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Coarse-grained model for protein folding based on structural profiles
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We study a coarse-grained protein model whose primary characteristics are (i) a tubelike geometry to describe
the self-avoidance effects of the polypeptide chain and (ii) an energy function based on a one-dimensional
structural representation. The latter specifies the connectivity of a sequence in a given conformation, so that the
energy function, rather than favoring the formation of specific native pairwise contacts, promotes the establishment
of a specific target connectivity for each amino acid. We show that the resulting dynamics is in good agreement
with both experimental observations and the results of all-atoms simulations. In contrast to the latter, our
coarse-grained approach provides the possibility to explore longer time scales and thus enables one to access,
albeit in less detail, larger regions of the conformational space. We illustrate our approach by its application to the
villin headpiece domain, a three-helix protein, by studying its folding behavior and determining heat capacities
and free-energy landscapes in various reaction coordinates.
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I. INTRODUCTION

According to our current understanding of protein folding,
the energy function governing the folding process provides a
bias toward the native state to avoid an extensive sampling of
the extremely large number of configurations available to the
polypeptide chain [1–4]. Even though detailed atomistic mod-
els are able to reproduce this overall feature, the underlying
force fields yield energy surfaces that are relatively rough on
smaller scales. As a consequence, atomistic models require
very significant computational efforts, despite great advances
in recent years [5–9], and hence coarse-grained models provide
a range of opportunities to investigate the behavior of proteins
at a lower level of detail [10–12].

Over the years, a variety of coarse-grained models of
proteins have been developed. Many of these models can be
defined as native-centric, i.e., in these models a knowledge
about the native structure is a crucial ingredient. But even if
the native structure is known, it is still not obvious how
the native conformation is attained during folding, and one
fundamental question is whether and how the native structure
determines the possible folding pathways. At the geometrical
level, it is sufficient to know which amino acid pairs are
spatially close (in contact) in the native structure to construct
it with relatively high accuracy [13]. However, whether
knowledge of the native contacts is also sufficient to infer
major features of the folding process is still unclear.

A particularly well studied and versatile class of coarse-
grained models are based on the Gō approximation [14,15],
which defines an energy function favoring specifically the
formation of native contacts between amino acids. These
models are based on the principle of minimal frustration [16],
which assumes that the energy landscape displays minimal
roughness, as proteins are under evolutionary selection for
fast and reliable folding. Gō models have been applied in
various contexts and have been shown to capture many
important features of the protein folding process [15,17,18].
However, models solely based on additive native contact en-
ergy contributions have difficulties in reproducing phenomena

such as cooperative folding behavior or misfolding, precisely
because of their smooth energy landscape, so additional energy
contributions are usually included [10–12,19].

An alternative approach that we proposed recently is a
native-centric model whose energy function is based on a
one-dimensional structural representation (a structural profile)
[20–22]. The latter specifies the sequence’s connectivity in a
given conformation, so that the energy function, rather than
favoring the formation of specific native pairwise contacts
as in standard Gō models, promotes the establishment of
a specific target connectivity for each amino acid. In com-
parison with other coarse-grained approaches of comparable
complexity, the resulting dynamics is in better agreement with
both experimental observations and the results of all-atoms
simulations, as we show in the following using the villin
headpiece domain as an example. This work is organized as
follows: the model and its properties are discussed in detail
in Sec. II; results concerning free-energy landscapes, heat
capacities, and folding transitions are presented in Sec. III;
and Sec. IV reports our conclusions.

II. MODEL

Our protein model uses a coarse-grained representation
of a polypeptide chain and defines it as a tube with a finite
thickness [23,24], which accounts for both (i) excluded volume
by prohibiting overlapping parts and (ii) finite bending rigidity
by disallowing too tight angles. The tube can be formalized by
a steric energy Esteric, which is 0 for allowed conformations
and infinite otherwise. In the implementation of the tube
and in the move set used in Monte Carlo simulations, we
follow Refs. [21,22,24]: The tube consists of spherocylinders
(cylinders capped with semispheres) of diameter 3.3 Å, whose
axes coincide with the links joining consecutive Cα atoms
being 3.8 Å apart. Spherocylinders that do not share a Cα

atom are not allowed to intersect. Pivot and crankshaft moves
are tried in 10% and in 90% of the cases, respectively. In a pivot
move, a Cα atom and an axis of rotation are picked randomly
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(a) (b)

FIG. 1. Monte Carlo move set of the tube (the individual
spherocylinders are left out for clarity) exemplified using (a) a pivot
and (b) a crankshaft move.

and all Cα atoms with indices larger than the selected one are
rotated by an angle φ [see Fig. 1(a)]. In a crankshaft move, two
Cα atoms are selected randomly such that there are one to four
Cα atoms between them, and the intermediate Cα atoms are
rotated around the axis determined by their connecting vector
by an angle φ [see Fig. 1(b)]. In both cases, the angle φ is
drawn from a Gaussian distribution of mean 0 and standard
deviation π/25.

The tube is combined with an energy term biased toward
the (native) target conformation. We consider two variants of
such an energy term in the following, one for our effective-
connectivity (EC) model and one for a Gō model with which
we compare our model.

In the case of the Gō model, the establishment of native
contacts is energetically rewarded, whereas the establishment
of non-native contacts is energetically neutral or even penal-
ized. This energy can hence be defined using the contact map
C of a given conformation, which is given by

Cij =
{

1 |i − j | > 2 ∧ di,j < rc ∧ p(i) ∧ p(j )

0 otherwise,
(1)

where di,j is the distance between Cα atom i and Cα atom j

and rc is a cutoff distance for contacts (to which results are
largely insensitive), which in the present case is set to 8.5 Å
[see Fig. 2(b)]. Contacts with |i − j | � 2 that are present all
the time (including self-contacts) are not taken into account.

We restrict the contact map further, for both the target
(native) and the current conformation, to contacts between
amino acids i and j showing both cooperative contact patterns
reminiscent of α helices or β sheets [formally denoted by
boolean functions p(i) and p(j ) in Eq. (1)] [20–22], see
Fig. 2(b). For an α helix, contacts between i and i + k, i + 1
and i + 1 + k, up to i + � − 1 and i + � − 1 + k are required.
The number of residues per helix turn is 3.6 and hydrogen
bonds exist between residues i and i + 4 or, for 310 helices,
between residues i and i + 3. Therefore, k = 4 or k = 3 are
allowed. A minimum size of a helix of �min = 4 consecutive
contacts and a chirality χ = (�ei,i+1 × �ei+1,i+2) · �ei+2,i+3 > 0.2
is required, where �ei,i+1 is the unit vector pointing from
Cα atom i to Cα atom i + 1. A single residue following or
preceding an α helix, and itself having the contact pattern of
an α helix but not the correct chirality, is included into the α

helix. The contact pattern of parallel β sheets is very much the
same except that k > 4 and there is no constraint on chirality.
For antiparallel β sheets, the pattern that has to be followed
is contacts between position i and j , i + 1 and j − 1, up to
i + � − 1 and j − � + 1, without constraint on chirality. The
minimum size of β sheets (both parallel and antiparallel) is
also set to �min = 4 consecutive contacts.
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FIG. 2. (Color online) (a) Protein structure with amino acids that
are part of cooperative contacts in blue (light gray) and those that are
not part in red (dark gray), (b) contact map C(t), and (c) effective-
connectivity (EC) profile c(t) of the villin headpiece domain (PDB ID
1UND). Restricting the contact map to pairs of amino acids that are
both part of secondary structure elements (blue filled squares, here
only helices) and disregarding all others (red open circles, shown
for comparison), as we do in our simulations, results in a slightly
modified contact map and, hence, EC profile [solid blue line for blue
(filled squares) contacts only, dashed red line for both blue (filled
squares) and red (open circles) contacts shown for comparison].

This restriction to amino acids which show cooperative
contacts favors the formation of secondary structure and in
effect reduces the conformation space that is sampled. It has
been introduced for more efficient sampling in the EC model
but its effect on the Gō model is minimal. Nevertheless, the
restriction is applied to the computation of both energies
to avoid introducing additional differences between the two
models. As the energy for the Gō model, we define

EGō = −ε̃ L

∑L−3
i=1

∑L
j=i+3 Cij C

(t)
ij

max
{∑L−3

i=1

∑L
j=i+3 Cij ,

∑L−3
i=1

∑L
j=i+3 C

(t)
ij

} ,

(2)

which counts the number of contacts that the contact maps
of the current conformation C and of the native conformation
C(t) have in common and normalizes it by the maximum of
the two conformations’ total number of contacts. Here, L is
the number of amino acids in the protein, and the parameter
ε̃ sets the scale for temperatures used in simulations, and
there are no other parameters to tune interaction strengths. The
definition in Eq. (2) has the advantage that non-native contacts
are energetically penalized. The total energy then consists of
two terms

Etot
Gō = Esteric + EGō. (3)

The EC model, which is the main focus here, is based
on the notion of the effective connectivity of an amino
acid. The EC profile is a vector quantity whose entries are
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the effective-connectivity values of the L amino acids in
the protein and which is calculated from the contact map
corresponding to a given protein conformation. The EC profile
does not specify which individual contacts between amino
acid pairs are formed; instead, a given vector component
is related to the total number of contacts the corresponding
amino acid has. An important property of the EC profile of
a protein’s native structure (the native EC profile) is that it
represents an analytic solution of the “statistical inverse folding
problem”, which consists in finding the statistical properties
of sequences compatible with this structure [25,26]. As such,
the EC profile allows us to predict the average hydrophobicity
of amino acids at each site for families of proteins sharing
the same structure, although its correlation with an individual
sequence’s hydrophobicity profile may be small [25]. The EC
profile c is computed according to

c = 1

A

L∑
k=1

〈v(k)〉
	 − λ(k)

v(k). (4)

Here v(k) (k = 1, . . . ,L) are the L eigenvectors of a given
conformation’s contact map, Eq. (1), with their eigenvalues
λ(k), and 〈v(k)〉 = L−1 ∑L

i=1 v
(k)
i is the average of entries v

(k)
i

of eigenvector k. The parameters A > 0 and 	 > λ(k) are used
to set the average and variance of c following Ref. [25]. The EC
profile thus contains contributions from all the contact map’s
eigenvectors, while the contribution from the eigenvector
belonging to the largest eigenvalue (principal eigenvector, PE)
is largest; and in fact the correlation between the EC profile and
PE is high for fully folded globular proteins (see Ref. [25]).
While for compact structures with connected contact maps
the PE contains full information on the connectivity of amino
acids and is sufficient to reconstruct the contact map [27],
for noncompact structures (as will be encountered during
folding) the PE would only give information on the largest
(or most well-connected) block within the contact map. This
is the reason why here we employ the EC profile for which
the contributions from further eigenvectors serve to include
information on less well-connected blocks in the contact map.
Note that due to the constraints applied to the contact map
(see above), EC components are nonzero only for amino acids
that display cooperative contact patterns. The energy of the
EC model is defined as

EEC = ε

L∑
i=1

∣∣ci − c
(t)
i

∣∣, (5)

and sums up absolute differences over all amino acids i

between the EC profile of the current conformation c and of
the native conformation c(t). Thus, in contrast to the Gō model,
Eq. (2), the formation of native contacts is not necessarily
energetically rewarded, nor is the formation of non-native
contacts necessarily penalized. It is rather that changes in the
contact map making the resulting EC profile more (less) similar
to the target one are energetically rewarded (penalized). The
parameter ε sets the scale for temperatures used in simulations,
and there are no other parameters to tune interaction strengths.
By changing the term within the sum of Eq. (5) to |ci − c

(t)
i |α

with α > 1, larger deviations from the target connectivity of
single amino acids would be emphasized more strongly. Here

we work with α = 1 to ensure that no energy contribution from
a single amino acid dominates the sum. The total energy then
consists of two terms

Etot
EC = Esteric + EEC. (6)

The energies EGō and EEC, Eqs. (2) and (5), can be
interpreted as two alternative metrics in conformation space,
measuring the distance between the current and the native
conformation (in the Gō model, one needs to add a constant,
EGō + ε̃L, to make it a metric in the mathematical sense). The
Gō model and the EC model are very similar in the sense that
they are both native-centric, based on contact maps, Eq. (1),
and are of comparable complexity. However, the two different
energies derived from the contact maps, Eqs. (2) and (5), cause
the two models to display very different dynamical behaviors,
as we will show in the next section. Put simply, this difference
stems from the way the energies are constructed as (mainly)
additive in the case of the Gō model where each contact
contributes toward the total energy in the same way [except
where additional contacts change the denominator in Eq. (2)]
and inherently cooperative as in the EC model where many
contacts have to be correct to give the correct connectivity
which then leads to a cooperative folding process.

Before discussing results of the two models, we note
that the usefulness of structural profiles such as the EC was
also demonstrated in other contexts, for instance, for protein
structure comparison [28], protein sequence comparison [29],
and protein structure prediction [30]. All these applications
indicate that structural profiles such as the EC constitute
a “fingerprint” of the folded structure [27]. In the latter
two examples mentioned, the structural profiles are not
calculated from the native conformation but predicted from
the amino acid sequence as a first step of the respective
procedure, suggesting that structural profiles such as the EC are
furthermore encoded in and reliably deducible from the amino
acid sequence. Thus, using in Eq. (5) not the EC profile derived
from the native structure (as we do in the following) but an EC
profile predicted from the amino acid sequence might allow us
in the future to derive some properties of the folding process
from the sequence without the need of atomistic models or
even knowledge of the folded structure.

III. RESULTS

Villin headpiece domains are among the shortest naturally
occurring sequences which have been shown to autonomously
fold, thereby displaying a surprisingly complex folding be-
havior (see, for instance, Ref. [31]). It is hence not surprising
that these proteins have already been the focus of numerous
experimental and theoretical investigations, which motivated
us to focus here on this fold [more precisely on the variant
Protein Data Bank (PDB) ID 1UND, chain A, shown in
Fig. 2(a)]. Particularly relevant to the following discussion is
that the complete folding process of a villin headpiece domain
was recently studied by carrying out several microsecond-long
molecular dynamics simulation runs with implicit water [5],
which revealed an asymmetric folding behavior with one part
of the protein structure typically forming before the other
part. In a subsequent simulation study, a villin headpiece
domain was investigated by molecular dynamics simulations
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with explicit water [8] which agree with Ref. [5] on the
asymmetry of folding pathways. Those simulations required
vast computing resources, and it has hence been a formidable
challenge to find similar results by using a coarse-grained
model.

A. Free-energy landscapes and folding simulations

Following Ref. [5], we divide the native structure of the
villin headpiece domain into two overlapping parts: Part A

comprises the first two of the three α helices, from residue 1 to
21, and part B the last two of the three α helices, from residue
14 to 36, thus overlapping in the middle α helix. In topology-
based models such as the ones studied here, the fraction of
native contacts qA and qB of parts A and B are particularly
well suited as reaction coordinates to measure the progress of
folding of the respective parts. The villin headpiece domain
is thus regarded as completely folded if all native contacts
are present and (qA,qB) = (1,1). To efficiently explore large
regions of the free-energy landscape including those with high
free energy, we use the well-tempered metadynamics method
[32] and add the potential

V (s,t) = kB�T ln [1 + N (s,t)] (7)

to the total energy of Eq. (3) or (6). The histogram N (s,t)
counts the number of times state s, here defined by the reaction
coordinates (qA,qB), is visited. This histogram dependent
potential energy avoids trapping in local minima (or indeed
in the global minimum) and allows the simulated protein
to visit large portions of conformation space. The parameter
�T = 0.2ε̃/kB for the Gō model and �T = 0.2ε/kB for the
EC model, respectively, is chosen such that the simulation
does not spend too much time trapped in a minimum but
also samples said minimum sufficiently before leaving. The
equilibrium free energy of a state s is then determined
as F (s) = −kB(T + �T ) ln N (s,t)

∣∣
t→∞. The resulting free-

energy landscapes, for both the Gō and the EC models, are
shown in Fig. 3 for five different temperatures (six for the
Gō model). Simulations were started from the folded protein
structure and run for 2 × 108 Monte Carlo (MC) steps during
which the protein unfolds and refolds multiple times. For
the free-energy landscapes we averaged the final histograms
of nine independent simulations. The Gō and EC models
display qualitatively different behavior. In the Gō model,
Figs. 3(a)–3(f), the free-energy landscape is almost featureless.
It is largely funnelled toward the native state (qA,qB ) = (1,1)
for low temperatures, and the minimum wanders continuously
to larger qA and qB and grows ever deeper for increasing
temperatures. Thus, no clear folding temperature can be
defined in the Gō model. The villin headpiece has been
experimentally observed to display two-state folding between
the native (folded) and the denaturated (unfolded) state, so
that one (or possibly more) non-native minimum should be
visible in the free-energy landscape together with the native
minimum at intermediate and larger temperatures. In the Gō
model, a downhill folding occurs instead that is not limited by
any free-energy barrier, which is consistent with the general
observation that pairwise additive contact-based models tend
to underestimate the free-energy barriers in protein folding
[33].
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FIG. 3. (Color online) Comparison of the free-energy landscapes
of the villin headpiece domain (PDB ID 1UND) in the reaction
coordinates qA and qB , (a) to (f) in the Gō model and (g) to (l)
in the EC model, at several temperatures. Colors range from blue
(low free energy) via green and yellow to red (high free energy). (In
gray scales this corresponds to dark, light, and dark again. Note that
all local extrema are local minima, dark gray thus meaning low free
energy.) A given color (gray value) indicates the same free energy for
(a)–(f) and (g)–(l), respectively, and contour lines are drawn every
(a)–(f) 0.5ε̃ and (g)–(l) 0.1ε. In the Gō model, the minimum wanders
to larger qA and qB for increasing temperature and grows ever deeper,
whereas in the EC model, a new free-energy minimum appears at
larger q and drains the old native state minimum for increasing
temperatures. (l) Detail of (h) showing the free-energy minimum.
Red (gray) arrows indicate the native state where it is the global
minimum of the free-energy landscape.

One of the most interesting features of the EC model is
its ability to produce a cooperative folding transition without
additional inputs [21,22], see Figs. 3(g)–3(l). The structural
ensemble is mainly populating the native state at (qA,qB) =
(1,1) for temperatures below the folding temperature kBT =
0.09 ε and a new free-energy minimum at (qA,qB ) ≈ (0.6,0.6)
appears that drains the native state minimum for increasing
temperatures, becoming dominant for temperatures above the
folding temperature. Thus, we observe a two-state folding
process in the EC model. The equilibrium population of the
native state at (qA,qB ) = (1,1) is 97% for kBT = 0.07 ε, 73%
for kBT = 0.08 ε, 5% for kBT = 0.09 ε, 0.3% for kBT =
0.1 ε, and 0.0005% for kBT = 0.12 ε. For kBT � 0.09 ε the
native state is the free-energy minimum as indicated by the
red (gray) arrows in Figs. 3(g)–3(l). Because the minimum
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is very sharp and hard to discern, we magnify the region
containing the native state for kBT = 0.08 ε in Fig. 3(l). At
the folding temperature, kBT = 0.09 ε, we find a barrier of
0.3 ε corresponding to 3.3 kBT which is toward the upper
limit of the estimate from calorimetric data [34]. Furthermore,
the free-energy landscape displays an asymmetry with an
intermediate basin of partially folded structures centered
at (qA,qB) ≈ (0.85,0.9). Because of this feature, the villin
headpiece domain is approximately twice as likely to follow
a folding route where part B becomes structured faster than
part A (these trajectories would all lie below a diagonal line
connecting the unfolded ensemble and the last barrier before
the folded state). This type of folding behavior agrees with
the one found in previous fully atomistic molecular dynamics
simulations [5,8].

As alternative reaction coordinates, we use the helix content
(measuring the number of amino acids identified as α helical
according to the criterion described in Sec. II) and the
total number of contacts. Figure 4 displays the free-energy
landscape in these reaction coordinates for the Gō and EC
models for one temperature each. In the Gō model, Fig. 4(a),
one observes only one clear minimum centered at the native
helix content 27 and the native number of contacts 62.
There is a second very shallow minimum centered at a helix
content of around 19 and the native number of contacts,
which is, however, rather an inflection point than a minimum.
An inspection of the configurations displaying these specific
reaction coordinates reveals that they do not display alternative
secondary structure; instead, the lower helix content is due
only to the dissolution of the helices at their edges. A similar
picture is observed for lower and higher temperatures. Folding
simulations, started from an extended chain and run with
standard Metropolis Monte Carlo for 4.5 × 107 MC steps,
move directly into the native minimum in all cases and never
leave it [see black trajectory projected onto the free-energy
landscapes of Fig. 4(a)]. In the EC model, Fig. 4(b), one
observes three pronounced minima at the temperature shown
(which is slightly below the folding temperature): one centered
at the native helix content 27 and the native number of contacts
62, and two others centered at the native helix content 27
but smaller than native number of contacts of around 40 and
centered at the native number of contacts 62 but smaller than
native helix content of around 19. Interestingly, an inspection
of the configurations displaying reaction coordinates in the
vicinity of the two non-native minima shows that the first
non-native minimum hosts configurations displaying more or
less the correct secondary structure but otherwise being rather
extended, whereas the second minimum hosts configurations
which are collapsed (and have approximately the correct
number of contacts) some of which are clearly misfolded
and display secondary structure elements reminiscent of β

sheets. Folding simulations started from an extended chain
conformation and run with standard Metropolis Monte Carlo
for 4.5 × 107 MC steps visit all three free-energy minima,
crossing the barriers in between, which means that the chain
folds, unfolds, and misfolds continuously over time [see
black trajectory projected onto the free-energy landscapes of
Fig. 4(a)]. We ran nine such folding simulations unaided by the
metadynamics method for the EC model and the temperature
kBT = 0.08 ε displayed here out of which one simulation
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FIG. 4. (Color online) Free-energy landscape of villin headpiece
domain (PDB ID 1UND) in the reaction coordinates helix content
and total number of contacts, (a) in the Gō model at temperature
kBT = 0.5 ε̃ and (b) in the EC model at temperature kBT = 0.08 ε.
Colors range from blue (low free energy) via green and yellow to red
(high free energy), and contour lines are drawn every (a) 0.5ε̃ and
(b) 0.1ε. [In gray scales this corresponds to dark (low free energy),
light (intermediate free energy), and dark again (high free energy).
Note that all local extrema are local minima, dark gray thus meaning
low free energy.] Several simulated folding trajectories are included
for comparison.

was successful in reaching the exact native state, as defined
by (qA,qB) = (1,1), within the simulation time, and four
simulations reached the free-energy minimum in the reaction
coordinates of Fig. 4. Out of the nine folding simulations for
the Gō model at kBT = 0.5 ε̃, none reached (qA,qB) = (1,1)
but all visited structures of the same helix content and number
of contacts as the native structure, which is, however, easily
explained by the fact that the global free-energy minimum has
already moved away from (qA,qB ) = (1,1) for this temperature
[see Fig. 3(c)]. However, we chose to show and scrutinize this
particular instance of a free-energy landscape for the Gō model
because it displays the closest thing to a second minimum
observed in any of the Gō model free-energy landscapes.

A more detailed analysis of an individual folding event
is shown in Fig. 5, displaying the energy, the total number
of contacts, and the helix content as a function of time. One
notices that the helix content fluctuates around the correct
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FIG. 5. Time evolution of number of contacts (dashed line), helix
content (dotted line), and energy (solid line) for the villin headpiece
domain (PDB ID 1UND) in the EC model at temperature kBT =
0.08 ε.

value right from the start of the simulations with fluctuations
becoming smaller for more compact structures. The first drop
in energy (at about 25 × 106 MC steps) appears when the chain
collapses to approximatively the correct number of contacts,
and then another drop (at about 35 × 106 MC steps) when the
chain finally folds into the correct configuration.

B. Heat capacities and folding transitions

To elucidate the two-state behavior of the EC model sug-
gested by Figs. 3(g)–3(l) and the associated folding transition,
the heat capacity at constant volume CV = (〈E2〉 − 〈E〉2)/T 2

obtained by standard Metropolis Monte Carlo simulations is
shown in Fig. 6 for the Gō and EC models. There is no
peak visible for the Gō model, and energy fluctuations due to
partial and noncooperative unfolding occur even at very low
temperatures, in accordance with the free-energy landscapes in
Figs. 3(a)–3(f). This behavior contrasts that of the EC model,
for which a pronounced peak at kBT ≈ 0.1 ε is observed,
a value which agrees well with the folding temperature
derived from free-energy landscapes (two coexisting minima)
in Figs. 3(g)–3(l).

The energy distributions from which the heat capacity
has been calculated are exemplified for three different tem-
peratures for the Gō and EC models in Fig. 7 (the bin
size for the Gō model is larger because of the discreteness
of EGō). In the Gō model, the distribution is unimodal at
all temperatures [we observe the closest thing to a second
maximum at kBT = 0.09 ε̃, Fig. 7(a), but only for a single
bin at a single temperature], and the maximum shifts to
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(PDB ID 1UND) in (a) the Gō model and (b) the EC model. In the
Gō model, the heat capacity simply rises for decreasing temperature
while error bars increase as well, whereas in the EC model, a sharp
heat capacity peak at a temperature of kBT ≈ 0.1 ε is observed.
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FIG. 7. Energy distribution for the villin headpiece domain (PDB
ID 1UND) in (a),(c), and(e) the Gō model and (b),(d), and (f) the EC
model at several temperatures (the bin size for the Gō model is larger
because of the discreteness of EGō). In the Gō model, the distribution
is unimodal at all temperatures, a weak signal corresponding to a
second maximum appears at a single temperature kBT = 0.09 ε̃ (and
only for a single bin), and the maximum shifts to higher energies
for higher temperatures. In the EC model, (b) a competing local
maximum to the native energy first appears at kBT = 0.085 ε and
(d) overtakes the first energy peak at kBT = 0.1 ε. (f) At still higher
temperatures the energy distribution shifts to higher average energies
and broadens.

higher energies for higher temperatures. This is in contrast
to the EC model, for which two clear and separated peaks
are visible, one for the native energy and one for higher
energies, and the second peak grows at the expense of the first
(native) peak, causing the first peak to shrink and eventually to
disappear.

Summing up the results for the villin headpiece domain
in the two different models investigated here, we have found
free-energy landscapes displaying two different states in the
EC model as compared to single-state landscapes for the Gō
model. Our choice of reaction coordinates in Fig. 3 allows
a direct comparison with the results of Ref. [5] where the
authors employed the same coordinates. Whereas the Gō
model free-energy landscapes only show a single minimum at
all temperatures, the EC model shows several minima (namely,
native, unfolded, and one intermediate). This is strongly
reminiscent of the results in [5] with minima corresponding to
native, unfolded, and two intermediate states of which one
intermediate state, however, was much less populated and
also off-pathway in the folding process. We presume that
this intermediate state cannot be seen in our coarse-grained
simulations. The position of our intermediate state also agrees
with their on-pathway intermediate which corresponds to
part B of the protein becoming structured before part A.
The asymmetry of our free-energy landscapes is thus in
good agreement with the detailed molecular dynamics (MD)
simulations of Refs. [5] and [8]. Reference [5] also reports
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results for the heat capacity of the villin headpiece. However,
without calibration of our energy scale, the width and height of
the heat capacity peak are difficult to compare. The existence of
a clear peak in the EC model though agrees with those findings
(and the established two-state folding of the villin headpiece
domain) whereas the Gō model does not exhibit such a peak.
The local free-energy minimum of correct helix content but
too few contacts in Fig. 4(b) agrees with the experimental
observation of the secondary structure in the denatured state
of the villin headpiece domain [31], and the height of the
free-energy barrier in the EC model [Fig. 3(h)] is compatible
with the estimates made in Ref. [34] from calorimetric data.
Taken together, our results indicate that the EC model shows
very good agreement with experimental and MD numerical
results for a coarse-grained and native-centric protein model.

IV. CONCLUSIONS

We have recently proposed a coarse-grained model of
proteins that enables the efficient study of folding trajectories
and free-energy landscapes of folding [20–22]. We have
compared this model here with a more standard Gō model
of comparable complexity, using the villin headpiece domain

as an example. For both models, we have analyzed free-energy
landscapes in two different sets of reaction coordinates,
properties of folding trajectories, and heat capacities. The
asymmetry in the free-energy landscape of the villin headpiece
domain observed in the EC model but not in the Gō model
agrees well with the folding behavior found in extensive
fully atomistic molecular dynamics studies. Furthermore, the
two-state folding behavior observed experimentally for the
villin headpiece is reproduced by the EC model but not by the
Gō model. We suggest that the use of coarse-grained models
that combine tubelike geometries with connectivity-based
energy functions represents an effective tool for the efficient
characterization of the folding behavior of globular proteins.
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