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INTRODUCTION

The quality of methods to predict the structures of proteins from their amino acid

sequences has advanced considerably over the last few years, as demonstrated clearly by

the steadily improving quality of the results of the periodic community-wide critical

assessment of structure prediction (CASP) exercise.1–5 If sequence similarity to pro-

teins of known structure can be detected, homology modeling can provide high-accu-

racy predictions.6 When this strategy is not readily applicable, the structure should be

predicted ab initio, a task that is often much more difficult.7 Currently, the most

widely used methods to perform this type of prediction use a molecular fragment

replacement approach.3,8,9 The first step in this approach consists of the homology-

based generation of structural fragments, which are then assembled into low-resolution

candidate structures.10 In the subsequent step, a high-resolution structural refinement

in many cases achieves predictions of great accuracy.3 The best predictions, however,

require the high-resolution refinement of a large fraction of the low-resolution decoys,

a procedure that demands very considerable computational effort. To reduce this effort,

reliable methods for the selection of the best structures are needed. One option to

improve the selection is to define better energy functions for scoring of low-resolution

candidate structures.11 A second option, which appears to be very promising, is to per-

form a clustering of the decoys by their pairwise root mean square distances (RMSDs)

and then consider the largest clusters8 or the clusters of lowest energy.12 Clustering by

distance matrices and identifying the cluster of lowest energy has also proved successful

in the reconstruction of protein structures from highly approximate backbone torsion

angles.13 A problem related to the selection of decoy structures is the ranking of pre-

dicted protein structures14 where scoring functions that are weakly funneled toward

the native state can be improved considerably by taking correlations between decoy

structures15 into account. The inclusion of sparse experimental data such as NMR

chemical shifts also substantially improves protein structure determination.16,17

Here, we show that the use of structural profiles18,19 provides an effective way for

selecting candidate structures. Structural profiles corresponding to the native states of

proteins can be computed from structures and used to efficiently compare them20 or

to analyze protein folding dynamics.21 Most importantly in the context of this study,

however, the structural profile of the native state of a protein can also be predicted

with good accuracy from its amino acid sequence, for example using an artificial neural

network trained on other protein structures and sequences, similarly to secondary
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ABSTRACT

One of the major bottlenecks

in many ab initio protein

structure prediction methods

is currently the selection of

a small number of candidate

structures for high-resolu-

tion refinement from large

sets of low-resolution decoys.

This step often includes a

scoring by low-resolution

energy functions and a clus-

tering of conformations by

their pairwise root mean

square deviations (RMSDs).

As an efficient selection is

crucial to reduce the overall

computational cost of the

predictions, any improve-

ment in this direction can

increase the overall perform-

ance of the predictions and

the range of protein struc-

tures that can be predicted.

We show here that the use of

structural profiles, which

can be predicted with good

accuracy from the amino

acid sequences of proteins,

provides an efficient means

to identify good candidate

structures.
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structure prediction.22 Prediction of structural profiles is

significantly easier than the prediction of contact maps

which is a notoriously difficult task.23 The profile com-

puted from each candidate structure in the decoy set can

then be compared to the predicted target profile and

structures with similar profiles are selected for refine-

ment. By investigating both exact and predicted target

profiles for structure selection, we demonstrate that the

use of structural profiles constitutes a powerful method

to reduce the computational effort in structure

prediction.

METHODS

Generation of decoys

For each protein whose structure is to be predicted, we

constructed 10,000 candidate structures using a library of

fragments in a reduced representation, which included

backbone and Cb atoms, using the standard Rosetta

ab initio protocol8 and excluding sequence homologs for

the generation of fragments. These decoy generations run

for 1–3 days per protein on a modern desktop computer.

Although we discuss specifically the case of Rosetta, the

results that we present in terms of decoy selection are

expected to apply also to other methods for the genera-

tion of decoys.

Benchmark structures

The protein structures used for testing are listed in

Table I (Supporting Information), and their lengths range

from 46 to 209 amino acids. These lengths are taken

from the corresponding PDB files, and, for 1shg, 1r69,

1p9yA, and 1gk9, differ from those in the FASTA files

obtained from the PDB website. For fragment prediction

and assembly, sequences were shortened at the termini to

match the lengths and sequences of PDB structures. The

distance of decoys to native structures was measured by

Ca-RMSD and TM-score24 and the distribution of

RMSD values was also used to assess the quality of

different selection methods.

CASP8 server predictions

To assess both longer protein structures and structures

generated by different methods, we also applied our

filtering scheme to models (server-only ab initio predic-

tions) submitted to CASP8.25 We discarded targets for

which the experimental PDB structure was incomplete or

ruptured (but allowed for possibly missing end termini)

to simplify comparison to predictions. Of the 69 target

proteins we thus considered only 29. A list of target

proteins is given in Table III (Supporting Information)

with lengths ranging from 69 to 533.

Prediction of the structural profiles

The structural profile used in this study is the effective

connectivity (EC), which is defined as a linear combina-

tion of the eigenvectors of the contact map of the native

state.19 This definition requires the knowledge of the

native structure and cannot be used for ab initio struc-

ture prediction. The structural profile can, however, be

predicted from the amino acid sequence with good accu-

racy by using feed-forward artificial neural networks

(ANN). To improve the predictions, the ANN does not

use as input the single sequences whose profiles are to be

predicted, but rather follows an approach developed in

the context of secondary structure prediction22 and takes

evolutionary information into account by first obtaining

position specific scoring matrices (PSSMs) using PSI-

Table I
Number of Structures with RMSD Values Smaller Than One Standard Deviation Below the Mean N (zRMSD � 21) for Various Selection Methods

and Minimum RMSD in Å (in brackets)

PDBid EC predEC
Rosetta
score C1 C* minRMSD

1pv0 72 (2.9) 26 (3.1) 10 (3.5) 0 (6.1, 199) 26 (3.7, 58) 2.6
1gb1 151 (1.6) 9 (1.7) 186 (1.5) 0 (3.8, 196) 91 (1.5, 91) 1.5
1shg 58 (3.6) 38 (4.0) 7 (4.9) 0 (6.9, 209) 0 (7.1, 49) 3.3
1jic 50 (3.8) 23 (5.8) 4 (6.4) 0 (10.9, 200) 0 (10.7, 164) 3.1
1r69 37 (1.6) 15 (2.2) 34 (2.3) 0 (3.0, 191) 1 (3.0, 70) 1.6
1c9oA 143 (2.9) 89 (2.9) 53 (3.2) 201 (2.8, 201) 0 (5.6, 104) 2.8
1mjc 127 (2.8) 80 (2.8) 138 (2.9) 166 (4.3, 201) 166 (4.3, 201) 2.8
1fgp 102 (5.9) 25 (9.4) 28 (8.7) 0 (10.7, 196) 21 (9.8, 185) 5.9
1ubq 119 (2.4) 97 (2.7) 78 (2.7) 26 (3.5, 196) 0 (4.6, 42) 2.3
1oqp 76 (4.1) 29 (4.2) 51 (4.2) 84 (4.5, 200) 0 (5.4, 70) 3.7
1btb 70 (3.7) 87 (3.4) 109 (3.1) 186 (6.2, 200) 174 (3.1, 174) 3.1
1p9yA 40 (5.7) 30 (6.1) 17 (5.4) 27 (8.1, 198) 25 (6.2, 198) 4.7

For the clustering method, the second number in brackets is the cluster size. The largest cluster is denoted as C1, the cluster of lowest average Rosetta score as C*. The

last column gives the overall minimum RMSD in Å. For 1mjc C1 and C* coincide, for 1p9yA there are two equally large clusters C1 one of which is also C*. In every

line the best method, disregarding the case of the exact EC, is underlined, which is usually the method achieving highest N (zRMSD � 21). For 1mjc and 1oqp, the

Rosetta score provides the best results over C1 and for 1btb C* over C1 because the overall RMSD distributions are better, for 1r69 the case is left undecided between

predicted EC and Rosetta score. The proteins are sorted by length.
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BLAST.26 The ANN consists of an input layer of 15 3
21 neurons, a hidden layer of 40 neurons, and a single

output neuron. For each amino acid in the sequence, in-

formation from a sequence window of 15 amino acids

centered at our residue in question enters the ANN and

each place within this window defines probabilities for

the 20 amino acid kinds that might occur at this position

(PSSM). An extra neuron is set to 1 (and all others to 0)

if the window extends the sequence (hence 15 3 21

input neurons). The activation function of the hidden

layer is the hyperbolic tangent and the output is linear.

The output neuron then gives the predicted profile entry

for the central amino acid of the window. The ANN was

trained on a representative subset of the PDB of 300,000

residues in total to minimize the squared differences

between exact EC and prediction with early stopping to

avoid overfitting. In this training, no difference in

prediction quality could be observed depending on the

inclusion or omission of sequence homologs.

Filtering of decoys

One way to narrow down the set of decoy structures

to be considered for high-resolution refinement is to use

the same score as in the decoy generation—here the

standard low-resolution score of Rosetta8

Escore ¼ Eenv þ Epair þ Evdw þ Ehs þ Ess þ Esheet þ Er�sigma:

ð1Þ

This equation contains terms for residue interaction

with environment (solvation) Eenv, residue pair interac-

tion Epair, and van der Waals-interaction for steric repul-

sion Evdw. The remaining terms, Ehs, Ess, Esheet, and

Er2sigma, account for packing of secondary structure ele-

ments. Using this filter the x% structures of lowest score

are selected (x � 2).

The filtering score based on the structural profile for

decoy j is defined as

DðjÞ
EC ¼

XN

i¼1

ti � c
ðjÞ
i

���
���
a
; ð2Þ

where the index i runs over all protein residues, c(j)

denotes the EC profile computed from candidate

structure j in the decoy set and t the target EC (either

predicted or computed from native structure) and ci
(j)

and ti are their respective vector entries. The exponent a
is set to 2, but varying it between 0.5 and 4 makes hardly

any difference to the filtering. Again, those structures

are selected that score among the top x% of the entire

set (x � 2).

The results depend on the choice of the contact

threshold rc for the contact map—either directly when

computing structural profile from contact map or

indirectly in the training of the ANN. Both prediction

quality of ECs and filtering quality depend on this

parameter but the dependence varies for different pro-

teins. For the results reported here, rc 5 8.5 Å has been

used as distance threshold between Ca atoms.

The quality of the prediction of the EC is measured by

the Pearson’s correlation coefficient qc between predicted

and exact ECs and may vary for different proteins. To

obtain comparable data for different proteins and to

assess the quality of the selection procedure as a function

of the quality of the predictions, we simulated different

sets of fixed correlations by linearly interpolating between

predicted profiles and profiles obtained from native

structures.

Clustering of decoys

Clustering by RMSD is used to find representatives of

clusters of similar configurations and thus identify highly

populated energy minima. This method is based on the

idea that while the low-resolution energy score may not

well preserve the depth of the native basin it may still

preserve its width. Thus, configurations would be more

densely sampled around the native basin which could be

made visible by extracting large clusters of low pairwise

RMSDs.

In order to compare this method to the filtering pro-

cedures described earlier, we aim at a largest cluster of

200 structures (2% of total set of 10,000). The clustering

procedure used in this work involves five steps: (1) com-

pute pairwise RMSDs between all configurations; (2)

choose a RMSD threshold; (3) find the configuration

with most neighbors (the largest cluster), i.e., with most

other configurations within the RMSD threshold; (4)

remove it together with its neighbors; (5) continue at

step 3 considering the surviving configurations. Using

this algorithm, the 10 largest clusters are extracted. The

RMSD threshold is determined in a binary search to

return a largest cluster of �200 structures. The RMSD

distribution of the largest cluster is then compared to

those obtained by filtering. In a combination of two

methods, the cluster of the lowest average energy score

[Eq. (1)] is also determined among the 10 largest clus-

ters. Additionally, the centers of all 10 largest clusters are

compared to the native structure.

Assessment of selection quality

It is possible to consider several different measures to

compare the performance of the various filtering

methods. We tested two different distance measures, Ca-

RMSD and TM-score (also based on Ca atoms).24 The

root mean square deviation (RMSD) is perhaps the most

intuitive measure of protein similarity and adequate for

closely related structures but carries less information for

Efficient Identification of Near-Native Conformations
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dissimilar structures.27 The TM-score does not suffer

from this disadvantage and can detect even quite weak

similarities between structures. Another question is how

to compare distributions (of either RMSD or TM-score)

as selected by different filtering methods. Although in the

following we refer in most places to the RMSD values,

the results obtained by using the TM-score are essentially

equivalent.

The entire distribution of the selected structures carries

most information but is also difficult to compare quanti-

tatively. The average RMSD (or average TM-score) to the

native structure is also not very suitable as it is most

important to find the few structures of very low RMSD

(high TM-scores) values even if some bad structures are

contained in the selection. The structure with the lowest

RMSD value (highest TM-score) in the selection and its

position in the internal ranking of structures by the scor-

ing function may be more suited but is strongly afflicted

by chance. We suggest that the number of structures in

the selection below a certain RMSD (or above a certain

TM-score) threshold is most informative; in our experi-

ence this threshold should be at about 3–4 Å (or a TM-

score threshold of 0.6). However, distributions differ for

different proteins and for some the decoy set do not con-

tain such structures. Therefore, we choose a protein-de-

pendent threshold and all structures with an RMSD one

standard deviation lower than the mean RMSD (zRMSD

< 21) (or mean TM-score, zTM-score < 21) are consid-

ered as good structures.

RESULTS AND DISCUSSION

RMSD and TM-score distributions

For most small (i.e., less than 200 amino acids) pro-

teins, the RMSD values of the decoys to target structures

were found to range from 2.5 to 14 Å and TM-score

from 0.2 to 0.8; we show two typical cases in Figure 1,

1ubq and 1pv0 (for the remaining structures see Sup-

porting Information). Note that the x-axes of Figure

1(b,d) show 1 – TM-score such that, in both RMSD and

TM-score plots, ‘‘good’’ decoys are sorted toward the left

and that x-axes are to different scales. The dotted line

indicates an RMSD of 3 Å and TM-score of 0.6 for com-

parison of different proteins, the dashed (red) line

denotes one standard deviation below mean as a measure

of relatively good decoys within a given decoy set.

Notable exceptions in decoy distributions are found

for 1p9yA with some structures of very high RMSD (ca.

25 Å) and 1r69 where the entire RMSD distribution is

fairly good and TM-scores even reach values of 0.9. In

the latter case, a random selection might be suitable for

refinement to high-resolution structures. It has to be

noted that 1p9yA is a notoriously difficult case where

two distant b-hairpins have to be in proximity, 1r69 on

the other hand was used for calibration of the Rosetta

score28 explaining the very good decoy distribution.

The larger proteins of about 200 amino acids have

RMSD distributions ranging from 7 to 30 Å, some (1ix9

and 1gk9) even without any decoys below an RMSD of

Figure 1
Distribution of RMSD (a,c) and 1 – TM-score (b,d) of decoys compared to target structure for (a,b) ubiquitin (PDBid 1ubq, length 76) and (c,d)

Sda antikinase (PDBid 1pv0, length 46). Solid lines indicate the mean of the RMSD distributions, and dashed lines one standard deviation below

the mean and dotted line 3 Å or TM-score 0.6. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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10 Å, and TM-score distributions between 0.1 and 0.5,

for some proteins even only up to 0.4. For these larger

proteins, decoys were too distant from native structures

to allow any meaningful comparison of filtering methods.

Even when using TM-score as a distance measure, which

is more sensitive to distant similarities than RMSD, filter-

ing methods were unable to detect these weak signals.

We therefore estimated the number of decoys necessary

to expect one structure with RMSD � 5 Å by approxi-

mating distributions as Gaussian (see Supporting Infor-

mation) with mean and variance calculated from decoy

sets. The results (see Supporting Information) show that

up to 1012 structures would be required for 1ix9. As this

number is too large, we chose to additionally test our

filtering method on CASP8 models where good predic-

tions of longer proteins are on-hand (see below).

Selection of structures by scoring functions

The correlation between the scoring function and the

distance from the native structure and the funneling

toward the native structure are all important features in

a scoring function. The low-resolution energy scoring

function of Rosetta is usually correlated to the RMSD

values [see Fig. 2(a) for example protein 1ubq] but fun-

neling toward the lowest RMSDs would require very

extensive sampling and the decoy set to contain very

near native structures. Instead, in Figure 2(a) there

appears to be a small funnel toward structures of about 4

to 5 Å even though structures of 2 to 3 Å RMSD to the

native structure exist in the decoy set. In other cases [see

Fig. 2(b) for example protein 1shg], the scoring function

fails more dramatically and leads to very different struc-

tures. The scoring function DEC on the other hand

appears more reliable in the scatter plots and always

selects structures of very low RMSD among the best scor-

ing structures [see Fig. 2(c) for 1ubq and 2(d) for 1shg].

Scatter plots for predicted structural profiles, Figure 2(e,

f), again show less funneling than plots for exact profiles

but do not lead to false minima either. Scatter plots with

TM-score instead of RMSD are qualitatively similar (data

not shown).

Figure 2
(a,b) Scatter plots of the Rosetta score, Eq. (1), as a function of RMSD values for (a) ubiquitin (1ubq, length 76) and (b) SH3 domain (1shg,

length 57). (c,d) Scatter plots of DEC, Eq. (2), as a function of RMSD values for (c) ubiquitin (1ubq) and (d) SH3 domain (1shg). (e,f) Scatter

plots of DpredEC, also Eq. (2) but for predicted target profile, as a function of RMSD values for (e) ubiquitin (1ubq) and (f) SH3 domain (1shg).
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Figure 3 shows two examples of RMSD and TM-score

distributions after selection of 200 structures that have

the best ranking in terms of energy [Eq. (1)] or profile

comparison [Eq. (2)]. Filtering by using the exact profile

provides better results than filtering by Rosetta score in

all but two cases (see Table I)—1btb and 1gb1. The per-

formance of the two filtering methods is close for 1gb1

(especially if less than 200 structures are selected, see

Supporting Information) and also for 1r69 and 1mjc

where the outcome depends on the number of structures

selected. Even though here filtering has been performed

using the exact profile, which is not available for

unknown structures, the results show the great potential

of this filtering method. Filtering by predicted EC is

comparable to filtering by energy score [e.g., in Fig.

3(c,d), even better in Fig. 3(a,b)]. Although the shape of

distributions may vary between RMSD and TM-score,

ordering of filtering methods remains unchanged. In the

following plots and tables, discussing small protein struc-

tures, we therefore restrict ourselves to results for RMSD.

In eight of twelve cases, the exact EC is better than the

energy score and in six of these cases the predicted EC is

also better (as measured by number of good structures

N(zRMSD � 21), see Table I). Importantly, the great

strength of filtering by EC lies with ranking structures of

very low RMSD near the top (see Table I, numbers in

brackets). Figure 4 shows for two examples how the

number of good structures increases with the number of

top structures as selected by the different filters. It

appears that the curves for filtering by profile flatten

with increasing number of structures while the curve for

the energy score catches up [especially Fig. 4(b)]. This is

important if, due to limited resources, only a small per-

centage of structures is to be selected for refinement. The

black triangles denote the number of good structures

expected in a random sample, NðselectedÞ jGjjAj, where G is

the set of all good structures in the decoy set and A the

entire decoy set. It holds NðzRMSD � �1Þ ¼ jG \ Sf j with
Sf the set of structures selected by filter f (EC, predicted

EC, and Rosetta score).

Table II reports the correlation of predicted and exact

EC to investigate the dependance of filtering quality on

prediction quality. We note that the correlation coeffi-

cients observed for our test set are quite representative

for the prediction quality in general and, while varying

considerably, do not systematically deteriorate with

increasing length of proteins. (The correlation coefficients

for the protein structures of lengths larger than 200

amino acids vary from 0.58 to 0.78.) Columns 3 and 4

show the performance (number of good structures and

lowest RMSD) for simulated ‘‘predictions,’’ that is linear

interpolations between exact and predicted EC to give ar-

bitrary prediction qualities. Filtering by profile is per-

formed using DEC from Eq. (2), not qc so, arguably this

might be a better measure of prediction quality in our

case. However, the correlation coefficient qc is what is

typically reported. We adhere to this convention and

show filtering performance for fixed correlation to exact

Figure 3
Comparison of RMSD (a,c) and 1 – TM-score (b,d) distributions of structures selected by EC, predicted EC, and Rosetta score for (a,b) chain A of

cold shock protein (1c9oA, length 66) and (c,d) ubiquitin (1ubq, length 76). [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

K. Wolff et al.

254 PROTEINS



profiles. In a separate test we used the normalized dis-

tance dEC 5 DEC/N between exact and predicted profile,

where N is the length of the protein (data not shown).

These results do not differ qualitatively from the results

at fixed qc shown here.

Table II shows that the dependence of filtering on pre-

diction quality is not the same for different proteins.

Protein 1gb1, for which filtering by predicted EC exhib-

ited the worst performance, also has an exceptionally low

correlation coefficient—but so does 1ubq for which fil-

tering was quite good. A higher correlation to EC

improves filtering performance for each protein, see Fig-

ure 5, (except for 1btb where filtering by predicted EC

was better than by EC) and a correlation coefficient of qc
5 0.8 would put 1gb1 back among the others. Also for

fixed qc filtering performance varies considerably (even

when measured in relation to exact EC) showing that

prediction quality cannot be the only determinant of

good filtering, protein-specific structure features or the

structure distribution in the decoy set (and thus the sam-

pling method) may also play a role. In particular, filter-

ing by structural profiles compares favorably for decoy

sets of lower quality. This is important as decoy sets dete-

riorate with increasing lengths of proteins whereas pre-

diction quality of structural profiles does not systemati-

cally do so. If, however, the decoy sets are of poor quality

(no structure below an RMSD of approximately 5 Å, as

mentioned earlier), none of the filtering methods investi-

gated is capable of extracting meaningful subsets.

Taken together these results indicate that improving

structural profile predictors will help to further improve

this method of filtering even if some structures are inher-

ently more difficult than others.

Selection of structures by clustering

In the calculations that we performed, we could not

find any systematic improvement when using the cluster-

ing method over the selection by Rosetta score or by the

predicted profiles. Frequently, the largest cluster does not

contain any good structures. Even in two of the cases

where it apparently provides good results by higher

N(zRMSD � 21) (1mjc and 1oqp) this may rather show

the limits of the measure of selection quality used than

actually mean better selection (see Table I). Visual

inspection of the RMSD distribution (see Supporting In-

formation) reveals that very good structures are missing

in the largest cluster and high N(zRMSD � 21) is caused

by structures just below the threshold of zRMSD 5 21.

Only for protein 1c9oA [Fig. 6(b)] the largest cluster

unexpectedly outperforms the other selection methods.

Using the cluster of lowest average Rosetta score

instead of the largest one can give good results for those

cases where the direct selection by score has also been

successful (1btb, 1gb1). It is interesting to note that for

1btb clustering even improves the selection as compared

to direct selection by the Rosetta score [Fig. 6(a)]. Both

examples in Figure 6, however, are not representative for

the performance of structure selection by clustering.

While the RMSD threshold for clustering has been

Figure 4
Comparison of good structures among those selected by EC (filled
circles), predicted EC (empty circles), and Rosetta score (squares) (a)

for chain A of cold shock protein (1c9oA, length 66) and (b) ubiquitin

(1ubq, length 76). Triangles denote expectation values for random

sample. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Table II
Pearson’s Correlation Coefficient qc Between Predicted and Exact EC
(Column 2), Interpolated EC (mEC) (Columns 3 and 4) with Fixed

Correlation to Exact EC (0.8 resp. 0.9)

PDBid qc mEC, qc 5 0.8 mEC, qc 5 0.9

1pv0 0.64 25 (3.1) 34 (3.1)
1gb1 0.30 67 (1.7) 102 (1.7)
1shg 0.62 41 (4.0) 43 (4.0)
1jic 0.72 22 (6.2) 27 (6.2)
1r69 0.54 21 (2.2) 25 (1.6)
1c9oA 0.80 90 (2.9) 116 (2.9)
1mjc 0.86 – 89 (2.8)
1fgp 0.35 37 (8.5) 49 (8.0)
1ubq 0.30 122 (2.5) 126 (2.5)
1oqp 0.69 32 (4.1) 39 (4.1)
1btb 0.48 87 (3.4) 82 (3.2)
1p9yA 0.69 30 (6.1) 33 (5.7)

Data reported are number of good structures N(zRMSD � 21) and lowest RMSD

in the selection (in brackets). The proteins are sorted by length.
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chosen such that the largest cluster has �200 members

and numbers N(zRMSD � 21) are therefore comparable,

clusters of lowest energy are usually smaller which has to

be kept in mind when comparing absolute numbers.

We also compare the centers of the 10 largest clusters

to the 10 top structures as ranked by EC or predicted

EC, see Table III. Here, the number of good structures

N(zRMSD � 21) is not a good measure as only one clus-

ter is expected to be really near-native. It is however sig-

nificant information if no cluster center is among the

good structures as is the case for four proteins. When

using the structure of minimum RMSD as an alternative

measure, selection by exact EC also outperforms the clus-

ter centers in 10 cases and the predicted EC still wins in

seven cases. Especially for those proteins where initial

low-resolution sampling is poor (1p9yA, 1fgp) clustering

fails whereas EC filtering may still identify relatively good

conformations. Changing the clustering RMSD threshold

such that the largest cluster contained 500 instead of 200

structures brought no significant changes. Hence, the

hierarchical clustering approach is useful if the decoy set

is known in advance to be very good but both Rosetta

score and (especially) the predicted EC are more versatile

in the sense that they are successful for good decoy sets

but also tolerate decoy sets of only moderate prediction

quality. Additionally, filtering by scoring function has the

Figure 5
Comparison of RMSD distributions of structures selected by EC,

predicted EC, and interpolations of the two profiles (a) for chain A of

cold shock protein (1c9oA, length 66) and (b) immunoglobulin binding

domain of protein G (1gb1, length 56). [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]

Figure 6
Comparison of RMSD distributions of structures selected by EC, Rosetta

score, or clustering for (a) for barstar (1btb, length 89) and (b) chain A of
cold shock protein (1c9oA, length 66).

Table III
Number of Good Structures N (zRMSD � 21) and Minimum RMSD in

Å for Centers of the 10 Largest Clusters (Column 2) and 10 Structures

of Lowest DEC for Exact EC (Column 3) and Predicted EC (Column 4)

PDBid Ccenters EC predEC

1pv0 4 (3.5) 5 (2.9) 1 (3.8)
1gb1 3 (2.0) 10 (1.7) 0 (4.1)
1shg 0 (6.7) 9 (4.1) 3 (5.0)
1jic 0 (10.0) 6 (6.3) 2 (8.0)
1r69 1 (2.9) 1 (2.3) 2 (2.8)
1c9oA 5 (3.2) 10 (3.2) 6 (3.1)
1mjc 6 (3.8) 9 (3.2) 3 (4.6)
1fgp 0 (10.7) 8 (8.3) 1 (10.1)
1ubq 6 (2.5) 8 (2.7) 4 (3.4)
1oqp 3 (5.0) 6 (4.1) 2 (5.3)
1btb 3 (4.2) 6 (3.7) 6 (3.4)
1p9yA 0 (13.9) 3 (7.8) 2 (9.0)

The best method (not considering exact EC) is underlined in each row. The

proteins are sorted by length.
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advantage of being easily scalable—simply by varying the

percentage of selected structures as in Figure 4.

CASP8 server models

In addition to the decoy sets generated by Rosetta, we

also studied the server-only ab initio predictions of

CASP8 to test our method on longer protein structures.

For the 29 targets considered, 100 to 300 models per tar-

get are available, which we again ranked by Rosetta score,

exact and predicted EC (the correlation coefficient

between the latter two varies from 0.34 to 0.82).

Although the CASP models were generated by various

methods, we used the Rosetta energy as a scoring func-

tion to perform a consistent comparison.

Figure 7 shows the relative frequency of choosing at

least one ‘‘good’’ structure for different filters and select-

ing 1 to 10 models per target, averaged over all 29 tar-

gets. The ‘‘random’’ curve gives the probability to do so

by randomly sampling the models, taking into account

the different numbers of models per target and subse-

quently averaging over all 29 targets. Clustering models

by RMSD proved ineffective because of too small struc-

ture sets. In Figure 7(a) only the structure of very best

TM-score is considered as good, in Figure 7(b) the 10

structures of highest TM-score. For this plot, TM-score

was used instead of RMSD to measure model similarity

to target as model quality differed considerably.

Although, with lengths ranging from 69 to 533, not all of

the CASP8 targets are longer than the structures consid-

ered before, we average over the entire set to get better

statistics. Taking into account only the 20 structures lon-

ger than 120 amino acids yields a similar picture.

The results are consistent with those for smaller struc-

tures: The exact EC shows the best performance, and the

predicted EC is comparable to Rosetta score but better if

a stricter criterion of ‘‘good’’ structures is applied. It is

however remarkable how well Rosetta score performed

considering that models were not optimized using this

score.

CONCLUSION

We have shown that the use of structural profiles pro-

vides an effective way to select near-native candidate

structures in ab initio prediction methods. We have first

provided a proof of principle by performing the selection

by using exact profiles, and then demonstrated that the

use of predicted profiles also offers results of very good

quality. Furthermore, the results that we have presented

concerning the selection by interpolated structural pro-

files indicate that the quality could be further improved

by increasing the accuracy in the prediction of the struc-

tural profiles. We also wish to point out that predictions

of structural profiles do not systematically deteriorate

with increasing lengths of proteins whereas decoy sets do.

If decoy sets contain at least some good structures, our

approach is better than other filtering methods in coping

with decoys of less quality while still being able to extract

top structures from good sets. As shown by considering

the structures from server-only ab initio predictions of

CASP8, using predicted profiles for longer structures

constitutes no bottleneck. As strategies for selecting con-

formations that exploit predicted structural profiles, such

as those discussed in this work, provide results of good

quality, it is worth considering them in standard ab initio

prediction methods.
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