of possible

alternative conformations that proteins can adopt is facili-

tated by the presence of an energetic bias towards the

native states themselves [3,4]. Most of this knowledge,

however, comes from in vitro studies, which concern

diluted buffer solutions, and thus provide a picture that

tends to apply to individual molecules in isolation. With

the advent of quantitative methods to monitor the beha-

viour of proteins in living systems, it is becoming increas-

ingly clear that these molecules in vivo do not follow just
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the relatively small set of rules defined from experiments

carried out in the test tube, but a considerably more

complex code [5–15]. In the cell, proteins are expressed

at very high concentrations and they interact with a hetero-

geneous environment. Although the fundamental nature of

the process by which individual protein molecules fold is

similar in vitro and in vivo, the description of the manner in

which folding is achieved at the proteome-wide level

requires further concepts to be established. As put by Phil

Anderson, ‘more is different’ [16], so that complex systems

are not only regulated by just the fundamental laws that

govern their component parts, but also by additional prin-

ciples that describe their collective behaviour. In this

sense, protein folding and proteome folding are different

phenomena, as the former refers to a molecular-level

process, whilst the latter to a cellular-level one.

Proteome folding
Proteins fold in vivo in a complex environment in the

presence of a multitude of other macromolecules and

metabolites [5–15]. As they emerge from the ribosome as

nascent polypeptide chains, before reaching their native

states, proteins are exposed to a series of potentially

dangerous interactions. Despite the fact that folding is

a spontaneous and robust process, in order to facilitate and

protect it, a battery of molecular chaperones, disulfide and

peptidyl-prolyl isomerases, post-translational modifi-

cation enzymes and other ancillary factors are present

[5–12]. Thus, although proteins experience a variety of

challenges whilst they fold, they can still reach safely

their native states provided that appropriate control

mechanisms are in place. Overall, protein synthesis, fold-

ing and degradation are balanced carefully in order to

guarantee that the vast network of biochemical reactions

sustaining living organisms can operate in the correct

manner [6,17–21]. It is also particularly important to avoid

dysfunctional interactions leading to misfolding and

aggregation [20,22,23], which are processes often associ-

ated with disease [2,24].

By combining the conceptual advances made through in
vitro and in vivo studies, it is becoming clear that protein

folding in the cell should be considered as a collective

phenomenon, which involves the proteome as a whole.

From the point of view of a cell, folding, rather than a

process concerning individual molecules, is a phenom-

enon that requires the participation of a variety of differ-

ent molecules, which by working in close collaboration

ensure that the whole system functions properly

(Figure 1). The maintenance of a functional proteome

requires hundreds of genes, if not more [6], which

regulate the processes of synthesis, folding, trafficking
www.sciencedirect.com
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More is different. The laws that regulate the folding process of individual

proteins in the test tube are not sufficient to describe the collective

behaviour of these molecules in living systems. In the cellular

environment, additional principles are required to specify how protein

homeostasis is maintained through a balanced interplay between

expression, folding, aggregation, regulation and degradation processes.

Table 1

Anfinsen’s thermodynamic hypothesis [70], which states that

the native structures of proteins are encoded in their amino acid

sequences, is well established for dilute solutions [1–5]. At the

concentrations typically found in living organisms, however, the

folding process becomes prone to errors, often resulting in

misfolding and aggregation [2,5,26]. Indeed, according to the

‘life on the edge hypothesis’ proteins are only just soluble at the

levels at which they are expressed in the cell [30]. Since under

these circumstances aggregation is widespread, quality control

mechanisms, including molecular chaperones, degradation
pathways and post-translational modifications, are crucial to

maintain proteins in a soluble state. These quality control

mechanisms are required to be constantly active, giving rise to

a Red Queen effect.

Principles of proteome folding

Protein folding Thermodynamic hypothesis

Protein solubility Life on the edge hypothesis

Protein quality control Red Queen hypothesis
and degradation mechanisms, thus establishing protein

homeostasis [8,9,25].

Proteome aggregation
The aggregation of proteins is progressively being

recognized as one of the most fundamental processes

involving these molecules [2,26], and consequently as a

widespread phenomenon in the cellular environment

[9,27��,28,29�,30]. It has been observed that hundreds

of proteins in Escherichia coli are at high risk of aggrega-

tion, and that a small but significant fraction (perhaps

about 1–3%) of these proteins form, at least transiently,

aggregates under mildly destabilizing conditions

[31,32,33�]. Proteome-level aggregation has also been

observed in yeast in the stationary phase. Under these

conditions, nearly 200 proteins were found to self-associ-

ate into deposits, which in some cases were observed to

revert to a soluble form when normal conditions were

restored [29�]. These observations open the intriguing

possibility that the direction of misfolded proteins into

large and perhaps relatively inert aggregates could

represent a last-line of defense to cope with stress con-

ditions [23,29�,34].
www.sciencedirect.com 
The existence of a metastable sub-proteome has been

further illustrated by a recent study in which a wide

number of human proteins have been shown to be at

risk of co-aggregating with amyloid-forming polypeptide

chains [35��]. These problematic proteins were found to

be relatively large in size and only weakly hydrophobic, as

well as to exhibit elevated structural flexibility and

enrichment in disordered regions. All these features

render such proteins particularly prone to experiencing

aberrant interactions, as they are unable to protect effec-

tively their aggregation-prone regions, either as a con-

sequence of their large sizes, which make them fold

slowly after biosynthesis, or because of the presence of

extended disordered regions even after reaching the

native state [35��]. In a related study, a pool of metastable

proteins with destabilizing temperature-sensitive

mutations was observed in Caenorhabditis elegans to form

deposits upon aggregation of polyglutamine expansions

[28]. In a vicious circle, such proteins, which normally

exhibit an apparently normal behaviour, under stress

conditions were found to further enhance the aggregation

of the polyglutamine proteins [28]. These results indicate

that when a particular protein undergoes misfolding and

aggregation, other proteins that share the same regulatory

pathways become at risk themselves [11,25,28].

These observations indicate that proteomes are intrinsi-

cally metastable and that under stress their predisposition

to aggregate can be increased. It has been suggested that at

the concentrations at which they are expressed in the cell,

proteins are only marginally soluble [30]. This observation

is particularly important since the maintenance of proteins

in a soluble state represents one of the most fundamental

principles that regulate the behaviour of proteins in living

organisms (Table 1). The very high concentration at which

proteins are expressed in relation to their intrinsic

tendency to aggregate, creates a challenging situation
Current Opinion in Structural Biology 2012, 22:138–143
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not only because of crowding (i.e. excluded-volume)

effects [36–39] and hydrodynamic (i.e. solvent-mediated)

interactions [40,41], but also because it is only through the

balance between functional and dysfunctional interactions

that native states can emerge from the competition be-

tween folding and aggregation [42,43]. As common disturb-

ances such as mistranslations, mutations, overexpression

and dysregulated post-translational modifications can pre-

cipitate proteins into insoluble deposits, in particular in

proximity of mitochondria, where the production of reac-

tive oxygen species can often cause molecular damage

[44,45], a variety of housekeeping mechanisms, such as

the heat shock response in the cytoplasm and the unfolded

protein response in the endoplasmic reticulum, are

required to enable proteins to remain soluble

[6,10,17,19,20,34,46]. Indeed, since misfolding imposes a

burden on the cell, highly expressed proteins tend to be

more soluble than others [30,47–51], and avoidance of

aggregation is a major force that shapes protein evolution

[47,48,52–55].

Proteome aggregation and disease
The view that the healthy state of a proteome is only

metastable and that aggregation is a pervasive phenom-

enon in the cell suggests that misfolding diseases

represent essentially unavoidable conditions associated

with ageing and stress. With the impairment of the

housekeeping mechanisms and the accumulation of

defects such as those caused by reactive oxygen species,

metal ions or mutations, aggregation becomes even more

widespread and difficult to control. A recent study in C.
elegans has shown that the age-related decline of protec-

tive mechanisms against aggregation results in the for-

mation of aberrant assemblies by several hundred

proteins [27��]. Inhibition of the insulin/insulin-like

growth factor (IGF-1) pathways, which regulate the

action of a variety of quality control mechanisms, in

addition to slowing down ageing, was found to decrease

the extent of aggregation, thus suggesting that down-

regulation of the more aggregation-prone proteins could

be associated with prolonged lifespans [27��]. In another

study, thermally destabilized mutants promoted the col-

lapse of proteins homeostasis in C. elegans by putting the

chaperone system under stress, thus causing premature

ageing [56��]. On a more abstract level, an intriguing

theoretical analysis has also suggested that the average

propensity of aggregation of a proteome correlates with

the lifespan of the corresponding organism [57].

The importance of maintaining cellular regulatory sys-

tems in a fully functional state has prompted the quest for

strategies involving small molecules capable of acting as

‘chemical chaperones’ that can support the action of the

natural defenses against misfolding and aggregation

[8,9,58�]. Such therapeutic interventions may be most

effective if they are targeted at the prevention of disease,

rather than at its direct treatment, as once started, the
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collapse of protein homeostasis can lead to a cascade of

harmful events that is very difficult to control [24,59].

Thus, it has been demonstrated that activation of stress–
response anti-aggregation pathways increases the life-

spans of C. elegans and mice [11,56��,60], and protects

from the cytotoxicity associated with the presence of Ab

deposits [61]. Drug-induced activation of proteasome-

associated pathways was also found to favour the degra-

dation of misfolded proteins, in particular those that

exhibit oxidative damage, thus reducing the level of toxic

aggregates [62]. In a recent study, a screen of about

900,000 small molecules was carried out to identify

new types of small molecules that can restore protein

homeostasis by imitating the molecular signals that

enhance the activity of heat shock transcription factor-1

(HSF-1) and can thus induce the expression of the

molecular chaperones that are regulated by it [58�].

A ‘Red Queen effect’ in protein homeostasis
If the view that native states are metastable against

aggregation [30,63��,64] will receive further support, con-

ceptual frameworks to describe protein homeostasis will

have to include the notion that quality control pathways

need to be switched on at all times to avoid aggregation

(Figure 2). As revealed by the Red Queen in Lewis

Carroll’s ‘Through the Looking-Glass’, ‘it takes all the

running you can do, to keep in the same place’. In the cell,

since aggregation is widespread, this phenomenon

appears to be at play, since housekeeping mechanisms

have to be always active, rather than being just called in to

respond to stress or other insults. Thus, proteome folding

and aggregation are regulated by a series of principles

more articulated than those at play in the test tube under

diluted conditions (Table 1).

The constant activity of quality control mechanisms is

essential to maintain the balance of molecular processes

that results in protein homeostasis. The normal state of a

cell is characterized by a steady-state condition charac-

terised by nearly constant populations of the different

states in which proteins can be found [65–68]. This

situation is achieved through the presence of a variety

of interconnected processes that are responsible for the

synthesis, degradation, folding, aggregation, trafficking

and regulation or proteins (Figure 2). Aggregation events

may therefore not represent by themselves a critical

challenge to cellular health, as long as the fluxes of

proteins in and out of aggregated states is balanced, which

normally requires the levels of protein deposits to remain

low. Although the maintenance of such steady-state con-

ditions is quite robust with respect to perturbations, acute

or persistent offences, such as environmental or genetic

factors, or ageing, can eventually disrupt the balance and

lead to disease.

When looked at from an evolutionary perspective,

this type of steady-state conditions is the result of
www.sciencedirect.com
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Figure 2
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A Red Queen effect. Since proteins in the cell are close to their solubility limits, aggregation is a common event. Quality control mechanisms that

prevent aggregation and dissolve existing aggregates should therefore be active always, and not just under stress conditions. Age-related impairment

of such mechanisms or environmental factors can lead to a disruption of protein homeostasis resulting in widespread aggregation and disease.
evolutionary processes in which proteins have co-evolved

with their cellular environment to acquire properties,

such as solubility and affinity for chaperones, that make

them highly adapted to carry out their biochemical tasks

in living organisms. In this sense, the Red Queen effect in

molecular biology is analogous to the corresponding one

that has been proposed to describe the constant evol-

utionary arms race between competing species in ecosys-

tems [69].

Conclusions
Recent studies on the phenomena of protein folding and

aggregation in the cell have indicated that the proteome is

metastable against aggregation. The presence of a variety

of housekeeping mechanisms is thus required to maintain

proteins in their soluble and functional states. Eventually,

however, because of acute or chronic stress, or just as a

consequence of normal ageing, protein homeostasis will

inevitably become compromised, resulting in disease.

Our hope is that this fate can be at least retarded, if

not reversed, thus prolonging the duration of healthy

lives, by pharmacological interventions developed to

support the activities of cellular quality control systems.
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